
Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

1

Abstract— Many experts and practitioners have worked long

and hard towards achieving functionally capable robots. While
numerous areas of progress have been achieved, progress in
ethical control of unmanned systems has been elusive and
problematic. Common conclusions that treat ethical robots as an
always-amoral philosophical conundrum or requiring
undemonstrated morality-based artificial intelligence (AI) are
simply not sensible or repeatable. For better or worse, actors
around the world are rapidly designing and deploying mobile
unmanned systems to augment human capabilities. Thus theory
must meet practice. This work adapts policies and procedures for
ethical responsibility and authority that have been proven to work
in collaborative military operations, even across varying cultures
and platforms. Patterning after successful practice by human
teams shows that precise mission definition and task execution can
provide safeguards for autonomous robots or human-robot teams
possessing potentially lethal capabilities. Since lethality is not
limited to military weapons but can also include navigational
interference and vehicle collisions, and since many robots are
capable of carrying out well-defined tasks regardless of their
internal software architecture, this approach appears to have
broad usefulness for civil application of unmanned systems as well.

Index Terms—autonomous vehicles, ontology, robotics, robot
ethics

I. NATURE OF ETHICAL MISSIONS
ANY experts and practitioners have worked long and
hard towards achieving functionally capable robots.

While numerous areas of progress have been achieved, progress
in ethical control of unmanned systems has been elusive and
problematic. Common conclusions that treat ethical robots as
an always-amoral philosophical conundrum or requiring
undemonstrated morality-based artificial intelligence (AI) are
simply not sensible or repeatable. For better or worse, actors
around the world are rapidly designing and deploying mobile
unmanned systems to augment human capabilities. Thus theory
must meet practice.

This work adapts policies and procedures for ethical
responsibility and authority that have been proven to work in
collaborative military operations, even across varying cultures
and platforms. Patterning after successful practice by human

Paper submitted for review on 29 January 2017.
This work was supported in part by the Naval Postgraduate School (NPS)

Consortium for Robotics and Unmanned System Education and Research
(CRUSER) and the Office of the Secretary of Defense (OSD) Joint Ground
Robotics Enterprise (JGRE).

teams shows that precise mission definition and task execution
can provide safeguards for autonomous robots or human-robot
teams possessing potentially lethal capabilities. Since lethality
is not limited to military weapons but can also include
navigational interference and vehicle collisions, and since many
robots are capable of carrying out well-defined tasks regardless
of their internal software architecture, this approach appears to
have broad usefulness for civil application of unmanned
systems as well.

Experience and experimentation across four decades of
robotic and military operations inform this work. The authors
first look at unmanned capabilities and limitations, along with
real-world exemplars of how humans delegate command
responsibility and authority. Robot mission tasks and goals can
be clearly specified and refined with corresponding degrees of
internal control supervision occurring, in the case of the
exemplar discussed here as part of a three-layer software
architecture. The Autonomous Vehicle Command Language
(AVCL) (Davis, D. T. 2006) (Brutzman, Davis, et al. 2013)
(Brutzman et al. 2013) allows expressing such mission
constructs in a formal yet human-understandable way,
matching the repertoires of most human-driven and robot-
supervised vehicles. Adding well-defined prerequisite
constraints (permission, restriction, and required human
intervention) can supplement mission orders in context of each
individual task, providing an ethical basis for unmanned system
tasking that matches human understanding of similar
responsibilities. Careful structuring of Mission Execution
Automata (MEA) demonstrates a theoretically sound and
scalable basis to this approach. The functional vocabulary is
intentionally restricted to the well-understood mission
capabilities of humans and robots so that broad compatibility
by many robots is possible. Strict-subset vocabularies might
alternatively implement these atomic concepts using slightly
different syntax, but the core concepts must remain consistent.

Modeling, simulation and visualization have enabled
extensive testing of mission operations, building human
confidence in well-defined task orders. XML validation of
AVCL tasks confirms syntactical correctness of mission orders,
but more is needed. The authors therefore have created a

Don Brutzman (brutzman@nps.edu), Duane Davis (dtdavis@nps.edu),
Curtis Blais (clblais@nps.edu), and Robert McGhee (e-mail:
robertbmcghee@gmail.com) are faculty at Naval Postgraduate School (NPS),
Monterey California USA 93943.

Ethical Mission Definition and Execution for
Maritime Unmanned Systems: A Practical Approach

Don Brutzman, Member IEEE, Duane Davis, Member IEEE, Curtis Blais, Member, IEEE, and
Robert B. McGhee, Fellow, IEEE

M

mailto:brutzman@nps.edu
mailto:dtdavis@nps.edu
mailto:clblais@nps.edu
mailto:robertbmcghee@gmail.com

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

2

Mission Execution Ontology based on principles of description
logics, and implemented using Semantic Web languages. This
ontology is used to confirm that mission definitions are also
semantically complete, including ethical constraints whenever
appropriate. Such pre-mission verification of mission
completeness is analogous to chain-of-command human review
of operations orders that already occurs prior to coordinated
team operations.

A long trail has led to this point, inspired by many sources
but driven by a need to implement practical constraints on
unmanned systems lethality. A feasible path forward now
exists. Semantic coherence of mission orders for humans and
robots working together can be achieved, if tasks include ethical
constraints that define acceptable operational prerequisites for
remote action. Current project conclusions show that much
work remains for ethical control of robots, but progress is
indeed possible and quite encouraging. The authors believe that
ethical human supervision of semiautonomous unmanned
systems is feasible today and widely repeatable in a practical
manner.

II. CONSIDERING CRITICAL CHALLENGES
The idea of intelligent robots emerged from and developed

in the minds of artists and dreamers long before the prevailing
technology was capable of supporting its underlying premises.
First imagined using the term “robot” in the Czech play
“Rossum’s Universal Robots” (Čapek 1921), these intelligent
humanoid machines were relegated primarily to the realm of
science fiction in the first half of the twentieth century. Even
so, the ethical ramifications of mobile (and potentially lethal)
machines capable of human-like intelligence and actions were
readily apparent, and seemingly reasonable ethical frameworks,
most notably Azimov’s Three Laws of Robotics (Azimov
1950), were devised to govern intelligent robot operation. As
science fiction aficionados are well aware, however, these
frameworks were rife with loopholes and unanticipated
subtleties that inevitably led to their downfall.

The advent of digital computing, the emergence of artificial
intelligence as an academic discipline, and the simultaneous
incorporation of both into a variety of robotic devices have
brought these ethical concerns to the forefront of academic and
practical debate. Moreover, the ready availability of this
technology to governments, corporations, research entities, and
individuals has made this issue one of broad societal
importance. From robotic vacuum cleaners to armed military
drones, intelligent robotic technology has insinuated itself into
aspects of our lives that were not previously imagined. One
implication of this ubiquity is that questions of legal and moral
responsibility will not be answered by a set of fixed “laws” and
cannot be regulated into irrelevance through government
action, just as is the case of endeavors involving humans.

Nevertheless, a number of important observations can be
made:
• Predictability. Robots essentially perform exactly as

programmed to perform in a given situation.
Predictability is independent of the intent of the
programmer, the understanding of the operator, and any

anthropomorphic bias of observers. Fault-detection logic
can detect unexpected errors and prevent unplanned
actions. Robots do precisely what the programmers and
operators tell them to do—not what the programmers and
operators thought they told them to do or meant to tell
them to do. Thus a trustworthy robot must be competent
to perform assigned tasks.

• Authority. Apparent intelligence notwithstanding, a robot
is an inanimate object. Thus, moral responsibility for the
consequences of a robot’s actions cannot be assigned to
the robot. Thus decision-making authority must be
performed by qualified, well-informed humans.

• Responsibility. Direct responsibility for the outcomes of
robot activity must accompany authority, and must be
assignable to a specific human entity. For robot ethics to
bear any tangible meaning, ultimate moral and legal
accountability must reside with the human programmers,
manufacturers, operators and leadership. Deliberate care
must be taken when giving orders to robots, just as is
already given for orders to humans.

• Liability. The assignment of liability (whether legal or
moral) in any circumstance is premised on the assumption
that the involved parties are in a position to reasonably
foresee the outcomes for which they are being held
responsible. Liability accompanies authority and
responsibility. If a human decides to deploy an unmanned
system capable of lethal action, the human is liable for its
subsequent actions (even if unforeseen).

These observations are fairly widely accepted, but
nevertheless can lead ethicists to different conclusions. In
debating military use of autonomous systems, for instance, Rob
Sparrow of the International Committee for Robot Arms
Control uses Jus en Bello requirements to argue that the military
use of lethal robots is inherently unethical because robots
cannot be held accountable for their actions (Sparrow 2012).
Ronald Arkin, on the other hand, accepts the premises of
Sparrow’s argument but comes to the opposite conclusion—
that if an autonomous system is capable of making a lethal
decision more reliably than a human, then it is inherently
unethical to not use that system (Arkin 2009).

Notwithstanding disagreements over military use of
autonomous robots, these observations can form a common
basis that provides a framework for ethical operation of
intelligent robots. This approach is feasible with current
technologies and without a requirement for black-box artificial
intelligence “ethical controllers” that do not integrate well with
specialized software schemes and inevitably lead to second-
guessing, obfuscation, and uncertainty. Further, this paradigm
is potentially applicable not only to military operations (lethal
or otherwise) but also to other employment of robotic systems
where questions of ethical operation and responsibility arise.
(Lin, Abney and Bekey 2011) (Scharre 2016)

III. MILITARY OPERATIONS AS AN ANALOGY

A. Formal Military Guidance Continues to Evolve
Updating military guidance on use of autonomous systems

has become a perennial exercise in producing future roadmaps

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

3

and plans. Such documents are becoming more mature and
consistent, so current guidance (although plentiful) can provide
helpful insights.

Department of Defense Directive 3000.09, Autonomy in
Weapon Systems (Department of Defense 2012) identifies key
principles (policy) to be met in “the development and use of
autonomous and semi-autonomous functions in weapon
systems, including manned and unmanned platforms” and
“establishes guidelines designed to minimize the probability
and consequences of failures in autonomous and semi-
autonomous weapon systems that could lead to unintended
engagements”:
“Autonomous and semi-autonomous weapon systems shall be
designed to allow commanders and operators to exercise
appropriate levels of human judgment over the use of force. …
measures will ensure that autonomous and semi-autonomous
weapon systems: (a) Function as anticipated in realistic
operational environments against adaptive adversaries.(b)
Complete engagements in a timeframe consistent with
commander and operator intentions and, if unable to do so,
terminate engagements or seek additional human operator
input before continuing the engagement.” (Department of
Defense 2012, 2)

The Directive speaks of such systems as “human-supervised
autonomous weapon systems.” As such the systems need to
fall under the same rules and constraints as their manned
counterparts. We expect future guidance to expand these
principles to human-robot teams, despite the lack of
commonality that is implemented in robotic systems

B. Command Responsibility in Military Operations
Issues of authority and responsibility hold great importance

in military operations, providing many useful analogies with
essential relevance that are well understood. Military
commanders are provided forces over which they exercise
control and assigned missions that they are expected to
accomplish. Responsibility for the success, failure, and conduct
of the mission rests solely with the commander. This paradigm
is applied at all levels of command, from the individual soldier
responsible only for his own conduct to the overall commander
responsible for the entire operation. From a practical
standpoint, this means commanders are responsible for the
proper employment of all assigned assets, whether they are in
positions to actively direct those assets’ conduct or not. Naval
leaders in particular are frequently required to assume
responsibility over units with which they have little or no direct
contact. More recently, militaries have relied on increasingly
automated systems. The increased capability of these systems,
however, does not obviate the commander’s responsibility for
their proper employment. Ultimately, it does not matter
whether a military leader is employing a system of people or a
system of machines: authority requires responsibility. (Mack,
Seymour and McComas 1998)

As stated previously, the ability to assign responsibility for
operational decisions is premised on the ability of the decision-
maker to reasonably foresee the results. In military operations,
this requires a level of trust on the part the commander that is
based on a number of important factors. Each is directly

matched by similar protocols for humans.
a. Qualification. The subordinate unit must be trained and

qualified for the designated task requirements, or else the acting
agent (human or robotic) is simply not prepared and ready for
the desired assignment.

b. Comprehension and acknowledgement. The subordinate
unit must understand both tasking and on-board capabilities to
conduct mission tasks according to the commander’s direction.
Acknowledging (or responding negatively to) the provided
tasking is necessary for the commander to know that orders
have been received and can be carried out.

c. Recognizes status and completion. Finally, any
subordinate unit or employed system must be able to accurately
assess the state of the task’s execution over the course of the
assignment, and can determine the ongoing status of any
constraints that have been imposed on the execution. Success
or failure must be recognizable.

Essentially, these trust relationships provide assurance that a
properly employed system (human or otherwise) has the ability
to operate in a manner that does not impose undue risk. A
system that is insufficiently capable or improperly employed
system, on the other hand, will not meet this operational
standard, and a human commander will rightfully be held
responsible for any unwanted outcomes.

Launching indiscriminate weapons is not a lawful act. These
moral and legal principles are well understood by military
professionals. Robots tasked with serious missions must be
capable of carrying them out safely and in an ethical
(professional) manner, just like any other qualified wingman or
shipmate.

C. Applicability to Military and Civilian Operation of
Robotic Systems

A variation of this ethical mechanism upon which military
command accountability rests can be applied to robots in both
military and civilian applications in a fairly straightforward
manner as a corollary to the well-established legal principle of
vicarious liability (Vicarious Liability 2011). Under this
mechanism, operators can be held morally and legally
responsible for all outcomes of a robot system’s operation if
they are in a position to foresee those outcomes. That is,
operators can be held responsible for undesirable outcomes that
they are in a position to prevent. Such outcomes may be highly
significant, from both moral and legal perspectives, if property
or lives are lost.

All robots are designed with a set of basic operational and
sensory capabilities, the complexity of which varies from
robot to robot. A simple drone, for instance, might be capable
of no more than accurate transit between geographic
waypoints, while a more-capable vehicle might be able to
derive and execute a complex coverage pattern to search an
area. Similarly, many robots are capable of GPS navigation,
but more-advanced robots might also be capable of
determining their position relative to specific geographic
features.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

4

D. Trust in Capabilities is Necessary
It is reasonable under this understanding of robot actions to

assume a level of trust in a particular robot’s ability to
satisfactorily execute each of their atomic capabilities. It
follows then, that it is possible for the robot operator to task that
robot with enough confidence to assume moral and legal
liability for its conduct (Lokhorst and ven den Hoven 2012). If
such trust is misplaced, then the manufacturer or programmer
is presumably “design responsible” for their flawed product
(Lokhorst and ven den Hoven 2012). Thus responsibility and
culpability can be determined throughout this long line of
human involvement with any given unmanned system.

From a practical standpoint, the efficacy of this proposed
framework rests on three requirements that in combination can
provide robot operators with the required level of mission
assurance and understanding to assume responsibility for the
robot’s conduct:
• Semantic correctness. The operator must be able to

provide a rigorous mission definition that he himself fully
understands. This understanding must be mathematically
sound in the sense that the operator must be able to assure
himself that the mission will progress from one atomic
task to the next as the operator intends under all
foreseeable circumstances.

• Consistent clarity. At its lowest level, the mission
definition and any constraints must be defined in a form
that is acceptable to the assigned vehicle itself. That is, it
is not sufficient that the operator understand a version of
the mission that is eventually translated into actual vehicle
commands. Stated differently, there must be no means by
which the operator-approved mission description can be
semantically modified between the time that the mission
is approved and the time it is executed by the target
vehicle.

• Executable composition. The mission tasking and
associated constraints must be comprised entirely of
atomic vehicle-specific behaviors for which the target
vehicle has been afforded an acceptable level of trust.
The vehicle must also be trusted to execute the individual
mission tasks, similarly trusted as able to recognize when
a proposed (or active) task cannot be successfully
executed. The unmanned system must be able to
continually evaluate all execution constraints and
determine when one is likely to be violated.

Upcoming sections of this paper present a formalization of

the way that some missions (such as operations orders) can be
developed and defined for human execution. In particular, a
specific mission is described in structured natural language, and
then, after a series of steps, abstracted into a ternary-branching
“process flow diagram” that includes run-time ethical
constraints. Subsequently, in a following section, it is shown
how such a graph can be reinterpreted as mission orders for
joint human/robot collaboration or entirely autonomous
execution.

IV. MISSION DEFINITION AS GOALS OR TASKS WITH
RUN-TIME CONSTRAINTS

A. Goal Definition and Task Decomposition
In describing complex tasks to subordinates, humans often

subdivide these tasks into a series of subordinate tasks that can
be executed in order to accomplish the overall mission. For
instance, a complex task (or mission) during which a manned
vehicle is expected to conduct searches and collect
environmental samples before rendezvousing with another
manned (or unmanned) vehicle might be specified as a series of
tasks as depicted in Figure 1. Providing the vehicle’s operator
knows the geographic characteristics of Areas A, B, and C and
understands what the commander means in directing searches,
environmental sampling, and rendezvous, the operator is able
to reliably execute this mission as specified.

Note that each of the above tasks is nontrivial. Most tasks
include transit as well as subsequent operations in different
locations. Each task requires multiple sophisticated steps for
successful completion, whether accomplished by a human or a
robot. Each subtask typically requires even more specialized
capabilities. For example transit requires safe navigation,
which requires sensing and classification for situational
awareness plus stable control, which in turn requires operation
of hardware/software capabilities, and so on. Each level of
abstraction requires different capabilities and sophistication,
while no layer of capability can exist correctly without the
corresponding layers of functionality that lie above and below.
Thus task decomposability is essential.

B. Control Loops for Robots and Humans
In executing this mission, a vehicle operator implicitly relies

on a discrete decision process similar to the one graphically
depicted in Figure 2. With this model, the operator periodically
takes stock of the current situation, determines status of the
current task, and proceeds to the next task when the current one
is complete. In essence, applying a decision-loop model of
Figure 2 to the mission description of Figure 1 transforms the
description from a static overview of intended mission flow to
an active specification that can be logically tested and mentally
rehearsed prior to real-world execution.

Figure 4. Example mission orders expressed in structured
natural language for human execution.

Task 1: Proceed to Area A and search the area.

Task 2: Obtain an environmental sample from
Area A.

Task 3: Proceed to Area B and search the area.

Task 4: Proceed to Area C and rendezvous with
vehicle 2.

Task 5: Proceed to recovery position (mission

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

5

In practice, this type of decision process is commonly
referred to as a Sense-Decide-Act (SDA) loop when referring
to overall control loops for computational autonomous agent
activities, or sometimes a Sense-Interpret-Decide-Act loop
when emphasizing machine evaluation of sensor inputs.
Similarly, Figure 2 shows an Observe-Orient-Decide-Act
(OODA) loop, commonly referred to when considering
feedback control in military and other human operations
(Hammond 2001) (Dannegger 2009) (Wikipedia 2016).

C. Classical Decision Logic for Task Sequencing
That similar SDA or OODA control-loop models can be

applied to both human and non-human operators is noteworthy.
It implies that missions thus specified might be executable not
only by humans, but by human-controlled robots, human-robot
teams, and suitably autonomous robots as well. One important
aspect of the mission above must be accounted for, however.
The sequential flow implicitly assumes success for each task.

Where human operators are concerned, this is acceptable in
most circumstances. When the ability to complete a task is in
question, a human operator is able to request guidance from
higher authority or use his best judgement to decide how to
proceed. Under the requirements underpinning the framework
proposed in this paper, this is not necessarily an option for robot
agents. Rather, the course of action that the vehicle is to
undertake in the event of task failure must be fully specified in
the mission description. This can be achieved through the
introduction of a simple branching structure.

As discussed previously, a specific autonomous agent may
be trusted to execute a finite set of atomic behaviors that are
used to define the mission. Further, the agent must be capable
of detecting when a behavior is successfully completed and
when the behavior cannot be successfully completed. It follows
that a vehicle must be able to detect the success or failure of
tasks within the mission definition so long as those tasks are
comprised of trusted behaviors. This capability makes it
possible to more rigorously define missions in a way that target
autonomous vehicles can be trusted to execute without direct
supervision.

With the introduction of potential branching based on task
success or failure, overall mission success is no longer reliant
on a fixed sequence of task executions. In fact, a particular
mission can include the successful completion of some tasks,
the failure of different tasks, and the complete omission of
others. It is appropriate in this context to refer to the individual
tasks as goals to be achieved rather than simply as tasks. A
possible decision-tree elaboration of the mission from Figure 1
is provided in Figure 4. Interestingly, the SDA/OODA decision
loop of Figure 2 is still suitable for controlling the execution of
this revised mission.

This mission definition gives rise to a graphical
understanding of mission flow, creating an alternate
representation of the natural-language mission definition of
Figure 4 above, which is next shown as the flow diagram of
Figure 5.

Goal 1: Proceed to Area A and search the area. If the
search is successful, execute Goal 2. If the search is
unsuccessful, execute Goal 3.

Goal 2: Obtain an environment sample from Area A. If the
sample is obtained, execute Goal 3. If the sample
cannot be obtained, execute Goal 5.

Goal 3: Proceed to Area B and search the area. Upon
either search success or failure, execute Goal 4.

Goal 4: Proceed to Area C and rendezvous with vehicle 2.
Upon rendezvous success or failure, execute Goal 5.

Goal 5: Proceed to recovery position (mission complete).
Upon successful arrival, mission complete. If
unable to return to base, abort the mission.

Figure 4. Modified search and sample mission providing success-failure
branching and human or autonomous agent execution (McGhee,
Brutzman and Davis 2011).

Figure 3. John Boyd’s Observe Orient Decide Act loop describing
human decision-making processes (Wikipedia 2016).

Figure 2. Supervisory task sequencer model for mission conduct as a
series of discrete mission tasks and associated decisions.

Begin Mission

End Mission

Choose First
Mission Task

Execute Mission
Task

Choose Next
Mission Task

Tasks
Remaining?

No

Yes

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

6

This flow graph is one among many potential
representational forms for this and many other missions, and a
number of graphical, programmatic, and Extensible Markup
Language (XML)-based definition forms have been proposed
(Byrnes, et al. 1996) (Duarte, et al. 2005) (Davis, D. T. 2006).
This flow-graph encoding is of particular interest because it
provides an intuitive depiction of a potentially complex
mission. In fact, an operator or supervisor can utilize a mission
specification of this form to mentally “rehearse” the mission by
intentionally traversing the graph from start to finish while
exhaustively testing success and failure branches at every step.
While not yet providing the required level of mathematical
rigor, this ability to informally traverse all possible task
sequences in this manner is an important step towards providing
assurance to the responsible operator that the mission will
progress according to human intent under all foreseeable
circumstances.

D. Adding Constraints to Mission Decision Logic
As presented so far, this mission definition paradigm does

not explicitly address the issue of ethical mission execution.
Specifically, no mechanism has been suggested at this stage to
define ethical constraints affecting the overall mission or
individual tasks. It might be casually argued that ethical
conduct is implied by “successful” completion of goal’s
requirements. Such an assumption is naïve, however, and does
not provide nearly enough confidence for the operator to
assume liability for the mission’s conduct. For instance, it is
apparent that an unmanned underwater vehicle (UUV) with an
appropriate search behavior can achieve goals 1 and 3 of the
example mission. Unfortunately, it may or may not be able to
do so while avoiding detection, remaining clear of other
vehicles in the area, or maintaining a specific navigational
accuracy. If any of these (or other) conditional requirements
must be met in order for the goal to be achieved in a safe and

ethical manner, then an additional mechanism must be provided
to incorporate those ethical constraints into the mission
specification. In this context, ethical constraints do not describe
characteristics of individual goals, but rather what must be
considered and enforced during goal execution. From the
standpoint of operator accountability, the constraints must be
specified in a manner that preserves the ability to trace high-
level mission flow, and also specified in a way that can
ultimately be monitorable and enforceable by the autonomous
vehicles themselves. A plain-language version of exemplar
constraints is given in Figure 6.

Ethical constraints vary and may be intuitively applied to

either an entire mission or to relevant individual goals as
appropriate. That is, there may be certain constraints that must
be enforced from launch until recovery (e.g., all safety systems
must remain operational), and others that only need to be
enforced during the execution of specific goals (e.g.,
maintaining safety depth in the search area). As an example,
the plain-language constraints of Figure 6 might be applied to
the example UUV mission in a straightforward manner, as
depicted graphically in Figure 7. Note that mission-level
constraints 1, 2, and 5 could be applied to all goals individually
without changing the constraint-application semantics. This
construct still supports the prior rehearsal of missions for
correctness, and also allows for the in situ consideration of
whole-mission and goal-specific constraints (Brutzman, Davis,
et al. 2013).

Figure 5. Mission-flow graph for a search and sample mission for
human or autonomous agent execution (Brutzman, McGhee
and Davis 2012).

Figure 6. Constraints suitable for application to the example search
and sample mission.

Constraint 1: The vehicle must maintain navigational
accuracy within acceptable limits. Applies
to entire mission.

Constraint 2: All safety equipment must be fully
functional. Applies to entire mission.

Constraint 3: All mission systems must be operational.
Applies to Goal 1, Goal 2, and Goal 3.

Constraint 4: Acceptable distance from shipping lanes in
the form of 1000 meter lateral standoff or
minimum depth of 20 meters must be
maintained. Applies to Goal 1, Goal 2, Goal
3, and Goal 4.

Constraint 5: Must be able to detect surface contacts
within 5000 meters. Applies to entire
mission.

Constraint 6: Detected surface contacts are to be
avoided by a minimum of 1000 meters.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

7

Up to this point, the definition scheme only provides for
binary branching of the mission-flow diagram: once initiated,
a goal either succeeds or fails, and the mission then proceeds
accordingly. Such a representation is fully representative of
any decision tree, since tree graphs of arbitrary branching size
can be traversed in a binary manner. However, a binary
approach also presumes that an impending ethical constraint
violation equates to goal failure. Such equivalence might be
acceptable in many cases, and ethical violations causing goal
failure certainly result in correct application of the constraints
in the sense that goal execution no longer proceeds in the face
of constraint violations. On the other hand, it might well be
desirable to treat responses to impending constraint violations
differently than simple failure (for example, in order to meet an
additional independent objective). A more-responsive
approach is possible through the addition of a third potential
goal-execution outcome for constraint violations, along with a
corresponding branching option in the mission flow structure.
That is, execution of an individual goal becomes terminated
upon goal success, goal failure, or impending violation of a
constraint applied to that goal. Flow of control then proceeds
as directed to whichever subsequent goal is next designated as
appropriate.

This constraint-based tree approach shown in Figure 8 is
quite useful and an excellent match for supervisory planning
needed when humans perform robot mission planning. The
general expressive power of binary-flow logic is preserved, and
system responses must be explicitly considered for each
success, failure, or constraint violation that might occur when
performing each mission goal. The ternary-flow structure is
also similar to exception handling in modern programming
languages, which can facilitate implementation and testing.
The corresponding modification of the example mission to
illustrate this ternary branching model is graphically depicted
in Figure 8.

E. Implications of Ethical Constraints on Mission Tasking
Designing robot missions in the form of a flow diagram

consisting of a set of discrete goals, with ethical constraints
applied to individual goals as described here, provides an
intuitive mechanism that can enhance responsible operators’
understanding of the missions they expect to supervise. The
nature of the mission specification is declarative. At this level
of abstraction, individual goals execute sequentially according
to the mission tree, irrespective of elapsed time, and each goal
predictably terminates in one of three possible states (goal
success, goal failure, or constraint violation).

Supervisory trust that a directed vehicle can execute specific
goals, recognize goal failure, and identify pending constraint
violations provides important boundaries on autonomous
behavior. Essentially this approach eliminates any need to
make assumptions or guesses concerning intended vehicle
conduct during goal execution. Rather, the onus of well-
specified tasking is specifically placed on human operators to
create well-defined and thorough missions. Further, if the size
of the mission-flow diagram is reasonably managed, then
exhaustive testing of all possible mission execution sequences
is achievable and tractable. These aspects of mission design are
fundamentally important, and are essentially quite similar to the
essence of coordinated operational tasking among ships and
aircraft led by responsible and cooperating humans.

The next section strengthens the foundations for these
concepts. Examining the underlying nature of the mathematical
formalizations used here can provide further operator assurance
that a particular mission is appropriately defined and can
proceed as expected, in an appropriate matter, under all
circumstances.

Figure 7. Mission-flow graph for a search and sample mission with
ethical constraints applied as binary branching (D. P. Brutzman,

D. T. Davis, et al. 2013).

Figure 8. Mission-flow graph for a search and sample mission with
ternary branching for imminent ethical-constraint violations.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

8

V. MISSION EXECUTION AUTOMATA (MEA):
EXECUTABLE MISSION SPECIFICATIONS

A. The Rational Behavior Model (RBM) Robot Control
Architecture

Autonomous vehicle mission expression in the form of a flow
diagram is compatible with the higher levels of abstraction for
a number of proposed hierarchical robot control architectures
(Byrnes, et al. 1996) (Ricard and Kolitz 2002) (Albus 1998).
One particularly relevant example is the Rational Behavior
Model (RBM) tri-level software architecture (R. Byrnes 1993).
A variety of other 3-level robot architectures have proposed and
implemented over the past two decades, typically with similar
timing principles and varying jargon. RBM is modeled on the
command hierarchy of a manned submarine, and organizes
robot control requirements into execution, tactical, and strategic
levels as depicted in Figure 9.
• Execution-level control includes those hard-real-time

uninterruptable tasks associated with control and
management of hardware systems that direct interact with
the vehicle’s physical environment. These feedback-
driven controllers correspond to the activities of a manned
vessel’s junior crew-members and include manipulation
of control surfaces and sensors.

• Tactical-level tasks utilize execution-level functionality to
realize more complex behaviors. Tactical-level task
behaviors correspond to those activities managed by a
manned vessel’s watch officers and can be as simple as
maintaining a desired course and speed or transiting to an
ordered geographic location or arbitrarily complex, such
as conducting an area search or utilizing onboard sensors
for map development.

• Strategic-level goals are at the highest level of control and
correspond to the activities directed by a manned vessel’s
commanding officer. These goals control overall mission
conduct by initiating tactical-level behaviors as prescribed
by the mission definition.

The previously described mission-flow diagram and
performance of each mission’s individual goals align well with
the RBM Strategic and Tactical Levels respectively. Within
this model, the Strategic Level operates in a discrete manner
completely in the mathematical realm of formal logic. Once a
Tactical-Level behavior is activated, Strategic-Level execution
pauses until a response is received from the Tactical Level
indicating that the behavior (goal) was successfully completed,
failed to complete, or encountered a constraint violation.

If properly encoded, the Strategic-Level mission-flow
diagram can actually form an executable mission specification.
Declarative forms that are both human-readable and machine
executable versions of the exemplar mission have been
developed with the Prolog language and XML (McGhee,
Brutzman and Davis 2011) (Brutzman, McGhee and Davis
2012) (Brutzman, Davis, et al. 2013) (as well as in an analytical
combat simulation as discussed below). This human-and-
machine compatible form is in line with the ethical framework
requirements listed earlier and provides for human-based
testing of mission code prior to robot (or joint robot-human)
execution. Further, from the perspective of the Strategic Level,
it does not matter whether the Tactical Level behavior is
executed by an actual robot, a computational model, or a human
being. Thus, Tactical-Level responses provided by a human
tester are not only analogous to those provided by an actual
robot—they are identical to actual robot responses for the
purposes of testing high-level mission response.

B. Mission Execution Automaton (MEA) Definition
Mathematical rigor of Strategic-Level execution steps is

obtained by observing that the run-time traversal of the mission-
flow diagram is similar to the operation of a mathematical
formalism called a Turing Machine (TM). A Turing Machine
is a Finite State Machine (FSM) with an associated one-
dimensional infinite storage medium called a tape (Minsky
1967). TMs have a number of fundamental properties that are

Figure 9. The Rational Behavior Model (RBM) software architecture based on the hierarchical control paradigm of
naval vessels (R. Byrnes 1993).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

9

particularly important in the field of computer science, most
notably that the computational power of a TM is equivalent to
that of a digital computer (Minsky 1967) (Petzold 2008).
Despite this expressive equivalence, TM “programming” to
effect useful computation is generally considered impractical,
and TMs have been relegated largely to academic study
(McGhee, Brutzman and Davis 2011). They do, however,
provide a strong theoretical foundation upon which to build a
mathematically sound Strategic-Level mission-flow diagram
execution mechanism suitable for both robots and human
operators.

A useful modification to the basic TM definition is to
separate FSM operations from the underlying computational
mechanism. Referred to as a Universal Turing Machine
(UTM), this variation provides a TM capable of operating with
an arbitrary FSM (Minsky 1967) (Petzold 2008). With this
modification, the TM execution mechanics can be viewed as the
“computer”, and individual FSMs as “programs.” More
specifically, the mission-flow diagrams described here can be
viewed as robot programs (they are a form of FSM) that are
executable using essential UTM semantics.

Utilization of the UTM concept requires one additional
abstraction: since Tactical Level responses are not read from a
(so-called) TM tape input, the UTM definition must be
extended to allow inputs from one or more (human or robot)
agents. More formally, the theoretical UTM tape definition
must be generalized to any type of external agent with a finite
set of input and output symbols and arbitrary additional
capabilities. It can be demonstrated that abstracting the tape

portion of the UTM in this way is, in fact, a generalization that
subsumes the more constrained UTM (McGhee, Brutzman and
Davis 2011). Thus, from a computational standpoint, the
expressive power of this result can be considered “Turing
complete” and capable of executing any robot mission defined
in the form of a flow diagram. This UTM generalization is
referred to here as a Mission Execution Automaton (MEA)
which consists of a Mission Execution Engine (MEE) and an
arbitrary set of mission orders in FSM form (McGhee,
Brutzman and Davis 2012).

Formally, we define the MEA as follows:
M = (Q, Γi, Γr, b, δ, γ, q0, F),
where:
Q = a finite, non-empty set of states
Γi = a non-empty set of input symbols corresponding to
behavior-initiation function calls to the tactical level (note,
once parameterization of function calls is taken into
consideration, this set is of potentially infinite size but is
practically constrained to a finite set by γ)
Γr = a finite, non-empty set of response symbols corresponding
to return values from behavior function calls
b Î Γi is a blank and equates to no function call (note, since no
function call is made, no response will be received, so execution
will halt in the current state)
δ: (Q \ F) × Γr → Q is the transition function mapping a current
state and response to a new state
γ: Q → Γi is the behavior call function that maps a state to a
behavior-initiation function call

Ethical Mission Execution Trace #1:
?- execute_mission.
Commence: Search Area A.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint.
Commence: Rendezvous with vehicle 2 in Area C.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint.
Commence: Return to Base.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint.
Mission Abort!

Ethical Mission Execution Trace #2:
?- execute_mission.
Commence: Search Area A.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Take environmental sample from Area A.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Search Area B.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Rendezvous with vehicle 2 in Area C.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Return to Base.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Mission Complete!

Figure 10. Typical execution traces of Strategic Level testing of the mission depicted in Figure 7 using MEA Prolog source code
(bold indicates operator input).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

10

q0 Î Q is the initial state

F Í Q is the set of final states which equate (if the mission is
constructed correctly) to mission termination

Constraints can be added explicitly to the definition by
adding a set of constraints C, a constraint-mapping function τ:
Q → c Í C, and modifying Γi and γ to account for τ.

C. Strategic-Level Mission Rehearsal and Testing
MEA implementations were initially developed in Lisp and

Prolog (Brutzman, McGhee and Davis 2012) (McGhee,
Brutzman and Davis 2011) (McGhee, Brutzman and Davis
2012). This decision was made because of extensive
experience of the authors in using Prolog at the RBM Strategic
Level (R. Byrnes 1993) and because of the strong simulation
capability of these languages. This latter characteristic is made
evident by an MEE Prolog software implementation. As can be
seen, this code requires only 14 lines of Prolog code, five of
which are dedicated to human external agent communications
functions (analogous to TM inputs and outputs) (Brutzman,
McGhee and Davis 2012). Further, mission orders
corresponding to the mission depicted in Figure 7 are encoded
in only 28 lines of Prolog. In addition, the declarative nature of
Prolog enables the definition of mission orders that strongly
resemble English (with a small amount of specialized
punctuation and semantics), making Prolog mission orders
intuitively understandable by non-programmers. This working
Prolog simulation allows testing of the Strategic Level mission
flow by a human operator, with typical results depicted in
Figure 10. In the simulation, the Strategic Level orders
commencement of individual goals and the human operator
reports success, failure, or constraint-based termination of each
goal. The depicted traces in Figure 10 correspond to instances
where first each goal terminates due to potential constraint
violation (Trace #1) and then where each goal completes
successfully (Trace #2).

Strengths of the Prolog implementation notwithstanding, it is
important to note that there is nothing inherently unique about
Prolog execution, and the MEE and mission orders can be
accurately created with any Turing-complete computer
language. Successful implementations have been developed by
the authors in the Java programming language (Davis, D. T.
2006) (Brutzman et al. 2016). A similarly capable, independent
implementation uses the Hierarchical Task Network (HTN)
behavior model and Python programming language in the
Combined Arms Analysis Tool for the 21st Century
(COMBATXXI), a simulation tool developed and used by the
U.S. Army and U.S. Marine Corps within various analytic
studies (U.S. Army Training and Doctrine Command Analysis
Center 2015) (Posadas 2001). Results employing a
COMBATXXI implementation corresponding to those shown
in Figure 10 are presented in Figure 11.

For this implementation, a Python class represented the
structure of the mission graph in Figure 7. The content of the
graph was encoded in an instance of that Python class.

Based on this experience, as well as other results using the
XML-based AVCL mission specification (Davis, D. T. 2006)
(Brutzman, Davis, et al. 2013) (Brutzman et al. 2013), it is
reasonable to conclude that flow graphs represent a higher level
of abstraction for mission specification than any unconstrained
text-based programming language. Moreover, advances in
graphical coding (Langley and Spenser 2005) may eventually
allow non-programmers to completely specify robot missions
by constructing a flow graph such as Figure 7 directly on a
computer screen. Such advances can further enhance the
comprehension, supervision and accountability of mission
experts for producing legally valid mission definitions (and
avoiding mission errors).

D. Progressive Refinement of Complex Mission Tasks
Referring to our exemplar mission in Figure 7, it is implicit

that Goal 1 is achievable only if the person or software at the
Tactical Level has considerable knowledge about Area A and
how to search it. To make this concrete, suppose that Area A
contains hazards that are potentially harmful to (or impassible
by) the search vehicle. Also suppose that the tactical officer’s
supporting software has no reliable or current map for the area
of interest. A classic algorithm for exploring for such
circumstances is depth first search (Skiena 1997). Such a search
continues until the object of the search is located (success) or
the area has been completely searched without finding the
search objective (failure). The search proceeds by moving the
vehicle into an accessible terrain cell and testing to see if the
goal is there. If not, then the vehicle moves forward to a
previously unexplored cell, and again checks for presence of the
goal. If no such cell exists, then the vehicle retreats to the
previous cell (backtracks) and marks the cell just visited as a
“virtual obstacle.”

Figure 12 depicts a flow graph for the above-described
process, and further represents a refinement solely for Goal 1 of
mission Figure 7. For this reason, subgoals within this
refinement of Goal 1 have been labeled 1.1, 1.2, etc. It is
possible to interpret Figure 11 in several ways. First of all, if
trusted vehicle behaviors corresponding to each of the goals in
this figure exist, they might also be commanded by a human
operator acting on behalf of the Tactical Level. An example of
interactive testing of this possibility is illustrated in Figure 13.
Alternatively, this depiction may be understood as a Tactical
Level implementation capable of autonomous execution of
Goal 1 from Figure 7. Note that constraint checking on Goal 1.1
is not a precondition per se, rather all constraints must be met
continuously by all sub-goals once Goal 1 has commenced.

Frequently applying the double-check question “how might
a human accomplish this task?” is an important design principle
for autonomous-system mission production. This task
decomposition raises important additional implementation
questions, namely, are the semantics of a depth-first search
accurately represented by Figure 13 and then correctly encoded
in the supporting Tactical Level code? Unfortunately, these
questions cannot be conclusively answered by exhaustive
testing as was possible for the strategic level mission orders

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

11

Figure 11. Human interaction with a Strategic Level mission results obtained from the COMBAT XXI simulation.

Ethical Mission Execution Trace #1:

Ethical Mission Execution Trace #2:

Figure 12. Progressive refinement, illustrated. Flow Graph for a grid-based depth-first search of Area A
corresponding to subgoals within Goal 1 of Figure 7, adapted from (McGhee, Brutzman and Davis 2012).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

12

This limitation on testing occurs because the individual
Goal 1 in Figure 12 contains several loops and, in general, there
is therefore no guarantee that it will terminate for any terrain,
much less be tested exhaustively. Moreover, because of the
need to remember the location of virtual obstacles, a potentially
infinite memory is required to execute the algorithms. Thus,
Figure 12 actually defines a Turing Machine and it is known
that, in general, the correctness of a Turing Machine
represented in the graph cannot be proved. Fortunately, it is
known that for a finite search area, depth first search will
eventually terminate with either success or failure in searching
for a specified goal (Skiena 1997). Nevertheless, exhaustive
testing for all possible terrain samples is not possible. Instead,
the most that can be asked for is to show that all phase
transitions in the given flow graph are correctly coded. Careful
examination of the corresponding algorithm logic in Figure 12
shows that the included examples do in fact test all possible
control branches, and that they have been correctly
implemented.

It turns out that the inability to exhaustively prove
correctness of a flow graph at the Tactical Level is not quite as
serious as it might at first seem. This is because algorithm
failure at this level amounts to just one more reason that might
cause a phase of the Strategic Level to fail. Since every
Strategic Level failure is accounted for in the overall mission
flow graph, the mission can still continue in a planned way
when such cases occur. To make absolutely sure that such
dependability occurs, real-world clock time available at the
Tactical Level (R. Byrnes 1993) must be used to create a time-
out condition resulting in goal failure for any process that
continues beyond a specified maximum execution time
duration. In addition, it is expected that the Tactical Level
continues to observe all constraints that are applicable at the
Strategic Level throughout the performance of a particular goal.
Thus in the case of Figure 13, constraints one through six from
Figure 5 apply throughout the entire period of tactical-level
testing as well.

 When enough experience has been obtained by manual
execution of the mission specification with Tactical Level
decisions made by a human operator, the mission can be
encoded to allow autonomous mission execution. This is
accomplished in (McGhee, Brutzman and Davis 2012) through
the addition of robot communication functions to the MEE
definition. As an example, typical results of an updated version
of this implementation are presented in Figure 14. For a more
complete understanding of an actual mission log’s importance,
it should be recognized that in the real world, for a fully
autonomous mission, such information may only be available if
the vehicle succeeds in returning to the original intended
recovery position. Complete loss of event logs and telemetry
data prior to catastrophic loss is a common occupational hazard
for unmanned systems at sea. However, in simulation form,
such test results can be available during pre-mission testing to
an observer who can, if necessary, use such diagnostics to
revise mission orders or Tactical Level robot software before
actual mission execution.

Evidently, commands from the Strategic Level must directly
invoke trusted Tactical Level behaviors or utilize goal
refinement as outlined above to enable Tactical Level execution
of the mission flow graph. Thus, for instance, the Tactical Level
behavior invoked to achieve Goal 3 (“Search Area B”) must be
entirely self-contained (i.e., atomic) unless it is in the form of
flow-graph-connected atomic behaviors. This requires that any
prior knowledge of the characteristics of this area be taken into
account.

For the example being considered, if it is known that Area B
contains no hazards or obstacles to vehicle motion, a
rectangular “lawn mower” search pattern may be appropriate.
Such decisions may be difficult to make without a great deal of
knowledge concerning a given area of operations for a mobile
robot. One effective way of achieving effective mission
planning at both the Tactical and Strategic levels is to
incorporate all available knowledge concerning the vehicle and
its area of operation into a detailed physical-model-based
computer simulation. One such simulation system, the AUV
Workbench (Brutzman et al. 2016), can be used to present
detailed examples and associated graphical display such as
those presented in (Brutzman, Davis, et al. 2013).

A final observation concerning Tactical Level mission
software is that available behaviors can be combined by “task
abstraction” to produce ever higher-level trusted behaviors until
the commands from the Strategic Level can be directly executed
as function calls. That is, once a flow graph accomplishing a
specific purpose (e.g., depth-first search) has been suitably
vetted, it effectively becomes a trusted Tactical Level behavior
itself. This has proven to be an effective means of incrementally
increasing autonomous capabilities. This means reinterpreting
Tactical Level flow graphs as code specifications rather than
actual code to be executed. This alternative has been
implemented and tested using Allegro Common Lisp in
(McGhee, Brutzman and Davis 2012).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

13

Depth-First Search Execution Trace #1:
?- execute_goal.
Commence: Initialize Search Area A.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Move Forward.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Observe Environment, Test Goal Found.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? fail.
Commence: Move Forward.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? fail.
Commence: Backtrack.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Observe Environment, Test Available Cell.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? fail.
Commence: Backtrack.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? fail.
Depth First Search: Reporting Goal Failure!.

Depth-First Search Execution Trace #2:
?- execute_goal.
Commence: Initialize Search Area A.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Move Forward.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Observe Environment, Test Goal Found.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? fail.
Commence: Move Forward.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? fail.
Commence: Backtrack.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Observe Environment, Test Available Cell.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Move Forward.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Commence: Observe Environment, Test Goal Found.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed.
Depth First Search: Reporting Goal Success!.

Depth-First Search Execution Trace #3:
?- execute_goal.
Commence: Initialize Search Area A.
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint.
Depth First Search: Reporting Constraint Encountered!

Figure 13. Execution trace examples of human-supervised depth-first search of Area A using Prolog MEA implementation shown in
Figure 14. (bold indicates operator input) (adapted from (D. P. Brutzman, D. T. Davis, et al. 2013)).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

14

E. Summary of Insights, Mission Execution Automata (MEA)
As a generalization of the Turing Machine, the MEA

provides a mathematically sound approach to the definition and
exhaustive testing of unmanned vehicle missions. The MEA
includes a mission-specific FSM and unlimited memory.
Consistent with the MEA generalization, the TM tape can be
replaced by a physical robot or a human being to which output
can be sent (commands) and inputs can be received (e.g.
success, failure, or constraint-violation responses). Other
external agents can be optionally added as well.

In order to guarantee eventual termination of a mission, the
structure of a Strategic Level mission must be constrained
somewhat beyond the basic MEA definition. Specifically, the
mission FSM cannot include loops, unreachable states, or sink
states (i.e., non-terminal states from which further transitions
are not possible). Further, the Strategic Level mission must be
defined with few enough states and transitions to allow for
tractable exhaustive testing by a human operator. However,
when a Strategic Level goal is iteratively refined to develop a

Tactical Level behavior (as with the depth-first search example)
these restrictions do not apply since the Tactical Level can
implement a time-out failure to ensure termination of individual
behaviors.

Finally, a universal MEA can be achieved by implementing
sequencing and communication functions as a separate MEE
and then developing the mission flow graph as a set of mission
orders in a form understandable by both the MEE and humans
who are mission specialists, but who may not be programmers.
There are many choices for expressing such mission orders
including flow charts, text-based programming languages, and
graphical user interface techniques.

Autonomous Mission Execution Trace #1:
?- auto_execute_mission.
Commence: Search Area A.
Goal execution constraint terminated!
Commence: Rendezvous with vehicle 2 in Area C.
Goal execution succeeded!
Commence: Return to Base.
Goal execution constraint terminated!
Mission Abort!

Autonomous Mission Execution Trace #2:
?- auto_execute_mission.
Commence: Search Area A.
Goal execution succeeded!
Commence: Take environmental sample from Area A.
Goal execution failed!
Commence: Return to Base.
Goal execution succeeded!
Mission Complete!

Autonomous Mission Execution Trace #3:
?- auto_execute_mission.
Commence: Search Area A.
Goal execution failed!
Commence: Search Area B.
Goal execution succeeded!
Commence: Rendezvous with vehicle 2 in Area C.
Goal execution failed!
Commence: Return to Base.
Goal execution constraint terminated!
Mission Abort!

Figure 14. Examples of mission log for simulation of fully autonomous execution of the mission defined in Figure 7
(bold indicates operator input), adapted from (McGhee, Brutzman and Davis 2012).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

15

VI. VALIDATION OF RBM SOFTWARE ARCHITECTURE
THROUGH REAL-WORLD AND VIRTUAL EXPERIMENTATION
Up to this point, all results presented have related to the

Strategic Level and the Tactical Level of RBM software for a
single example of a “search and sample” mission for a notional
autonomous underwater vehicle (AUV). Furthermore, all
results presented thus far have been obtained from high-level
mission simulations written, except for Figure 11, in the Prolog
logic programming language. However, beginning in 1993, in
parallel with formalization and publication of details of RBM
(Byrnes, et al. 1996), the authors and their collaborators
demonstrated the value and practicality of this approach for
undersea robots through a series of open-ocean experiments
involving two small unmanned submarines. These experiments
and results obtained are summarized in the following
subsections.

A. Phoenix Autonomous Underwater Vehicle (AUV)
The Phoenix AUV was an unmanned submarine designed

and built at the Naval Postgraduate School (NPS) beginning in
1990. About six feet in length and weighing approximately 500
pounds, Phoenix included four cross-body thrusters, enabling
active control of five degrees of motion (x, y, z, pitch and yaw)
(Ortiz and Šimkus 2012). Interestingly, roll motion was also
controllable during forward motion when making a turn. In any
case, such flexible control through multiple degrees of freedom
enables maneuvering in tight spaces comparable to the
capabilities of a helicopter. This maneuverability allowed early
Phoenix testing in a swimming pool, and later in a special test
tank which provided greater depth for vehicle motion and
control (Marco, Healey and McGhee 1996).

Phoenix’ real-time control software was developed in a
bottom-up fashion starting with control of maneuvering planes
and thrusters on a timed interrupt basis in response to sensory
input from an on-board sonar system along with depth, water-
speed, and heading sensors. Commanded motions were
monitored by a human operator observing the submarine in the
test tank and connected by a floating network cable.
Simultaneously, high-level Strategic Level mission-control
software was developed in Prolog through the use of testing via
computer simulation. Large numbers of high-fidelity physics-
based simulations were needed to correctly develop and test
what were then considered AI approaches to replace human
supervision. While this simulation involved distinct mission
phases in the form of a command “script” similar to Figure 1,
no binary flow graph with phase-failure contingencies was
abstracted from these phases as described in the preceding
section of this paper. This meant that exhaustive testing of a
mission was not possible, and there was therefore no proof of
correctness available. Moreover, other than necessary
supervision and safety monitoring, no concept of ethically
constrained behavior was attempted in any of this work.

To achieve proper sequencing of phases, the Phoenix system
made use of the backward chaining theorem-proving capability
of Prolog (Rowe 1988). Specifically, a mission was initiated
and carried out by issuing a query to the top level of Prolog
asking (adapted from Prolog syntax): “Using the given mission

rules and initial facts, along with a set of mission goals, are there
any variable bindings that make execution of the given mission
script possible?” A negative result terminated the mission in an
explicit abort command. This mode of operation obviated the
need for an MEE, but did not allow branching on phase failure
as in the simulation studies described in the preceding sections
of this paper.

During tank testing, the Phoenix was initially operated using
an onboard “Gespac” real-time control computer for tactical
and execution level functions. This simple computer was not
able to host the backward-chaining Prolog program running the
goal-driven Strategic level. Therefore, before at-sea testing, an
onboard “Sparc” UNIX computer hosting Prolog was added to
implement the Strategic Level and connected to the Gespac
computer by an Ethernet cable (Ortiz and Šimkus 2012).
Further testing was then carried out to validate the correct
functioning of these two computers together to execute simple
missions in the test tank (Marco, Healey and McGhee 1996).
Finally, before commencing open-ocean testing in Monterey
Bay, a full strap-down inertial navigation system employing
GPS and water-speed sensing for drift correction was added to
the onboard electronic suite of the Phoenix (Ortiz and Šimkus
2012). Following successful at-sea testing, results obtained
were used to design a larger vehicle, the Aries AUV, described
in the next section.

B. Aries AUV
Aries was a somewhat larger vehicle than Phoenix, with a

similarly rectangular hull, and was specifically designed for
open-ocean surveys (Davis, D. T. 2006). It therefore used more
efficient forward thrusters and lacked cross-body thrusters. This
meant that extensive test tank debugging of strategic level code
was not possible. Instead, a detailed and accurate physically
based model of the vehicle and its environment, with three-
dimensional (3D) real-time graphical display, the Autonomous
Unmanned Vehicle (AUV) Workbench, was developed and
used for real-time testing of robot mission software (Brutzman,
Davis, et al. 2013) (Brutzman, et al. 1998) (Brtuzman 1994)
(Brutzman et al. 2016).

Because of the cumbersome nature of the two-computer
onboard control system used in Phoenix and the software
complexity of issuing C function calls from Prolog, it was
decided to use a single computer on Aries, and to write a custom
onboard task sequencer as represented by Figure 2.
Furthermore, realizing the desirability of branching on task
failure but lacking as yet the concept of an MEA, a graphical
user interface (GUI) was created to allow users to define phases
and corresponding phase successors for strategic level mission
definition and execution (Brutzman, Davis, et al. 2013). At this
time, however, the possibility of ternary branching to account
for ethical or safety-related constraint failure had not occurred
to the authors, and it was therefore not included in Aries
programming tools or experiments.

Aries AUV missions were defined with AVCL, a schema-
constrained XML data model supporting autonomous vehicle
mission definition, execution, and management (Davis, D. T.
2006). While the mathematical concept of an MEA had not

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

16

been developed at the time of AVCL’s development, AVCL
does provide a fixed set of goal types including area search,
environmental sampling, and rendezvous and is thus suitable
for the definition of mission flow diagrams such as the one
depicted in Figure 4. Further, AVCL was intentionally
designed to support implementation of the RBM Strategic and
Tactical Levels and was utilized to define RBM-controlled
Aries missions for simulation in the AUV Workbench virtual
environment and for open-ocean real-world tests.

As an example, consider the XML snippet of Figure 15 which
provides a hypothetical description of Goal 1 from Figure 7 for
execution by an unmanned underwater vehicle. This
specification defines the type of search to be conducted (area
search for multiple targets with an expected probability of
detection of 0.8), the area to be searched (a 500 meter by 3000
meter rectangular area with a northwest corner at 36.7 north
latitude and 121.9 west longitude), and stipulates that the search
be conducted at a depth of between 25 and 50 meters.

Evidently, the search goal definition describes what is required
for successful completion of the goal. It does not, however,
dictate precisely how the goal is to be completed since such
navigation and maneuvering decisions are left to the Tactical-
Level implementation.

Simulation of a mission consisting an AVCL specification
for a search goal similar to the one in Figure 15 and avoid areas
specified as constraints in the AUV Workbench is shown in
Figure 16. During the mission, the Tactical Level plans a path
and maneuvers to the search while remaining clear of the avoid
areas and then develops and executes a suitable pattern for the
required area search. More complicated missions
demonstrating the binary branching model were conducted in
AUV Workbench simulations and also in open-ocean
experiments in Monterey Bay (Davis, D. T. 2006) (Brutzman et
al. 2016). A comprehensive comparison and consolidation of
goal types can be found in (Davis, D. T. 2006).

<Goal description="search operating area A" id="Goal1" >
 <Search datumType="area" requiredPD="0.8" singleTarget="false" />
 <OperatingArea>
 <Rectangle>
 <NorthwestCorner>
 <LatLonPosition latitude="36.69" y="-121.90" />
 </NorthwestCorner>
 <Width value="500.0" />
 <Height value="3000.0" />
 </Rectangle>
 <DepthBlock minimum="25" maximum="75" />
 </OperatingArea>
</Goal>

Figure 15. An Autonomous Vehicle Command Language (AVCL) specification of Goal 1 from Figure 7
for execution on the NPS Aries unmanned underwater vehicle (Davis, D. T. 2006).

Figure 16. AUV mission SimpleBoxTest.xml written in AVCL that demonstrates simulated conduct of

a goal-oriented mission that was performed amidst constraints. (Brutzman, et al. 1998)

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

17

C. Dangers Associated with Using Rules and Fact Assertion
to Implement Strategic-Level Logic

As described above, Phoenix missions were executed as a
result of an inferencing and reasoning process, using a set of
rules and facts for mission definition. While all in-water
missions succeeded, and Phoenix was never lost at sea, this
approach provided no means of proving the correctness of
Strategic Level software comparable to the exhaustive testing
made possible by MEA formalism. The authors believe that this
is a serious limitation that applies to all approaches for top-level
Strategic Level mission definition that require specific actions
to be derived from general principles rather than using a
completely concrete finite-state machine (FSM) approach.

Specifically, a set of rules and facts amounts to a formal
mathematical system in which the rules and facts serve as
axioms. Theoretically it is known that, in general, no such set
of axioms can be proved complete. Here, completeness means
that all true theorems can be proved by formal application of
predicate calculus. Such properties are very hard to prove. In
fact, to the astonishment of the entire mathematical world,
Gödel proved in 1931 that such a simple system as integer
arithmetic cannot have any axiomatic basis. Perhaps equally
shocking, even plane geometry had no sound axiomatic basis
until around fifty years ago. This meant that, from a strictly
formal perspective, all of Euclid’s original “proofs” were
merely plausibility arguments. Fortunately, all of the theorems
believed to be true are in fact provable using the complete and
consistent set of modern algorithms (Simpson 2000).

The significance of the above observations relative to top
level mission specification derives from the fact that, for rule-
based systems, mission execution can sometimes be regarded
as a side effect of proving the theorem that “there exists a way
to satisfy all specified mission goals while observing all given
constraints.” If it eventually turns out that the mission axiom set
contains a contradiction, then system execution behavior
becomes unpredictable and not testable, as well as potentially
hazardous and even self-defeating.

The potential unpredictability of less-formal reasoning
approaches and the inability to prove the correctness and
completeness of axiomatically defined missions effectively
precludes formal responsibility or liability for robot missions
using these approaches. In fact, artificial intelligence (AI)
approaches to top-level mission specification and control
almost invariably make use of some form of reasoning and/or
statistical pattern recognition. Applying such broad abstractions
to the innumerable situations that can arise in the real world is
very dangerous when applied to potentially lethal robots, and
also makes the assumption of responsibility by human operators
unrealistic. It is therefore apparent that the abstract reasoning of
general AI approaches is inappropriate at the highest level of
robot mission definition and control.

Algorithms cannot replace human responsibility. Even so, a
fully testable technology such as that provided by the MEA
formalism, allows for assignment of human accountability
when directing robot mission outcomes and alternatives. It is
possible that ever-emerging AI techniques may someday
provide good methods for achieving specific individual Tactical

Level behavior modules. Such employment of AI capabilities
(even when experimental) can be considered appropriate in
these cases since success, failure, and constraint violation
remain fully accounted for by the Strategic Level MEA.

VII. ETHICAL VALIDATION OF MISSION DEFINITIONS

A. Description Logics (DL) and a Robot Mission Ontology
Thus far, the discussion of MEA mathematical

underpinnings, capabilities, and implementations has focused
on providing robot operators the ability to rigorously define and
test Strategic Level missions to ensure high-level mission-flow
understanding sufficient for the assignment of accountability
for vehicle conduct throughout the mission. The ability of an
actual target vehicle to execute missions defined in this manner
without further translation into a vehicle-specific form,
however, has not been addressed. Mathematical logic provides
a mechanism for bridging Strategic Level missions described
here and vehicle-specific code for specifying and ordering
Tactical Level behaviors. If properly implemented, formal
logic can mathematically enforce MEA semantics in the
definition of missions and during execution of those missions
on target vehicles.

Description Logics (DL) are a mathematical family of logic-
based knowledge representation systems that are used to
describe concepts and roles within a knowledge-based system
through a set of well-defined operations. DL ontologies can be
used to describe the requirements and relationships of a system
in a semantically meaningful way. That is, they define not only
what the relationships are, but how they operate, how they are
to be used, and to what specific entities they apply. As depicted
in the “Ontology Spectrum” of Figure 17, DLs provide
expressive power almost equal to that of First Order Logic
(FOL). Further, these language constructs have been carefully
defined to enable (and indeed guarantee) computationally
efficient reasoning that can always identify the existence of
hidden relationships and errors in the form of rule violations or
contradictions (Ortiz and Šimkus 2012). These are strong
capabilities with great potential value.

DLs provide the mathematical foundation of what has come
to be known as the Semantic Web, an extension of the World
Wide Web (Berners-Lee, Hendler and Lassila 2001). The
growth of the Semantic Web has fostered the development of
tools and standards that take advantage of DL logical
expressiveness and mathematical rigor to provide extensive
knowledge representation, discovery, and utilization
capabilities. Most notably, the Web Ontology Language
(OWL) (World Wide Web Consortium 2013) together with the
Resource Description Framework (RDF) (World Wide Web
Consortium 2014) encode a particularly powerful DL in a plain-
text, XML-based, computer-readable form (Horrocks 2008).
Because of its formal and general DL implementation, OWL is
potentially useful beyond the Semantic Web domain. In
particular, it is used here to define a robot mission description
and execution ontology that applies and enforces MEA
semantics. Further references of interest include (Daconta,
Orbst and Smith 2003) and (Davis 2014)

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

18

B. Mission Execution Ontology (MEO)
The mission execution ontology serves a number of

purposes. First, it provides a formal and semantically rich
description of the characteristics of a MEA mission description.
For instance, OWL expressions are used to declare the
existence of concepts such as “Mission”, “Goal”, and
“Constraint”. OWL statements are also used to define possible
relationships (roles) between concepts. An entity to which the
“Mission” concept applies, for example, can have an “includes”
relationship with an entity to which the “Goal” concept applies.
Additional OWL statements describe rules that govern how
relationships are applied. As an example, a “Mission” entity
must have an “includes” relationship with at least one “Goal”
entity and must have a “startsWith” relationship with exactly
one of those entities. A graphical depiction of the concepts and
relationships defined in the mission execution ontology is
provided in Figure 17. As the diagram indicates, concepts and
relationships are defined to accurately represent the semantics
of the previously discussed flow diagrams to include the
definition of individual mission goals and constraints; goal
successors in the event of goal success, failure, or constraint
termination; the mission’s first goal; and the application of
constraints to individual goals or to the entire mission.

In addition to the “Mission”, “Goal”, and “Constraint”

concepts that are abstracted directly from Strategic Level
mission-flow diagram semantics, the mission execution
ontology introduces the “Vehicle” concept. This concept
provides the ability to include specific target vehicles in the
mission-planning process. In particular, the “canExecute” and
“canIdentify” relationships allow mission planners to explicitly
assert that the intended target vehicle has a Tactical Level
behavior capable of completing a particular goal and
recognizing potential violation of a particular constraint,
respectively. Evidently, if a mission includes goals for which
the “canExecute” relationship does not exist with the intended
vehicle or constraints for which the “canIdentify” relationship

Figure 17. An “Ontology Spectrum” ranking knowledge-representation systems according to their ability to express
semantic information (Daconta, Orbst and Smith 2003).

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

19

does not exist, then that mission is not appropriate for that
particular vehicle. Given this requirement (which is enforced
by rules within the ontology), it is impossible to define a valid
mission that cannot be executed by the intended vehicle.

A second important characteristic of a DL-defined ontology
is that it not only describes the rules and relationships of a
knowledge domain, but also applies those rules and
relationships to entities within that domain. Stated differently,
the mission execution ontology does more than describe what
the “Mission”, “Goal”, “Constraint”, and “Vehicle” concepts
are and how they relate to one another. It also allows the
application of those concepts to real-world entities and the
establishment of relationships among those entities. From a
practical standpoint, this means that the atomic entities to which
the “Goal” and “Constraint” concepts are applied become
actual executable specifications for a set of target vehicles.

OWL provides for the incorporation of atomic entities into
an ontology using Uniform Resource Identifier (URI) labels
that uniquely identify individual entities. Thus, the mission
execution ontology can be applied to the XML snippet above
by defining an OWL statement declaring its existence and
corresponding identifier. OWL statements are also used to
declaratively apply concepts to and establish relationships
between atomic or composite entities within the knowledge
base. Figure 18 illustrates the example constraint-based
mission of Figure 7 expressed in RDF/OWL syntax and

logically validatable using the MEO illustrated in Figure 17, as
rendered in the Stanford Protégé ontology development tool.

The ability to provide a full description of all goals and
constraints within the mission execution ontology using
vehicle-executable code further strengthens the MEA construct.
Specifically, not only is it impossible to define a mission for a
particular vehicle without explicit “canExecute” relationships
between the vehicle and all mission goals and “canIdentify”
relationships between the vehicle and all mission constraints,
but it is also impossible to assert these relationships without an
appropriate vehicle-specific encoding of all mission goals and
constraints.

Finally, automated reasoning with DL-based ontologies is an
important tool for ensuring Strategic Level mission validity
before conducting exhaustive verification validation and
accreditation (VV&A) testing using virtual simulators and real-
world operations. If, for instance, an attempt is made to finalize
a mission that includes goals that are not executable by the
target vehicle, an OWL/RDF reasoner can quickly identify this
shortcoming using the MEO. Similarly, a reasoner can detect
mission flow-graph structural errors based on ontology rules
that preclude illogical loops, unreachable goals, or
untasked/orphan goals without specified predecessors or
successors. A reasoner can also simplify the mission definition
process by detecting implicit relationships that are not explicitly
or correctly specified. For example, if a particular “Goal” entity

Figure 18. A Mission Execution Ontology (MEO) expressing concepts and roles (relationships across concepts) representing
the flow-diagram MEA mission descriptions.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

20

is defined and is reachable from the mission’s start goal (i.e.,
the one with which the containing “Mission” has a “startsWith”
relationship) through a sequence of goal successes and failures,
then it must be in an “includes” relationship with that particular
mission whether the relationship is explicitly declared or not.

As described, a DL-based mission execution ontology
defined in OWL ties the MEA semantics discussed in previous
sections to actual target vehicles. The ontology ensures not
only the validity of the mission structure for arbitrary Strategic
Level mission flow graphs, but their executability on the
particular target vehicles as well. Thus, all of the requirements
originally posed for assignment of human responsibility— that
the mission is defined in a mathematically rigorous and
fully-understood manner, that the mission specification is

equally understandable by the human operator and the target
vehicle, and that the mission is comprised entirely of trusted
vehicle behaviors—are fully specified in the human-approved
mission orders and enforced by the strict semantics encoded in
the ontology.

C. Specification and Implementation of the Ontology
The principal concepts and relationships to be represented in

the mission ontology were shown earlier in Figure 18.
Definitions of the concepts and roles (also known as classes and
properties) in this ontology need to satisfy a number of rules, as
specified in Table 1, in order to support logical inferences
relating to the validity of the mission structure.

Table 1. Logical Expressions defining Concepts and Roles for the Mission Planning Ontology

Rules Description Logic Equations Plain-language description
M = Mission Rules
M1 Mission ⊑ ∃startsWith.Goal ⊓ =1.startsWith A Mission can only start with a Goal and must

start with exactly one Goal
M2 Mission ⊑ ∃includes.Goal ⊓ ≥1.includes A Mission can only include Goals and must

include one of more Goals
M3 Mission ⊑ ∃hasConstraint.Constraint ⊓

≥0.hasConstraint
A Mission can be constrained only by
Constraints and can have 0 or more

M4 startsWith ⊑ includes A Mission must include the Goal that it starts
with

M5 Mission ⊑ ∃performableBy.Vehicle ⊓
≥0.performableBy

A Mission can only be performed by a Vehicle
and can be performable by 0 or more Vehicles

M6 performableBy(M,V) ⊑
∀(hasConstraint(M,C) ∘ canIdentify(V,C))

A Mission cannot be performable by a Vehicle
unless that Vehicle has the ability to identify all
Constraints associated with that mission

M7 performableBy(M,V)⊑
∀(includes(M,G) ∘ hasCapability(V,G))

A Mission cannot be performable by a Vehicle
unless that Vehicle has the capability to
accomplish all Goals included in that Mission

V = Vehicle Rules
V1 Vehicle ⊑ ∃hasFeature.Vehicle_Feature ⊓

≥0.hasFeature
The only allowable features of a Vehicle are
VehicleFeature. A Vehicle can have 0 or more
VehicleFeatures

V2 canPerform ≡ performableBy- performableBy and canPerform are inversely
equivalent

V3 meetsRequirement ≡
hasFeature ∘ canFulfill

A Vehicle meets a GoalRequirement if and only
if it has a VehicleFeature that can fullfill that
GoalRequirement

V4 hasFeature ∘ canTest ⊑ canIdentify If a Vehicle has a VehicleFeature that can test a
Constraint, then that Vehicle can identify that
constraint

V5 hasCapability(V,G) ⊑ ∀(requires(G,R) ⊓
meetsRequirement(V,R))

If a Vehicle meets all GoalRequirements for a
specific Goal, then that vehicle has the
capability for that Goal

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

21

F = Feature Rules
F1 VehicleFeature ⊑

∃canFulfill.GoalRequirement ⊓ ≥0.canFulfill
A VehicleFeature can only fulfill
GoalRequirements and may be able to fulfill 0
or more GoalRequirements

F2 VehicleFeature ⊑
∃can_test.Constraint ⊓ ≥0.can_test

A VehicleFeature can only test Constraints and
may be able to test 0 or more Constraints

C = Constraint Rules
C1 Constraint ⊑ ∃appliesTo.(Mission ⊔ Goal) A Constraint can apply to a Mission or a Goal

(and nothing else)
C2 Constraint ⊑ ≥1.appliesTo.Goal A Constraint must apply to at least one Goal
C3 appliesTo ∘ includes ⊑ appliesTo A Constraint that applies to a Mission must also

apply to all of the Goals that Mission includes
EC = End Condition Rules
EC1 EndCondition ≡ {SUCCEED, FAIL,

VIOLATE}
Possible ending conditions are "Succeed",
"Fail", and "Violate" (i.e., imminent Constraint
violation)

G = Goal Rules
G1 Goal ⊑

∃requires.GoalRequirement ⊓ ≥0.requires
A Goal can only require a GoalRequirement and
may require 0 or more Goal Requirements

G2 Goal ⊑ ∃hasEndCondition.EndCondition ⊓
≤1.hasEndCondition.End_Condition

A Goal's ending state must be an EndCondition,
and a Goal can end with at most one
EndCondition

G3 Goal ⊑ ∃isNext.Goal A Goal can only have other Goals next
G4 hasEndCondition(G,SUCCEED) ⊔

hasEndCondition (G,FAIL) ⊔
hasEndCondition (G,VIOLATE) ⊑
isNext(G,G2)

A Goal can only have an immediate successor
based on the existence of an ending state for that
Goal

G5 Goal(G) ⊑
≤1.(is_next(G,G2) ⊓
end_state(G,SUCCEED)) ⊔
≤1.(is_next(G,G2) ⊓ end_state(G,FAIL)) ⊔
≤1.(is_next(G,G2) ⊓
end_state(G,VIOLATE))

A Goal can have no more than one immediate
successor in the event of a specific ending state

G6 Goal ⊑ ∃follows.Goal A Goal can only be followed by another Goal
G7 Goal(G) ⊑ ¬follows(G,G) A Goal cannot follow itself (no loops)
G8 isNext ⊑ follows A Goal follows another goal if it is the next

Goal
G9 follows ∘ follows ⊑ follows follows is transitive (if follows(A,B) and

follows(B,C), then follows(A,C))
G10 includes ≡ startsWith ∘ follows All Goals in a Mission must potentially follow

the starting Goal (satisfiability vice entailment)

To create a practical implementation of this ontology, we
chose to employ the Protégé ontology specification tool
developed by Stanford University (http://protege.stanford.edu).
In the Protégé graphical user interface (GUI), classes
corresponding to the concepts are shown in the left-hand panel
in the screenshot in Figure 20. Annotations in the class and
property definitions in Protégé reflect the plain language
descriptions from Table 1 above.

http://protege.stanford.edu/

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

22

In this example, the Mission class is defined as equivalent
to the class of all Things that has some Constraint (zero
or more), starts with exactly one Goal, includes a minimum of
one Goal, and is performable by some Vehicle (one or
more). As a software application constructs instances for the
knowledge base, it can focus on the properties and allow an
automated reasoner to determine if the information correctly
and completely specifies a mission; i.e., to classify a Thing

having various property assertions as a Mission meeting the
class specification. This approach provides a direct way to
check the logical consistency of the created instances, rather
than explicitly creating individuals of the Mission class (even
without any properties, which remains valid under the open
world assumption that something cannot be declared false just
because it is not known to be true).

Figure 19. Validatable RDF/OWL diagram of goals, relationships, assertions, and ethical constraints for the canonical mission of
Figure 7. Rules and rendering produced using Protégé Ontology Editor (Stanford University 2016).

Figure 20. Protégé graphical user interface (GUI) showing the class hierarchy on left and
 specification of Mission class in lower right.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

23

Some of the rules in Table 1 are captured in the class
hierarchy. For example, the disjoint covering of
EndCondition by subclasses FAIL, SUCCEED, and
VIOLATE (Rule EC1) is represented by defining class
EndCondition as equivalent to the union of these
subclasses, and a declaration that the subclasses are mutually
disjoint. This approach is called a value partition in the
literature (Horridge 2011). Defining these EndCondition
“values” as subclasses (rather than, say, individuals) facilitates
extension of the ontology through addition of other subclasses
of end conditions and through possible subcategorization of
each end condition, such as different FAIL conditions that later
might need to become explicit in the ontology. This method also
supports useful logical operations in classifying mission goal
transitions and actual mission performance according to the
assigned EndConditions.

The specification of object properties encodes several of the
rules from Table 1 above. A screenshot showing the hierarchy
of object properties, with details on the definition of the
includes property, is shown in Figure 21.

Several of the rules in Table 1 are addressed by the assertion
of Domain and Range constraints on the properties. In the
definition of the includes property above, a Mission
(domain) can only include Goals (range). This represents part
of rule M2. The other part of rule M2 (that a Mission must
include at least one Goal) is represented in the assertion
includes min 1 Goal shown previously in the definition
of the Mission class in Figure 19. In the same way, domain and
range constraints on the property definitions partially address
rules M1, M2, M3, M5, V1, F1, F2, and C1 (with the class

definitions addressing the other parts of those rules dealing with
cardinality on the properties, as shown in the definition of the
Mission class above). Note that when there is exactly one
association allowed on a property, it is asserted both in the class
definition on the cardinality (e.g., in the definition of the
Mission class: startsWith exactly 1 Goal) and in the
property definition (Functional characteristic is checked in the
Object Property window in Protégé).

In the Object Property description, the property can be
identified as Functional, Inverse Functional, Transitive,
Symmetric, Asymmetric, Reflexive, and Irreflexive. These
characteristics address rules in Table 1 such as M1
(startsWith is functional) and G9 (follows is transitive),
as well as providing additional specificity to such properties as
hasEndCondition (functional) and isNext (irreflexive;
i.e., a goal cannot come after itself). In addition, explicit
assertions can be made regarding the properties, as in
canPerform is the inverse of performableBy (rule V2)
and startsWith is a subproperty of includes (rule M4).

Definition of the includes property in Figure 21 provides
an example of the use of a “property chain” in the definition.
The definition states that includes is a superproperty of the
property chain formed by the composition of startsWith
and isFollowedBy, addressing one direction of the logical
equivalence stated in Rule G10 (note: in Protégé, there is no
way to represent the assertion that includes is a subproperty
of the property chain, in order to obtain the logical equivalence,
other than by creating a new property that also has the above
superproperty assertion, and then stating in the definition of

Figure 21. Object property hierarchy in Protégé and specification of the includes property.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

24

includes that it is both a subproperty of the newly defined
property and a superproperty of the property chain as shown).
This method is used to address rules V3
(meetsRequirement is a superproperty on the composition
of hasFeature and canFulfill), V4 (canIdentify is
a superproperty on the composition of hasFeature and
canTest), and C3 (appliesTo is a superproperty on
the composition of appliesTo and includes).

There are difficulties in OWL 2 in expressing the universal
quantifier in Rules M6, M7, and V5. For example, Rule M6
states that a Mission is performable by a Vehicle if that
Vehicle has the ability to identify all Constraints
associated with that Mission. It is straightforward to express
the assertion from the opposite perspective; that is, if a
Mission is performableBy a Vehicle, then the
Vehicle has the ability to identify (canIdentify) all the
Constraints associated with that Mission. Given the
former, the reasoner could infer the latter. Note that the negation
of each side of Rule M6 can be expressed with existential
quantifiers; as in: a Mission is not performableBy a
Vehicle if there exists a Constraint that cannot be
identified (negation of canIdentify) by the Vehicle.
Similarly, Rule M7 states that a Mission cannot be
performable by a Vehicle unless that Vehicle has the
capability to accomplish all Goals included in that Mission.
Finally, Rule V5 states that if a Vehicle meets all
GoalRequirements for a specific Goal, then that
Vehicle canMeet (has the capability to achieve) that Goal.
Implementation here involves ongoing work in the use of OWL
and expression of rules, an area of further study for purposes of
the MEO (Krisnadhi, Maier and Hitzler 2011).

Regarding Rule G4 (a Goal can only have an immediate
successor based on the existence of an ending state for that
Goal) and Rule G5 (a Goal can have no more than one
immediate successor in the event of a specific ending state), the
approach taken in the ontology is to have explicit isNextOn*
relations (where * is Fail, Succeed, or Violate) to allow
specification of the branching to other goals based on the end
condition. During mission planning, these relations express the
link between a goal and successive goals based on the end
condition; i.e., what goal follows on a Fail condition, what
goal follows on a Succeed condition, and what goal follows
on a Violate condition. During mission execution, when an
actual end condition occurs during performance of a goal, the
end condition would be recorded in the hasEndCondition
and the actual goal selected to follow based on that condition
would be recorded in the isNext relation (i.e., these become
mission log entries rather than part of the initial plan
description).

Finally, regarding Rule G7 stating a goal cannot follow itself
(no loops at strategic level), there is no abstract way to express
this rule in the ontology per se (i.e., in the T-Box assertions),
since enforcement of the rule requires logic dealing with a
specific individual rather than generic members of the class. An
executable implementation can readily perform this check in

software operating in conjunction with the reasoner. In
addition, a rule can be added to infer that a constraint that
applies to a goal also applies to the mission that contains that
goal (the ontology already has the converse, where a constraint
on a mission applies to all the goals in the mission) simply by
making hasConstraint a subproperty of the property chain
includes o appliesTo-1.

Figure 22 shows the classes and relationships as displayed by
the Protégé OntoGraf plug-in. The key for the color-codings of
the relationships is provided in Protégé in the OntoGraf tool. A
partial display of the key is shown in Figure 23. Exploration of
ontological relationships is helpful for illustrating correctness,
completeness and logical consistency.

Several examples of mission specifications and their
ontological representations are available from the authors.

D. Mission Execution Ontology Summary
It is possible to produce general robot mission orders that are

understandable by (legally culpable) humans and are reliably
and safely executable by robots. The semantic representation of
the mission plans permits automated examination of the plans
for logical consistency and provides an enhanced methodology
for software implementations to process missions. Even if
perfectly executable, proper robot logic is not useful in military
context unless it is a directly compatible extension of warfighter
logic. ROEs, concepts of operation, doctrine, tactics, etc. must
be expressible in equivalent terms to be effective and usable.
Constraint tests must be determinable by a human supervisor or
critic, by a virtual environment running a simulation, or by on-
board robot sensors in the operating environment. Constraint
test can match common guidelines such as rules of the road,
water-space management, ROEs, operational orders, and other
expressions of bounds on mission conduct. These expressions
cannot be vague, must result in clear logical determinism (true
or false), must be able to combine multiple logical constraints,
and need to note reporting requirements when human
permission is necessary. For strategic-level task controllers, the
ternary tactical task sequencer using ethics constraints may
allow traceability and accountability for the full set of executed
robot tasks without loss of generality. ROEs and other
expressions provide ethical constraints and boundary
conditions on robot strategic planning and operational conduct
that can work cooperatively and satisfactorily with humans.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

25

Figure 22. OntoGraf representation of the Mission structure in Protégé (essentially, the right-hand side of Figure 18 in a slightly
different layout to better illustrate ontology relationships).

Figure 23. OntoGraf color-coding key associating property names to links in the displayed graph.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

26

VIII. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS
Humans given authority over potentially lethal robotic

systems must be provided with realistic capabilities that enable
meaningful supervision, responsibility and accountability.
Autonomous Vehicle Command Language (AVCL) mission
definitions provide one such example: the ability to define
Strategic Level goals and Tactical Level tasks in a human-
understandable way, and in syntactically validatable form, that
a wide variety of robots might interpret and execute. Mission
Execution Automata (MEA) formalisms show that the
underlying programming constructs are tractable and
sufficiently general to ensure broad feasibility. Mission
Execution Ontology (MEO) validation provides further abilities
to logically evaluate the semantic correctness and completeness
of ethically constrained mission definitions. Together these
capabilities provide a practical framework for ethically
grounded human supervision of unmanned systems.

Key findings of this work are summarized below:

• An MEA is a generalization of a TM in the sense that it
has communication links to at least one external agent
that may be human or mechanical (or both). External
agents have predefined input and output
symbols/messages.

• A fully testable MEA has no loops in its state graph, and
does not access its tape.

• We recommend that the top level of RBM code consist of
a single fully testable MEA. Other levels of RBM can use
MEAs without this restriction.

• MEOs can be employed before mission execution to make
sure that a given mission for a specified vehicle will
execute and will terminate within a prescribed time.

The research findings lead to the following general
conclusions and recommendations for future work regarding
unmanned systems that have the capacity for lethal force.
• Ethical operation of autonomous systems requires human

responsibility, accountability and understanding. Any
decision to deploy potentially lethal force without
appropriate constraints or control may be dangerous,
immoral and illegal.

• Lethality requires an ethical and legal basis for
unmanned system operations. Naval and military
applications have well-defined requirements that are
ultimately guided by ethical requirements such as the Law
of Armed Conflict (LOAC) and treaty-based statutes.
Similar concerns and aspects exist in civil robotics (e.g.
safety of self-driving cars). Principles such as vicarious
liability clearly show that humans are both responsible
and also vulnerable. Robot self-preservation becomes
irrelevant when human life is at stake.

• Unmanned systems can remain supervised and semi-
autonomous, even if communications are lost, if
appropriate guidance and checkpoints are provided.
Robotic systems are capable of following well-defined
orders within measurable constraints. For today’s
systems, loss of control typically occurs when shifting
from direct supervision to semi-autonomous control to
independent operations. Mission orders need to account

for such circumstances correctly, or a system should not
be deployed.

• Human clarity and cooperative action are essential for
supervising robots together with human teams. No
magical on-board ethics-agent homunculus will be
developed that substitutes for careful human planning and
direction. Meanwhile, even a perfect robot is unethical if
not understood by humans. Robots today are not capable
of refusing to obey an order through complex inferencing
from general principles. Thus robot tasking must have
explicit constraints to avoid misapplication of potentially
lethal force.

• Unmanned systems can be compatibly tasked in concert
with human teams. Ethical control of lethality is achieved
via well-defined missions and well-understood
constraints. “Approved robot software that includes
everything needed" is analogous to "the military operator
is fully trained and qualified." International military
teams provide existence proofs on a daily basis that
collaborative approaches are feasible, despite differences
in operational policies, procedures and language. This
work presents a corresponding approach which
historically and currently works well for formal tasking of
human teams.

• Applied ethics equals defining tasks and observing
constraints prior to executing potentially harmful tasks.
No human operator or team undertakes potentially life-
threatening activities without knowing necessary
precautions and following the rules. Tasking must
therefore be clear, and prerequisite constraints must match
necessary legal, safety and policy requirements.

• The mathematical concepts of description logics and
ontologies, as implemented by Semantic Web
technologies, is proposed to capture common logical and
ethical relationships for mission and task definition. This
approach to mission validation is mathematically rigorous
and formally well-defined. Mission correctness becomes
fully validatable using widely deployed technology. The
defined relations and rules capture broad common
practices for mission planning of robot and military
missions. A constraint-based approach to mission
definition appears to present fundamental value.

• A mission-definition approach to constrained tasking is
actionable for all unmanned systems regardless of
software architecture. The authors have carefully
compared these mission-definition mechanisms to a wide
variety of human-control approaches in the real world, in
particular focusing on cooperative maritime and naval
operations. Although primarily in the maritime domain, a
wide variety of unmanned systems have also been
compared over the years. This evaluation leads to
specific conclusions that
o The approach is practical, repeatable, and thorough.
o The approach is compatible with a variety of robot

system architectures.
o Human role remains essential throughout, even when

directness of control varies for remotely operated
systems.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

27

• For those choosing to adopt RBM for robot control, we
urge that the strategic level be fail-safe and exhaustively
testable. This means that this level can be based only on
finite state machine theory and propositional logic, and
not predicate logic, since systems based on the latter are
generally undecidable.

• Ethical constraints on robot mission execution are
possible today. There is no need to wait for notional
future developments in Artificial Intelligence (AI). It is
moral imperative that ethical constraints in some form be
introduced into the software of all robots capable of
inflicting unintended harm to humans or property.

Ethical operation of robotic systems requires human

accountability. In both the legal and moral sense, this implies
that human operators be in a position to understand, and
therefore control, robot mission outcomes. This level of
understanding can be achieved through the satisfaction of
three requirements: operator understanding of high-level
mission flow, mission descriptions understandable to both
human operators and target vehicles, and mission descriptions
consisting entirely of trusted behaviors and constraints.

Early NPS UUV missions were executed as a result of an

inferencing process over a mission definition comprised of a
set of rules and facts. This approach provided no means of
proving the correctness of strategic-level missions comparable
to the exhaustive testing of MEA flow graphs. For this type of
system, errors in the mission axiom set can lead to
unpredictable and potentially hazardous or self-defeating
system execution behavior. Ultimately, this unpredictability
precludes the formal assumption of responsibility or liability
for robot missions.

AI approaches in general almost invariably make use of

easily confounded inferential reasoning or statistical pattern
recognition. Applying such broad mathematical abstractions to
the innumerable situations that can arise in the real world is
inherently unpredictable, and also makes unrealistic any
assumption of responsibility by human operators. It is
therefore apparent that the abstract reasoning of general AI
approaches is inappropriate, at least at the present time, for the
highest level of robot mission definition and control.

Algorithms cannot replace human responsibility. Even so, a
fully testable technology (such as that provided by the MEA
and MEO formalisms) allows for the assignment of human
accountability. Specifically, the MEA provides a
mathematically rigorous mechanism for mission definition and
execution as an exhaustively testable flow diagram. This
approach ensures that accountable operators can fully
understand all high-level task sequences before authorizing
robot operations. The MEO employs DLs and Semantic Web
technologies to provide strong assurances that MEA mission
definitions are semantically correct and fully executable by
specific target vehicles.

By applying the best strengths of human ethical
responsibility, repeatable formal logic and directable
unmanned systems together, these capabilities provide a
practical framework for ethically grounded human supervision
of unmanned systems. Much important work awaits.

ACKNOWLEDGMENT
The authors gratefully acknowledge the fundamentally
important insights and continuing contributions of many
dozens of NPS students and colleagues. The content of this
paper reflects the opinions of the authors and not necessarily
the position of the Naval Postgraduate School or the
Department of the Navy.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

28

REFERENCES
Albus, J. "Engineering Intelligent Systems." Proceedings of the IEEE

ISIC/CIRA/ISAS Joint Conference. Gaithersburg, MD, 1998.
Arkin, R. Governing Lethal Behavior in Autonomous Robots. Boca Raton, FL:

Taylor & Francis Group, 2009.
Azimov, I. I, Robot (2004 ed.). New York, NY: Bantam Dell, 1950.
Berners-Lee, T, J Hendler, and O Lassila. "The Semantic Web." Scientific

American, May 2001: 34-43.
Brtuzman, D. A Virtual World for an Autonomous Underwater Vehicle. Ph.D.

Dissertation, Monterey California USA: Naval Postgraduate
School, 1994.

Brutzman et al. Autonomous Unmanned Vehicle (AUV) Workbench.
September 18, 2016. https://savage.nps.edu/AuvWorkbench/
(accessed December 9, 2016).

—. "Autonomous Vehicle Commandl Language." January 1, 2013.
https://savage.nps.edu/Savage/AuvWorkbench/AVCL/AVCL.html
(accessed December 9, 2016).

Brutzman, D. P., D. T. Davis, G. R. Lucas, Jr., and R. B. McGhee. "Run-Time
Ethics Checking for Autonomous Unmanned Vehicles: Developing
a Practical Approach." Proceedings of the 18th International
Symposium on Unmanned Untethered Submersible Technology.
Portsmouth, NH, 2013.

Brutzman, D. P., R. B. McGhee, and D. T. Davis. "An Implemented Universal
Mission Controller with Run Time Ethics Checking for
Autonomous Unmanned Vehicles--a UUV Example." Proceedings
of the OES-IEEE Autonomous Underwater Vehicles 2012.
Southampton, UK, 2012.

Brutzman, Don, Tony Healey, Dave Marco, and Bob McGhee. "The Phoenix
Autonomous Underwater Vehicle." In AI-Based Mobile Robots.
Cambridge: MIT/AAAI Press, 1998.

Byrnes, R. B., A. J. Healey, R. B. McGhee, M. L. Nelson, S. Kwak, and D. P.
Brutzman. "The Rational Behavior Software Architecture for
Intelligent Ships." Naval Engineers Journal, March 1996: 43-56.

Byrnes, R. The Rational Behavior Model: A Multi-Paradigm, Tri-Level
Software Architecture for the Control of Autonomous Vehicles.
Ph.D. Dissertation, Computer Science, Naval Postgraduate School,
Monterey, CA: Naval Postgraduate School, 1993.

Čapek, K. Rossum's Universal Robots (2004 ed.). Translated by Claudia
Novack. New York, NY: Penguin Group, 1921.

Daconta, M D, L J Orbst, and K T Smith. The Semantic Web, A Guide to the
Future of XML, Web Services, and Knowledge Management.
Indianapolis, IN: Wiley Publishing, 2003.

Dannegger, C. "Real-Time Autonomic Automation." In Springer Handbook of
Automation, edited by Shimon Y. Nof, 381-404. New York, NY:
Springer, 2009.

Davis, D. T. Design, Implementation, and Testing of a Common Data Model
Supporting Autonomous Vehicle Compatibility and
Interoperability. Ph.D. Dissertation, Computer Science, Naval
Postgraduate School, Monterey, CA: Naval Postgraduate School,
2006.

Davis, Duane T. Semantic Web and Inferencing Technologies for Department
of Defense Systems. Technical Report, Center for Multi-INT
Studies, Naval Postgraduate School, Monterey, CA: Naval
Postgraduate School, 2014.

Department of Defense. "Autonomy in Weapon Systems, Directive 3000.09."
November 21, 2012.
http://www.dtic.mil/whs/directives/corres/pdf/300009p.pdf
(accessed December 23, 2014).

Duarte, C. N., et al. "A Common Control Language to Support Multiple
Cooperating UAVs." Proceedings of the 14th International
Symposium on Unmanned Untethered Submersible Technology.
Durham, NH, 2005.

Hammond, G. T. The Mind of War: John Boyd and American Security.
Washington, DC: Smithsonian Institution Press, 2001.

Horridge, Matthew. "A Practical Guide to Building OWL Ontologies using
Protege 4 and CO-ODE Tools. Edition 1.3." March 24, 2011.
http://owl.cs.manchester.ac.uk/publications/talks-and-
tutorials/protg-owl-tutorial/ (accessed December 23, 2014).

Horrocks, I. "Ontologies and the Semantic Web." Comunications of the ACM
51, no. 12 (2008): 58-67.

Krisnadhi, Adila, Frederick Maier, and Pascal Hitzler. "OWL and Rules." In
Reasoning Web: Semantic Technologies for the Web of Data,
edited by A. Polleres, et al., 382-415. Heidelberg: Springer, 2011.

Langley, Charles, and Clive Spenser. "The Visual Development of Rule-
Based Systems." PC AI Magazine, 2005: 29-36.

Lin, Patrick, Keith Abney, and George A. Bekey, . Robot Ethics: The Ethical
and Social Implications of Robotics. MIT Press, 2011.

Lokhorst, G., and J. ven den Hoven. "Responsibility for Military Robots." In
Robot Ethics: The Ethical and Social Implications of Robotics,
edited by Nancy G. Lin, Keith Agney and George A. Bekey, 145-
156. Cambridge, MA: MIT Press, 2012.

Mack, W. P., H. A. Seymour, and L. A. McComas. The Naval Officer's Guide,
11th ed. Annapolis, MD: Naval Institute Press, 1998.

Marco, D.B., A.J. Healey, and R.B. McGhee. "Autonomous Underwater
Vehicles: Hybrid Control of Mission and Motion." Autonomous
Robots 3, 1996: 169-186.

McGhee, R. B., D. P. Brutzman, and D. T. Davis. A Taxonomy of Turing
Machines and Mission Execution Automata with Lisp/Prolog
Implementation. Technical Report, MOVES Institute, Naval
Postgraduate School, Monterey, CA: Naval Postgraduate School,
2011.

—. "A Universal Multiphase Mission Execution Automaton (MEA) with
Prolog Implementation for Unmanned Untethered Vehicles."
Proceedings of the 17th International Symposium on Unmanned
Untethered Submersible Technology. Portsmouth, NY, 2011.

McGhee, R. B., D. P. Brutzman, and D. T. Davis. Recursive Goal Refinement
and Iterative Task Abastraction for Top-Level Control of
Autonomous Mobile Robots by Mission Execution Automata--a
UUV Example. MOVES Institute, Naval Postgraduate SChool,
Monterey, CA: Naval Postgraduate School, 2012.

Minsky, M. Computation: Finite and Infinite Machines. Englewood Cliffs,
NJ: Prentice Hall, 1967.

Ortiz, M, and M Šimkus. "Reasoning and Query Answering in Description
Logics." Reasoning Web 2012, Volume 7487 of Lecture Notes in
Computer Science. Berlin Heidelberg: Springer-Verlag, 2012.

Petzold, C. The Annotated Turing: A Guided Tour through Alan Turing's
Historic Paper on Computability and the Turing Machine.
Indianapolis, IN: Wiley Publishing, 2008.

Posadas, S. Stochastic Simulation of a Commander's Decision Cycle (SSIM
CODE). Monterey: Master's Thesis, Naval Postgraduate School,
2001.

Ricard, M., and S. Kolitz. "The ADEPT Framework for Intelligent
Autonomy." Intelligent Systems for Auronautics Workshop.
Brussels, Belgium, 2002.

Rowe, N.C. Artificial Intelligence Through Prolog. Englewood Cliffs:
Prentice Hall, 1988.

Scharre, P. "Autonomous Weapons and Operational Risk." Ethical Autonomy
Project, Center for a New American Security (CNAS). February
2016. http://www.cnas.org/autonomous-weapons-and-operational-
risk.

Simpson, Stephen G. Logic and Mathematics, in The Examined Life:
Readings from Western Philosophy from Plato to Kant. Edited by
Stanley Rosen. Random House, 2000.

Skiena, Steven S. The Algorithm Design Manual. 2. London: Springer-Verlag,
1997.

Sparrow, R. "Just say "No" to Drones." Technology and Society Magazine 31,
no. 1 (2012): 56-63.

U.S. Army Training and Doctrine Command Analysis Center.
"COMBATXXI." U.S. Army TRADOC Analysis Center.
September 29, 2015. http://www.trac.army.mil/COMBATXXI.pdf
(accessed January 28, 2016).

"Vicarious Liability." In Merriam-Webster's Dictionary of Law. Springfield:
Merriam-Webster, 2011.

World Wide Web Consortium. Resource Description Framework (RDF)
Semantic Web Standards. March 15, 2014.
https://www.w3.org/2001/sw/wiki/RDF (accessed December 9,
2016).

—. Web Ontology Language (OWL) Semantic Web Standards. December 11,
2013. https://www.w3.org/2001/sw/wiki/OWL (accessed
December 9, 2016).

Examples:
[1] IEEE Criteria for Class IE Electric Systems, IEEE Standard 308, 1969.
[2] Letter Symbols for Quantities, ANSI Standard Y10.5-1968.

Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017. Feedback welcome.

29

Don Brutzman Don Brutzman is a
computer scientist and Associate Professor
of Applied Science working in the
Undersea Warfare Academic Group and
Information Sciences Department at the
Naval Postgraduate School (NPS) in
Monterey California. He is cochair of the

Extensible 3D (X3D) Graphics Working Group and a founding
member of the Board of Directors for the non-profit Web3D
Consortium. He is lead author of the book X3D Graphics for
Web Authors, published April 2007 by Morgan Kaufmann. He
is a retired naval submarine officer and principal investigator
for the Network-Optional Warfare (NOW) and robodata
projects. His research interests include underwater robotics,
real-time 3D computer graphics, artificial intelligence, and
high-performance networking.

Duane Davis Duane T. Davis, Ph.D. is a
Research Professor with the Naval
Postgraduate School Computer Science
Department and has been a member of the
NPS faculty since 2008. His teaching and
research interests include multi-vehicle
robotic systems, swarm robotics,

cybersecurity and operations, and ethical employment of
autonomous and cyber capabilities. In addition to his
instructional and research roles, he serves as the Academic
Associate of the Cyber Academic Group and is responsible for
the development and maintenance of learning objectives,
educational goals, and course content for five cyber degree and
certificate programs. Prior to assuming his current position, Dr.
Davis was a career naval officer, serving for more than 20 years
in the aviation community. While on active duty he held
leadership positions in both operational and educational
environments, and participated in deployments in support of
numerous real-world operations.

Curtis L. Blais received the B.S. degree in
mathematics and the M.S. degree in
mathematics from the University of Notre
Dame, South Bend, Indiana in 1972 and
1973, respectively. From 1999 to present,
he has been a member of the research

faculty at the Naval Postgraduate School (NPS), Monterey,
California, in the Modeling, Virtual Environments, and
Simulation (MOVES) Institute. Mr. Blais conducts research
and teaches in modeling and simulation, encompassing
simulation development processes, standards, human behavior
modeling, and information modeling. Prior to NPS, Mr. Blais
worked for 25 years in modeling and simulation (M&S), first as
a mathematician/operations research analyst for the Space and
Naval Warfare Systems Command in San Diego, California,
and then as software engineer, project manager, and department
manager for Systems Exploration Incorporated and Visicom.
Over those years, Mr. Blais worked on numerous simulation
projects, including development and delivery of several
generations of command staff training systems for the United
States Marine Corps from 1976 through 1999. Current research
interests include improvement of human behavior models to
distinguish human performance from robotic system
performance in analytical combat models. Mr. Blais is a
member of the IEEE, Simulation Interoperability Standards
Organization (SISO), and the Society for Modeling and
Simulation International (SCS).

Robert B. McGhee was born in Detroit,
Michigan in 1929. He received a B.S.
degree in Engineering Physics from the
University of Michigan in 1952. After
graduation, he served in the U.S. Army
Ordnance Corps as a guided missile
maintenance officer. Subsequently,

beginning in 1955, he worked as a guided missile engineer for
Hughes Aircraft Company, in Culver City, California, while
also pursuing graduate studies at the University of Southern
California. He received an M.S. degree in 1957, and a Ph.D.
degree in 1963, from USC, both in electrical engineering. In
1963 he joined the faculty of Electrical Engineering at USC,
first as an Assistant Professor and subsequently as an
Associate Professor. In 1968, he accepted a position of
Professor of Electrical Engineering at Ohio State University,
in Columbus, Ohio, where he remained for 17 years. In 1985,
he joined the Naval Postgraduate School as Professor of
Computer Science until 2004 when he retired and was
appointed Professor Emeritus.

From the beginning of his career, his research activities
have, centered on various aspects computer engineering and
robotics, where he has remained active up to the present time.
For the past six years he has been primarily concerned with
developing mathematical concepts and practical software
architectures capable of providing military robots with a
capacity to observe ethical constraints on their behavior during
mission execution, and able to refuse to execute illegal orders.
He is a Fellow of the IEEE in the area of Robotics.

	I. Nature of Ethical Missions
	II. Considering Critical Challenges
	III. Military Operations as an Analogy
	A. Formal Military Guidance Continues to Evolve
	The Directive speaks of such systems as “human-supervised autonomous weapon systems.” As such the systems need to fall under the same rules and constraints as their manned counterparts. We expect future guidance to expand these principles to human-ro...

	B. Command Responsibility in Military Operations
	C. Applicability to Military and Civilian Operation of Robotic Systems
	All robots are designed with a set of basic operational and sensory capabilities, the complexity of which varies from robot to robot. A simple drone, for instance, might be capable of no more than accurate transit between geographic waypoints, while ...

	D. Trust in Capabilities is Necessary

	IV. Mission Definition as Goals or Tasks with Run-Time Constraints
	A. Goal Definition and Task Decomposition
	B. Control Loops for Robots and Humans
	C. Classical Decision Logic for Task Sequencing
	D. Adding Constraints to Mission Decision Logic
	E. Implications of Ethical Constraints on Mission Tasking

	I.
	V. Mission Execution Automata (MEA): Executable Mission Specifications
	A. The Rational Behavior Model (RBM) Robot Control Architecture
	B. Mission Execution Automaton (MEA) Definition
	C. Strategic-Level Mission Rehearsal and Testing
	D. Progressive Refinement of Complex Mission Tasks
	A.
	E. Summary of Insights, Mission Execution Automata (MEA)

	I.
	VI. Validation of RBM Software Architecture through Real-World and Virtual Experimentation
	A. Phoenix Autonomous Underwater Vehicle (AUV)
	B. Aries AUV
	C. Dangers Associated with Using Rules and Fact Assertion to Implement Strategic-Level Logic

	VII. Ethical Validation of Mission Definitions
	A. Description Logics (DL) and a Robot Mission Ontology
	B. Mission Execution Ontology (MEO)
	C. Specification and Implementation of the Ontology
	D. Mission Execution Ontology Summary

	VIII. Findings, Conclusions, and Recommendations
	Acknowledgment
	References

