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Abstract— Many experts and practitioners have worked long 

and hard towards achieving functionally capable robots. While 
numerous areas of progress have been achieved, progress in 
ethical control of unmanned systems has been elusive and 
problematic.  Common conclusions that treat ethical robots as an 
always-amoral philosophical conundrum or requiring 
undemonstrated morality-based artificial intelligence (AI) are 
simply not sensible or repeatable. For better or worse, actors 
around the world are rapidly designing and deploying mobile 
unmanned systems to augment human capabilities.  Thus theory 
must meet practice. This work adapts policies and procedures for 
ethical responsibility and authority that have been proven to work 
in collaborative military operations, even across varying cultures 
and platforms. Patterning after successful practice by human 
teams shows that precise mission definition and task execution can 
provide safeguards for autonomous robots or human-robot teams 
possessing potentially lethal capabilities. Since lethality is not 
limited to military weapons but can also include navigational 
interference and vehicle collisions, and since many robots are 
capable of carrying out well-defined tasks regardless of their 
internal software architecture, this approach appears to have 
broad usefulness for civil application of unmanned systems as well. 
 

Index Terms—autonomous vehicles, ontology, robotics, robot 
ethics  
 

I. NATURE OF ETHICAL MISSIONS 
ANY experts and practitioners have worked long and 
hard towards achieving functionally capable robots. 

While numerous areas of progress have been achieved, progress 
in ethical control of unmanned systems has been elusive and 
problematic.  Common conclusions that treat ethical robots as 
an always-amoral philosophical conundrum or requiring 
undemonstrated morality-based artificial intelligence (AI) are 
simply not sensible or repeatable. For better or worse, actors 
around the world are rapidly designing and deploying mobile 
unmanned systems to augment human capabilities.  Thus theory 
must meet practice. 

This work adapts policies and procedures for ethical 
responsibility and authority that have been proven to work in 
collaborative military operations, even across varying cultures 
and platforms. Patterning after successful practice by human 
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teams shows that precise mission definition and task execution 
can provide safeguards for autonomous robots or human-robot 
teams possessing potentially lethal capabilities. Since lethality 
is not limited to military weapons but can also include 
navigational interference and vehicle collisions, and since many 
robots are capable of carrying out well-defined tasks regardless 
of their internal software architecture, this approach appears to 
have broad usefulness for civil application of unmanned 
systems as well. 

Experience and experimentation across four decades of 
robotic and military operations inform this work. The authors 
first look at unmanned capabilities and limitations, along with 
real-world exemplars of how humans delegate command 
responsibility and authority.  Robot mission tasks and goals can 
be clearly specified and refined with corresponding degrees of 
internal control supervision occurring, in the case of the 
exemplar discussed here as part of a three-layer software 
architecture. The Autonomous Vehicle Command Language 
(AVCL) (Davis, D. T. 2006) (Brutzman, Davis, et al. 2013) 
(Brutzman et al. 2013) allows expressing such mission 
constructs in a formal yet human-understandable way, 
matching the repertoires of most human-driven and robot-
supervised vehicles. Adding well-defined prerequisite 
constraints (permission, restriction, and required human 
intervention) can supplement mission orders in context of each 
individual task, providing an ethical basis for unmanned system 
tasking that matches human understanding of similar 
responsibilities. Careful structuring of Mission Execution 
Automata (MEA) demonstrates a theoretically sound and 
scalable basis to this approach. The functional vocabulary is 
intentionally restricted to the well-understood mission 
capabilities of humans and robots so that broad compatibility 
by many robots is possible.  Strict-subset vocabularies might 
alternatively implement these atomic concepts using slightly 
different syntax, but the core concepts must remain consistent. 

Modeling, simulation and visualization have enabled 
extensive testing of mission operations, building human 
confidence in well-defined task orders.  XML validation of 
AVCL tasks confirms syntactical correctness of mission orders, 
but more is needed. The authors therefore have created a 
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Mission Execution Ontology based on principles of description 
logics, and implemented using Semantic Web languages. This 
ontology is used to confirm that mission definitions are also 
semantically complete, including ethical constraints whenever 
appropriate. Such pre-mission verification of mission 
completeness is analogous to chain-of-command human review 
of operations orders that already occurs prior to coordinated 
team operations. 

A long trail has led to this point, inspired by many sources 
but driven by a need to implement practical constraints on 
unmanned systems lethality.  A feasible path forward now 
exists. Semantic coherence of mission orders for humans and 
robots working together can be achieved, if tasks include ethical 
constraints that define acceptable operational prerequisites for 
remote action.  Current project conclusions show that much 
work remains for ethical control of robots, but progress is 
indeed possible and quite encouraging. The authors believe that 
ethical human supervision of semiautonomous unmanned 
systems is feasible today and widely repeatable in a practical 
manner. 

II. CONSIDERING CRITICAL CHALLENGES 
The idea of intelligent robots emerged from and developed 

in the minds of artists and dreamers long before the prevailing 
technology was capable of supporting its underlying premises.  
First imagined using the term “robot” in the Czech play 
“Rossum’s Universal Robots” (Čapek 1921), these intelligent 
humanoid machines were relegated primarily to the realm of 
science fiction in the first half of the twentieth century.  Even 
so, the ethical ramifications of mobile (and potentially lethal) 
machines capable of human-like intelligence and actions were 
readily apparent, and seemingly reasonable ethical frameworks, 
most notably Azimov’s Three Laws of Robotics (Azimov 
1950), were devised to govern intelligent robot operation.  As 
science fiction aficionados are well aware, however, these 
frameworks were rife with loopholes and unanticipated 
subtleties that inevitably led to their downfall. 

The advent of digital computing, the emergence of artificial 
intelligence as an academic discipline, and the simultaneous 
incorporation of both into a variety of robotic devices have 
brought these ethical concerns to the forefront of academic and 
practical debate.  Moreover, the ready availability of this 
technology to governments, corporations, research entities, and 
individuals has made this issue one of broad societal 
importance.  From robotic vacuum cleaners to armed military 
drones, intelligent robotic technology has insinuated itself into 
aspects of our lives that were not previously imagined.  One 
implication of this ubiquity is that questions of legal and moral 
responsibility will not be answered by a set of fixed “laws” and 
cannot be regulated into irrelevance through government 
action, just as is the case of endeavors involving humans. 

Nevertheless, a number of important observations can be 
made: 
• Predictability. Robots essentially perform exactly as 

programmed to perform in a given situation.  
Predictability is independent of the intent of the 
programmer, the understanding of the operator, and any 

anthropomorphic bias of observers.  Fault-detection logic 
can detect unexpected errors and prevent unplanned 
actions.  Robots do precisely what the programmers and 
operators tell them to do—not what the programmers and 
operators thought they told them to do or meant to tell 
them to do.  Thus a trustworthy robot must be competent 
to perform assigned tasks. 

• Authority. Apparent intelligence notwithstanding, a robot 
is an inanimate object.  Thus, moral responsibility for the 
consequences of a robot’s actions cannot be assigned to 
the robot.  Thus decision-making authority must be 
performed by qualified, well-informed humans. 

• Responsibility. Direct responsibility for the outcomes of 
robot activity must accompany authority, and must be 
assignable to a specific human entity.  For robot ethics to 
bear any tangible meaning, ultimate moral and legal 
accountability must reside with the human programmers, 
manufacturers, operators and leadership.  Deliberate care 
must be taken when giving orders to robots, just as is 
already given for orders to humans. 

• Liability. The assignment of liability (whether legal or 
moral) in any circumstance is premised on the assumption 
that the involved parties are in a position to reasonably 
foresee the outcomes for which they are being held 
responsible.  Liability accompanies authority and 
responsibility.  If a human decides to deploy an unmanned 
system capable of lethal action, the human is liable for its 
subsequent actions (even if unforeseen). 

These observations are fairly widely accepted, but 
nevertheless can lead ethicists to different conclusions.  In 
debating military use of autonomous systems, for instance, Rob 
Sparrow of the International Committee for Robot Arms 
Control uses Jus en Bello requirements to argue that the military 
use of lethal robots is inherently unethical because robots 
cannot be held accountable for their actions (Sparrow 2012).  
Ronald Arkin, on the other hand, accepts the premises of 
Sparrow’s argument but comes to the opposite conclusion—
that if an autonomous system is capable of making a lethal 
decision more reliably than a human, then it is inherently 
unethical to not use that system (Arkin 2009). 

Notwithstanding disagreements over military use of 
autonomous robots, these observations can form a common 
basis that provides a framework for ethical operation of 
intelligent robots.  This approach is feasible with current 
technologies and without a requirement for black-box artificial 
intelligence “ethical controllers” that do not integrate well with 
specialized software schemes and inevitably lead to second-
guessing, obfuscation, and uncertainty.  Further, this paradigm 
is potentially applicable not only to military operations (lethal 
or otherwise) but also to other employment of robotic systems 
where questions of ethical operation and responsibility arise. 
(Lin, Abney and Bekey 2011) (Scharre 2016) 

III. MILITARY OPERATIONS AS AN ANALOGY 

A. Formal Military Guidance Continues to Evolve 
Updating military guidance on use of autonomous systems 

has become a perennial exercise in producing future roadmaps 
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and plans.  Such documents are becoming more mature and 
consistent, so current guidance (although plentiful) can provide 
helpful insights. 

Department of Defense Directive 3000.09, Autonomy in 
Weapon Systems (Department of Defense 2012) identifies key 
principles (policy) to be met in “the development and use of 
autonomous and semi-autonomous functions in weapon 
systems, including manned and unmanned platforms” and 
“establishes guidelines designed to minimize the probability 
and consequences of failures in autonomous and semi-
autonomous weapon systems that could lead to unintended 
engagements”: 
“Autonomous and semi-autonomous weapon systems shall be 
designed to allow commanders and operators to exercise 
appropriate levels of human judgment over the use of force. … 
measures will ensure that autonomous and semi-autonomous 
weapon systems: (a) Function as anticipated in realistic 
operational environments against adaptive adversaries.(b) 
Complete engagements in a timeframe consistent with 
commander and operator intentions and, if unable to do so, 
terminate engagements or seek additional human operator 
input before continuing the engagement.” (Department of 
Defense 2012, 2)  

The Directive speaks of such systems as “human-supervised 
autonomous weapon systems.” As such the systems need to 
fall under the same rules and constraints as their manned 
counterparts.  We expect future guidance to expand these 
principles to human-robot teams, despite the lack of 
commonality that is implemented in robotic systems 

B. Command Responsibility in Military Operations 
Issues of authority and responsibility hold great importance 

in military operations, providing many useful analogies with 
essential relevance that are well understood.  Military 
commanders are provided forces over which they exercise 
control and assigned missions that they are expected to 
accomplish.  Responsibility for the success, failure, and conduct 
of the mission rests solely with the commander.  This paradigm 
is applied at all levels of command, from the individual soldier 
responsible only for his own conduct to the overall commander 
responsible for the entire operation.  From a practical 
standpoint, this means commanders are responsible for the 
proper employment of all assigned assets, whether they are in 
positions to actively direct those assets’ conduct or not.  Naval 
leaders in particular are frequently required to assume 
responsibility over units with which they have little or no direct 
contact.  More recently, militaries have relied on increasingly 
automated systems.  The increased capability of these systems, 
however, does not obviate the commander’s responsibility for 
their proper employment.  Ultimately, it does not matter 
whether a military leader is employing a system of people or a 
system of machines: authority requires responsibility. (Mack, 
Seymour and McComas 1998) 

As stated previously, the ability to assign responsibility for 
operational decisions is premised on the ability of the decision-
maker to reasonably foresee the results.  In military operations, 
this requires a level of trust on the part the commander that is 
based on a number of important factors.  Each is directly 

matched by similar protocols for humans. 
a. Qualification.  The subordinate unit must be trained and 

qualified for the designated task requirements, or else the acting 
agent (human or robotic) is simply not prepared and ready for 
the desired assignment.   

b. Comprehension and acknowledgement.  The subordinate 
unit must understand both tasking and on-board capabilities to 
conduct mission tasks according to the commander’s direction.  
Acknowledging (or responding negatively to) the provided 
tasking is necessary for the commander to know that orders 
have been received and can be carried out. 

c. Recognizes status and completion.  Finally, any 
subordinate unit or employed system must be able to accurately 
assess the state of the task’s execution over the course of the 
assignment, and can determine the ongoing status of any 
constraints that have been imposed on the execution.  Success 
or failure must be recognizable. 

Essentially, these trust relationships provide assurance that a 
properly employed system (human or otherwise) has the ability 
to operate in a manner that does not impose undue risk.  A 
system that is insufficiently capable or improperly employed 
system, on the other hand, will not meet this operational 
standard, and a human commander will rightfully be held 
responsible for any unwanted outcomes.   

Launching indiscriminate weapons is not a lawful act.  These 
moral and legal principles are well understood by military 
professionals.  Robots tasked with serious missions must be 
capable of carrying them out safely and in an ethical 
(professional) manner, just like any other qualified wingman or 
shipmate. 

C. Applicability to Military and Civilian Operation of 
Robotic Systems 

A variation of this ethical mechanism upon which military 
command accountability rests can be applied to robots in both 
military and civilian applications in a fairly straightforward 
manner as a corollary to the well-established legal principle of 
vicarious liability (Vicarious Liability 2011).  Under this 
mechanism, operators can be held morally and legally 
responsible for all outcomes of a robot system’s operation if 
they are in a position to foresee those outcomes.  That is, 
operators can be held responsible for undesirable outcomes that 
they are in a position to prevent.  Such outcomes may be highly 
significant, from both moral and legal perspectives, if property 
or lives are lost. 

All robots are designed with a set of basic operational and 
sensory capabilities, the complexity of which varies from 
robot to robot.  A simple drone, for instance, might be capable 
of no more than accurate transit between geographic 
waypoints, while a more-capable vehicle might be able to 
derive and execute a complex coverage pattern to search an 
area.  Similarly, many robots are capable of GPS navigation, 
but more-advanced robots might also be capable of 
determining their position relative to specific geographic 
features. 
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D. Trust in Capabilities is Necessary 
It is reasonable under this understanding of robot actions to 

assume a level of trust in a particular robot’s ability to 
satisfactorily execute each of their atomic capabilities.  It 
follows then, that it is possible for the robot operator to task that 
robot with enough confidence to assume moral and legal 
liability for its conduct (Lokhorst and ven den Hoven 2012).  If 
such trust is misplaced, then the manufacturer or programmer 
is presumably “design responsible” for their flawed product 
(Lokhorst and ven den Hoven 2012).  Thus responsibility and 
culpability can be determined throughout this long line of 
human involvement with any given unmanned system. 

From a practical standpoint, the efficacy of this proposed 
framework rests on three requirements that in combination can 
provide robot operators with the required level of mission 
assurance and understanding to assume responsibility for the 
robot’s conduct: 
• Semantic correctness.  The operator must be able to 

provide a rigorous mission definition that he himself fully 
understands.  This understanding must be mathematically 
sound in the sense that the operator must be able to assure 
himself that the mission will progress from one atomic 
task to the next as the operator intends under all 
foreseeable circumstances. 

• Consistent clarity.  At its lowest level, the mission 
definition and any constraints must be defined in a form 
that is acceptable to the assigned vehicle itself.  That is, it 
is not sufficient that the operator understand a version of 
the mission that is eventually translated into actual vehicle 
commands.  Stated differently, there must be no means by 
which the operator-approved mission description can be 
semantically modified between the time that the mission 
is approved and the time it is executed by the target 
vehicle. 

• Executable composition.  The mission tasking and 
associated constraints must be comprised entirely of 
atomic vehicle-specific behaviors for which the target 
vehicle has been afforded an acceptable level of trust.  
The vehicle must also be trusted to execute the individual 
mission tasks, similarly trusted as able to recognize when 
a proposed (or active) task cannot be successfully 
executed.  The unmanned system must be able to 
continually evaluate all execution constraints and 
determine when one is likely to be violated. 

 
Upcoming sections of this paper present a formalization of 

the way that some missions (such as operations orders) can be 
developed and defined for human execution. In particular, a 
specific mission is described in structured natural language, and 
then, after a series of steps, abstracted into a ternary-branching 
“process flow diagram” that includes run-time ethical 
constraints. Subsequently, in a following section, it is shown 
how such a graph can be reinterpreted as mission orders for 
joint human/robot collaboration or entirely autonomous 
execution. 

IV. MISSION DEFINITION AS GOALS OR TASKS WITH 
RUN-TIME CONSTRAINTS 

A. Goal Definition and Task Decomposition  
In describing complex tasks to subordinates, humans often 

subdivide these tasks into a series of subordinate tasks that can 
be executed in order to accomplish the overall mission.  For 
instance, a complex task (or mission) during which a manned 
vehicle is expected to conduct searches and collect 
environmental samples before rendezvousing with another 
manned (or unmanned) vehicle might be specified as a series of 
tasks as depicted in Figure 1.  Providing the vehicle’s operator 
knows the geographic characteristics of Areas A, B, and C and 
understands what the commander means in directing searches, 
environmental sampling, and rendezvous, the operator is able 
to reliably execute this mission as specified.  

Note that each of the above tasks is nontrivial.  Most tasks 
include transit as well as subsequent operations in different 
locations.  Each task requires multiple sophisticated steps for 
successful completion, whether accomplished by a human or a 
robot. Each subtask typically requires even more specialized 
capabilities.  For example transit requires safe navigation, 
which requires sensing and classification for situational 
awareness plus stable control, which in turn requires operation 
of hardware/software capabilities, and so on.  Each level of 
abstraction requires different capabilities and sophistication, 
while no layer of capability can exist correctly without the 
corresponding layers of functionality that lie above and below.  
Thus task decomposability is essential. 

B. Control Loops for Robots and Humans  
In executing this mission, a vehicle operator implicitly relies 

on a discrete decision process similar to the one graphically 
depicted in Figure 2.  With this model, the operator periodically 
takes stock of the current situation, determines status of the 
current task, and proceeds to the next task when the current one 
is complete.  In essence, applying a decision-loop model of 
Figure 2 to the mission description of Figure 1 transforms the 
description from a static overview of intended mission flow to 
an active specification that can be logically tested and mentally 
rehearsed prior to real-world execution. 

Figure 4. Example mission orders expressed in structured 
natural language for human execution. 

Task 1: Proceed to Area A and search the area. 

Task 2: Obtain an environmental sample from 
Area A. 

Task 3: Proceed to Area B and search the area. 

Task 4: Proceed to Area C and rendezvous with 
vehicle 2. 

Task 5: Proceed to recovery position (mission 
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In practice, this type of decision process is commonly 
referred to as a Sense-Decide-Act (SDA) loop when referring 
to overall control loops for computational autonomous agent 
activities, or sometimes a Sense-Interpret-Decide-Act loop 
when emphasizing machine evaluation of sensor inputs.  
Similarly, Figure 2 shows an Observe-Orient-Decide-Act 
(OODA) loop, commonly referred to when considering 
feedback control in military and other human operations 
(Hammond 2001) (Dannegger 2009) (Wikipedia 2016). 

 

C. Classical Decision Logic for Task Sequencing  
That similar SDA or OODA control-loop models can be 

applied to both human and non-human operators is noteworthy.  
It implies that missions thus specified might be executable not 
only by humans, but by human-controlled robots, human-robot 
teams, and suitably autonomous robots as well.  One important 
aspect of the mission above must be accounted for, however.  
The sequential flow implicitly assumes success for each task.  

Where human operators are concerned, this is acceptable in 
most circumstances.  When the ability to complete a task is in 
question, a human operator is able to request guidance from 
higher authority or use his best judgement to decide how to 
proceed.  Under the requirements underpinning the framework 
proposed in this paper, this is not necessarily an option for robot 
agents.  Rather, the course of action that the vehicle is to 
undertake in the event of task failure must be fully specified in 
the mission description.  This can be achieved through the 
introduction of a simple branching structure. 

As discussed previously, a specific autonomous agent may 
be trusted to execute a finite set of atomic behaviors that are 
used to define the mission.  Further, the agent must be capable 
of detecting when a behavior is successfully completed and 
when the behavior cannot be successfully completed.  It follows 
that a vehicle must be able to detect the success or failure of 
tasks within the mission definition so long as those tasks are 
comprised of trusted behaviors.  This capability makes it 
possible to more rigorously define missions in a way that target 
autonomous vehicles can be trusted to execute without direct 
supervision. 

With the introduction of potential branching based on task 
success or failure, overall mission success is no longer reliant 
on a fixed sequence of task executions.  In fact, a particular 
mission can include the successful completion of some tasks, 
the failure of different tasks, and the complete omission of 
others.  It is appropriate in this context to refer to the individual 
tasks as goals to be achieved rather than simply as tasks.  A 
possible decision-tree elaboration of the mission from Figure 1 
is provided in Figure 4.  Interestingly, the SDA/OODA decision 
loop of Figure 2 is still suitable for controlling the execution of 
this revised mission.  

This mission definition gives rise to a graphical 
understanding of mission flow, creating an alternate 
representation of the natural-language mission definition of 
Figure 4 above, which is next shown as the flow diagram of 
Figure 5.   
  

Goal 1: Proceed to Area A and search the area.  If the 
search is successful, execute Goal 2.  If the search is 
unsuccessful, execute Goal 3. 

Goal 2: Obtain an environment sample from Area A.  If the 
sample is obtained, execute Goal 3.  If the sample 
cannot be obtained, execute Goal 5. 

Goal 3: Proceed to Area B and search the area.  Upon 
either search success or failure, execute Goal 4. 

Goal 4: Proceed to Area C and rendezvous with vehicle 2.  
Upon rendezvous success or failure, execute Goal 5. 

Goal 5: Proceed to recovery position (mission complete).  
Upon successful arrival, mission complete.  If 
unable to return to base, abort the mission. 

Figure 4. Modified search and sample mission providing success-failure 
branching and human or autonomous agent execution (McGhee, 
Brutzman and Davis 2011). 

Figure 3. John Boyd’s Observe Orient Decide Act loop describing 
human decision-making processes (Wikipedia 2016). 

Figure 2. Supervisory task sequencer model for mission conduct as a 
series of discrete mission tasks and associated decisions. 

Begin Mission 
 

End Mission 
 

Choose First 
Mission Task 

Execute Mission 
Task 

Choose Next 
Mission Task 

Tasks 
Remaining? 

No 

Yes 
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This flow graph is one among many potential 
representational forms for this and many other missions, and a 
number of  graphical, programmatic, and Extensible Markup 
Language (XML)-based definition forms have been proposed 
(Byrnes, et al. 1996) (Duarte, et al. 2005) (Davis, D. T. 2006).  
This flow-graph encoding is of particular interest because it 
provides an intuitive depiction of a potentially complex 
mission.  In fact, an operator or supervisor can utilize a mission 
specification of this form to mentally “rehearse” the mission by 
intentionally traversing the graph from start to finish while 
exhaustively testing success and failure branches at every step.  
While not yet providing the required level of mathematical 
rigor, this ability to informally traverse all possible task 
sequences in this manner is an important step towards providing 
assurance to the responsible operator that the mission will 
progress according to human intent under all foreseeable 
circumstances. 

D. Adding Constraints to Mission Decision Logic  
As presented so far, this mission definition paradigm does 

not explicitly address the issue of ethical mission execution.  
Specifically, no mechanism has been suggested at this stage to 
define ethical constraints affecting the overall mission or 
individual tasks.  It might be casually argued that ethical 
conduct is implied by “successful” completion of goal’s 
requirements.  Such an assumption is naïve, however, and does 
not provide nearly enough confidence for the operator to 
assume liability for the mission’s conduct.  For instance, it is 
apparent that an unmanned underwater vehicle (UUV) with an 
appropriate search behavior can achieve goals 1 and 3 of the 
example mission.  Unfortunately, it may or may not be able to 
do so while avoiding detection, remaining clear of other 
vehicles in the area, or maintaining a specific navigational 
accuracy.  If any of these (or other) conditional requirements 
must be met in order for the goal to be achieved in a safe and 

ethical manner, then an additional mechanism must be provided 
to incorporate those ethical constraints into the mission 
specification.  In this context, ethical constraints do not describe 
characteristics of individual goals, but rather what must be 
considered and enforced during goal execution.  From the 
standpoint of operator accountability, the constraints must be 
specified in a manner that preserves the ability to trace high-
level mission flow, and also specified in a way that can 
ultimately be monitorable and enforceable by the autonomous 
vehicles themselves.  A plain-language version of exemplar 
constraints is given in Figure 6. 

 
Ethical constraints vary and may be intuitively applied to 

either an entire mission or to relevant individual goals as 
appropriate.  That is, there may be certain constraints that must 
be enforced from launch until recovery (e.g., all safety systems 
must remain operational), and others that only need to be 
enforced during the execution of specific goals (e.g., 
maintaining safety depth in the search area).  As an example, 
the plain-language constraints of Figure 6 might be applied to 
the example UUV mission in a straightforward manner, as 
depicted graphically in Figure 7.  Note that mission-level 
constraints 1, 2, and 5 could be applied to all goals individually 
without changing the constraint-application semantics.  This 
construct still supports the prior rehearsal of missions for 
correctness, and also allows for the in situ consideration of 
whole-mission and goal-specific constraints (Brutzman, Davis, 
et al. 2013). 
  

Figure 5. Mission-flow graph for a search and sample mission for 
human or autonomous agent execution (Brutzman, McGhee 
and Davis 2012). 

Figure 6. Constraints suitable for application to the example search 
and sample mission. 

Constraint 1: The vehicle must maintain navigational 
accuracy within acceptable limits.  Applies 
to entire mission. 

Constraint 2: All safety equipment must be fully 
functional.  Applies to entire mission. 

Constraint 3: All mission systems must be operational.  
Applies to Goal 1, Goal 2, and Goal 3. 

Constraint 4: Acceptable distance from shipping lanes in 
the form of 1000 meter lateral standoff or 
minimum depth of 20 meters must be 
maintained.  Applies to Goal 1, Goal 2, Goal 
3, and Goal 4. 

Constraint 5: Must be able to detect surface contacts 
within 5000 meters.  Applies to entire 
mission. 

Constraint 6: Detected surface contacts are to be 
avoided by a minimum of 1000 meters.  

          



Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017.  Feedback welcome. 
 

7 

Up to this point, the definition scheme only provides for 
binary branching of the mission-flow diagram:  once initiated, 
a goal either succeeds or fails, and the mission then proceeds 
accordingly.  Such a representation is fully representative of 
any decision tree, since tree graphs of arbitrary branching size 
can be traversed in a binary manner.  However, a binary 
approach also presumes that an impending ethical constraint 
violation equates to goal failure.  Such equivalence might be 
acceptable in many cases, and ethical violations causing goal 
failure certainly result in correct application of the constraints 
in the sense that goal execution no longer proceeds in the face 
of constraint violations.  On the other hand, it might well be 
desirable to treat responses to impending constraint violations 
differently than simple failure (for example, in order to meet an 
additional independent objective).  A more-responsive 
approach is possible through the addition of a third potential 
goal-execution outcome for constraint violations, along with a 
corresponding branching option in the mission flow structure.  
That is, execution of an individual goal becomes terminated 
upon goal success, goal failure, or impending violation of a 
constraint applied to that goal.  Flow of control then proceeds 
as directed to whichever subsequent goal is next designated as 
appropriate.   

This constraint-based tree approach shown in Figure 8 is 
quite useful and an excellent match for supervisory planning 
needed when humans perform robot mission planning.  The 
general expressive power of binary-flow logic is preserved, and 
system responses must be explicitly considered for each 
success, failure, or constraint violation that might occur when 
performing each mission goal.  The ternary-flow structure is 
also similar to exception handling in modern programming 
languages, which can facilitate implementation and testing.  
The corresponding modification of the example mission to 
illustrate this ternary branching model is graphically depicted 
in Figure 8. 

 
 

E. Implications of Ethical Constraints on Mission Tasking  
Designing robot missions in the form of a flow diagram 

consisting of a set of discrete goals, with ethical constraints 
applied to individual goals as described here, provides an 
intuitive mechanism that can enhance responsible operators’ 
understanding of the missions they expect to supervise.  The 
nature of the mission specification is declarative.  At this level 
of abstraction, individual goals execute sequentially according 
to the mission tree, irrespective of elapsed time, and each goal 
predictably terminates in one of three possible states (goal 
success, goal failure, or constraint violation). 

Supervisory trust that a directed vehicle can execute specific 
goals, recognize goal failure, and identify pending constraint 
violations provides important boundaries on autonomous 
behavior.  Essentially this approach eliminates any need to 
make assumptions or guesses concerning intended vehicle 
conduct during goal execution.  Rather, the onus of well-
specified tasking is specifically placed on human operators to 
create well-defined and thorough missions.  Further, if the size 
of the mission-flow diagram is reasonably managed, then 
exhaustive testing of all possible mission execution sequences 
is achievable and tractable.  These aspects of mission design are 
fundamentally important, and are essentially quite similar to the 
essence of coordinated operational tasking among ships and 
aircraft led by responsible and cooperating humans. 

The next section strengthens the foundations for these 
concepts. Examining the underlying nature of the mathematical 
formalizations used here can provide further operator assurance 
that a particular mission is appropriately defined and can 
proceed as expected, in an appropriate matter, under all 
circumstances. 
  

Figure 7. Mission-flow graph for a search and sample mission with 
ethical constraints applied as binary branching (D. P. Brutzman, 

D. T. Davis, et al. 2013). 

 

Figure 8. Mission-flow graph for a search and sample mission with 
ternary branching for imminent ethical-constraint violations. 
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V. MISSION EXECUTION AUTOMATA (MEA): 
EXECUTABLE MISSION SPECIFICATIONS 

A. The Rational Behavior Model (RBM) Robot Control 
Architecture 

Autonomous vehicle mission expression in the form of a flow 
diagram is compatible with the higher levels of abstraction for 
a number of proposed hierarchical robot control architectures 
(Byrnes, et al. 1996) (Ricard and Kolitz 2002) (Albus 1998).  
One particularly relevant example is the Rational Behavior 
Model (RBM) tri-level software architecture (R. Byrnes 1993).  
A variety of other 3-level robot architectures have proposed and 
implemented over the past two decades, typically with similar 
timing principles and varying jargon.  RBM is modeled on the 
command hierarchy of a manned submarine, and organizes 
robot control requirements into execution, tactical, and strategic 
levels as depicted in Figure 9. 
• Execution-level control includes those hard-real-time 

uninterruptable tasks associated with control and 
management of hardware systems that direct interact with 
the vehicle’s physical environment.  These feedback-
driven controllers correspond to the activities of a manned 
vessel’s junior crew-members and include manipulation 
of control surfaces and sensors. 

• Tactical-level tasks utilize execution-level functionality to 
realize more complex behaviors.  Tactical-level task 
behaviors correspond to those activities managed by a 
manned vessel’s watch officers and can be as simple as 
maintaining a desired course and speed or transiting to an 
ordered geographic location or arbitrarily complex, such 
as conducting an area search or utilizing onboard sensors 
for map development. 

• Strategic-level goals are at the highest level of control and 
correspond to the activities directed by a manned vessel’s 
commanding officer.  These goals control overall mission 
conduct by initiating tactical-level behaviors as prescribed 
by the mission definition. 

The previously described mission-flow diagram and 
performance of each mission’s individual goals align well with 
the RBM Strategic and Tactical Levels respectively.  Within 
this model, the Strategic Level operates in a discrete manner 
completely in the mathematical realm of formal logic.  Once a 
Tactical-Level behavior is activated, Strategic-Level execution 
pauses until a response is received from the Tactical Level 
indicating that the behavior (goal) was successfully completed, 
failed to complete, or encountered a constraint violation. 

If properly encoded, the Strategic-Level mission-flow 
diagram can actually form an executable mission specification.  
Declarative forms that are both human-readable and machine 
executable versions of the exemplar mission have been 
developed with the Prolog language and XML (McGhee, 
Brutzman and Davis 2011) (Brutzman, McGhee and Davis 
2012) (Brutzman, Davis, et al. 2013) (as well as in an analytical 
combat simulation as discussed below).  This human-and-
machine compatible form is in line with the ethical framework 
requirements listed earlier and provides for human-based 
testing of mission code prior to robot (or joint robot-human) 
execution.  Further, from the perspective of the Strategic Level, 
it does not matter whether the Tactical Level behavior is 
executed by an actual robot, a computational model, or a human 
being.  Thus, Tactical-Level responses provided by a human 
tester are not only analogous to those provided by an actual 
robot—they are identical to actual robot responses for the 
purposes of testing high-level mission response. 

B. Mission Execution Automaton (MEA) Definition 
Mathematical rigor of Strategic-Level execution steps is 

obtained by observing that the run-time traversal of the mission-
flow diagram is similar to the operation of a mathematical 
formalism called a Turing Machine (TM).  A Turing Machine 
is a Finite State Machine (FSM) with an associated one-
dimensional infinite storage medium called a tape (Minsky 
1967).  TMs have a number of fundamental properties that are 

Figure 9. The Rational Behavior Model (RBM) software architecture based on the hierarchical control paradigm of 
naval vessels (R. Byrnes 1993). 
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particularly important in the field of computer science, most 
notably that the computational power of a TM is equivalent to 
that of a digital computer (Minsky 1967) (Petzold 2008). 
Despite this expressive equivalence, TM “programming” to 
effect useful computation is generally considered impractical, 
and TMs have been relegated largely to academic study 
(McGhee, Brutzman and Davis 2011).  They do, however, 
provide a strong theoretical foundation upon which to build a 
mathematically sound Strategic-Level mission-flow diagram 
execution mechanism suitable for both robots and human 
operators. 

A useful modification to the basic TM definition is to 
separate FSM operations from the underlying computational 
mechanism.  Referred to as a Universal Turing Machine 
(UTM), this variation provides a TM capable of operating with 
an arbitrary FSM (Minsky 1967) (Petzold 2008).  With this 
modification, the TM execution mechanics can be viewed as the 
“computer”, and individual FSMs as “programs.” More 
specifically, the mission-flow diagrams described here can be 
viewed as robot programs (they are a form of FSM) that are 
executable using essential UTM semantics. 

Utilization of the UTM concept requires one additional 
abstraction:  since Tactical Level responses are not read from a 
(so-called) TM tape input, the UTM definition must be 
extended to allow inputs from one or more (human or robot) 
agents.  More formally, the theoretical UTM tape definition 
must be generalized to any type of external agent with a finite 
set of input and output symbols and arbitrary additional 
capabilities.  It can be demonstrated that abstracting the tape 

portion of the UTM in this way is, in fact, a generalization that 
subsumes the more constrained UTM (McGhee, Brutzman and 
Davis 2011).  Thus, from a computational standpoint, the 
expressive power of this result can be considered “Turing 
complete” and capable of executing any robot mission defined 
in the form of a flow diagram.  This UTM generalization is 
referred to here as a Mission Execution Automaton (MEA) 
which consists of a Mission Execution Engine (MEE) and an 
arbitrary set of mission orders in FSM form (McGhee, 
Brutzman and Davis 2012). 

Formally, we define the MEA as follows: 
M = ( Q, Γi, Γr, b, δ, γ, q0, F ), 
where: 
Q = a finite, non-empty set of states 
Γi = a non-empty set of input symbols corresponding to 
behavior-initiation function calls to the tactical level (note, 
once parameterization of function calls is taken into 
consideration, this set is of potentially infinite size but is 
practically constrained to a finite set by γ) 
Γr = a finite, non-empty set of response symbols corresponding 
to return values from behavior function calls 
b Î Γi is a blank and equates to no function call (note, since no 
function call is made, no response will be received, so execution 
will halt in the current state) 
δ: (Q \ F) × Γr → Q is the transition function mapping a current 
state and response to a new state 
γ: Q → Γi is the behavior call function that maps a state to a 
behavior-initiation function call 

Ethical Mission Execution Trace #1: 
?- execute_mission. 
Commence: Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Commence: Rendezvous with vehicle 2 in Area C. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Commence: Return to Base. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Mission Abort! 
 
Ethical Mission Execution Trace #2: 
?- execute_mission. 
Commence: Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Take environmental sample from Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Search Area B. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Rendezvous with vehicle 2 in Area C. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Return to Base. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Mission Complete! 

Figure 10. Typical execution traces of Strategic Level testing of the mission depicted in Figure 7 using MEA Prolog source code 
(bold indicates operator input). 



Submission draft for Journal of IEEE Oceanic Engineering Society (OES), 28 JAN 2017.  Feedback welcome. 
 

10 

q0 Î Q is the initial state 

F Í Q is the set of final states which equate (if the mission is 
constructed correctly) to mission termination  

Constraints can be added explicitly to the definition by 
adding a set of constraints C, a constraint-mapping function τ: 
Q → c Í C, and modifying Γi and γ to account for τ. 

C. Strategic-Level Mission Rehearsal and Testing 
MEA implementations were initially developed in Lisp and 

Prolog (Brutzman, McGhee and Davis 2012) (McGhee, 
Brutzman and Davis 2011) (McGhee, Brutzman and Davis 
2012).  This decision was made because of extensive 
experience of the authors in using Prolog at the RBM Strategic 
Level (R. Byrnes 1993) and because of the strong simulation 
capability of these languages.  This latter characteristic is made 
evident by an MEE Prolog software implementation.  As can be 
seen, this code requires only 14 lines of Prolog code, five of 
which are dedicated to human external agent communications 
functions (analogous to TM inputs and outputs) (Brutzman, 
McGhee and Davis 2012).  Further, mission orders 
corresponding to the mission depicted in Figure 7 are encoded 
in only 28 lines of Prolog.  In addition, the declarative nature of 
Prolog enables the definition of mission orders that strongly 
resemble English (with a small amount of specialized 
punctuation and semantics), making Prolog mission orders 
intuitively understandable by non-programmers.  This working 
Prolog simulation allows testing of the Strategic Level mission 
flow by a human operator, with typical results depicted in 
Figure 10.  In the simulation, the Strategic Level orders 
commencement of individual goals and the human operator 
reports success, failure, or constraint-based termination of each 
goal.  The depicted traces in Figure 10 correspond to instances 
where first each goal terminates due to potential constraint 
violation (Trace #1) and then where each goal completes 
successfully (Trace #2). 

Strengths of the Prolog implementation notwithstanding, it is 
important to note that there is nothing inherently unique about 
Prolog execution, and the MEE and mission orders can be 
accurately created with any Turing-complete computer 
language.  Successful implementations have been developed by 
the authors in the Java programming language (Davis, D. T. 
2006) (Brutzman et al. 2016). A similarly capable, independent 
implementation uses the Hierarchical Task Network (HTN) 
behavior model and Python programming language in the 
Combined Arms Analysis Tool for the 21st Century 
(COMBATXXI), a simulation tool developed and used by the 
U.S. Army and U.S. Marine Corps within various analytic 
studies (U.S. Army Training and Doctrine Command Analysis 
Center 2015) (Posadas 2001). Results employing a 
COMBATXXI implementation corresponding to those shown 
in Figure 10 are presented in Figure 11. 

For this implementation, a Python class represented the 
structure of the mission graph in Figure 7. The content of the 
graph was encoded in an instance of that Python class. 

 
 

Based on this experience, as well as other results using the 
XML-based AVCL mission specification (Davis, D. T. 2006) 
(Brutzman, Davis, et al. 2013) (Brutzman et al. 2013), it is 
reasonable to conclude that flow graphs represent a higher level 
of abstraction for mission specification than any unconstrained 
text-based programming language. Moreover, advances in 
graphical coding (Langley and Spenser 2005) may eventually 
allow non-programmers to completely specify robot missions 
by constructing a flow graph such as Figure 7 directly on a 
computer screen. Such advances can further enhance the 
comprehension, supervision and accountability of mission 
experts for producing legally valid mission definitions (and 
avoiding mission errors). 

D. Progressive Refinement of Complex Mission Tasks 
Referring to our exemplar mission in Figure 7, it is implicit 

that Goal 1 is achievable only if the person or software at the 
Tactical Level has considerable knowledge about Area A and 
how to search it. To make this concrete, suppose that Area A 
contains hazards that are potentially harmful to (or impassible 
by) the search vehicle. Also suppose that the tactical officer’s 
supporting software has no reliable or current map for the area 
of interest. A classic algorithm for exploring for such 
circumstances is depth first search (Skiena 1997). Such a search 
continues until the object of the search is located (success) or 
the area has been completely searched without finding the 
search objective (failure). The search proceeds by moving the 
vehicle into an accessible terrain cell and testing to see if the 
goal is there. If not, then the vehicle moves forward to a 
previously unexplored cell, and again checks for presence of the 
goal. If no such cell exists, then the vehicle retreats to the 
previous cell (backtracks) and marks the cell just visited as a 
“virtual obstacle.” 

Figure 12 depicts a flow graph for the above-described 
process, and further represents a refinement solely for Goal 1 of 
mission Figure 7. For this reason, subgoals within this 
refinement of Goal 1 have been labeled 1.1, 1.2, etc. It is 
possible to interpret Figure 11 in several ways. First of all, if 
trusted vehicle behaviors corresponding to each of the goals in 
this figure exist, they might also be commanded by a human 
operator acting on behalf of the Tactical Level. An example of 
interactive testing of this possibility is illustrated in Figure 13.  
Alternatively, this depiction may be understood as a Tactical 
Level implementation capable of autonomous execution of 
Goal 1 from Figure 7. Note that constraint checking on Goal 1.1 
is not a precondition per se, rather all constraints must be met 
continuously by all sub-goals once Goal 1 has commenced. 

Frequently applying the double-check question “how might 
a human accomplish this task?” is an important design principle 
for autonomous-system mission production.  This task 
decomposition raises important additional implementation 
questions, namely, are the semantics of a depth-first search 
accurately represented by Figure 13 and then correctly encoded 
in the supporting Tactical Level code?   Unfortunately, these 
questions cannot be conclusively answered by exhaustive 
testing as was possible for the strategic level mission orders 
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Figure 11. Human interaction with a Strategic Level mission results obtained from the COMBAT XXI simulation. 

Ethical Mission Execution Trace #1: 

Ethical Mission Execution Trace #2: 

Figure 12. Progressive refinement, illustrated.  Flow Graph for a grid-based depth-first search of Area A 
corresponding to subgoals within Goal 1 of Figure 7, adapted from (McGhee, Brutzman and Davis 2012). 
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This limitation on testing occurs because the individual 
Goal 1 in Figure 12 contains several loops and, in general, there 
is therefore no guarantee that it will terminate for any terrain, 
much less be tested exhaustively. Moreover, because of the 
need to remember the location of virtual obstacles, a potentially 
infinite memory is required to execute the algorithms. Thus, 
Figure 12 actually defines a Turing Machine and it is known 
that, in general, the correctness of a Turing Machine 
represented in the graph cannot be proved. Fortunately, it is 
known that for a finite search area, depth first search will 
eventually terminate with either success or failure in searching 
for a specified goal (Skiena 1997). Nevertheless, exhaustive 
testing for all possible terrain samples is not possible. Instead, 
the most that can be asked for is to show that all phase 
transitions in the given flow graph are correctly coded. Careful 
examination of the corresponding algorithm logic in Figure 12 
shows that the included examples do in fact test all possible 
control branches, and that they have been correctly 
implemented. 

It turns out that the inability to exhaustively prove 
correctness of a flow graph at the Tactical Level is not quite as 
serious as it might at first seem. This is because algorithm 
failure at this level amounts to just one more reason that might 
cause a phase of the Strategic Level to fail. Since every 
Strategic Level failure is accounted for in the overall mission 
flow graph, the mission can still continue in a planned way 
when such cases occur. To make absolutely sure that such 
dependability occurs, real-world clock time available at the 
Tactical Level (R. Byrnes 1993) must be used to create a time-
out condition resulting in goal failure for any process that 
continues beyond a specified maximum execution time 
duration. In addition, it is expected that the Tactical Level 
continues to observe all constraints that are applicable at the 
Strategic Level throughout the performance of a particular goal. 
Thus in the case of Figure 13, constraints one through six from 
Figure 5 apply throughout the entire period of tactical-level 
testing as well. 

 When enough experience has been obtained by manual 
execution of the mission specification with Tactical Level 
decisions made by a human operator, the mission can be 
encoded to allow autonomous mission execution. This is 
accomplished in (McGhee, Brutzman and Davis 2012) through 
the addition of robot communication functions to the MEE 
definition. As an example, typical results of an updated version 
of this implementation are presented in Figure 14.  For a more 
complete understanding of an actual mission log’s importance, 
it should be recognized that in the real world, for a fully 
autonomous mission, such information may only be available if 
the vehicle succeeds in returning to the original intended 
recovery position. Complete loss of event logs and telemetry 
data prior to catastrophic loss is a common occupational hazard 
for unmanned systems at sea.  However, in simulation form, 
such test results can be available during pre-mission testing to 
an observer who can, if necessary, use such diagnostics to 
revise mission orders or Tactical Level robot software before 
actual mission execution. 
 

Evidently, commands from the Strategic Level must directly 
invoke trusted Tactical Level behaviors or utilize goal 
refinement as outlined above to enable Tactical Level execution 
of the mission flow graph. Thus, for instance, the Tactical Level 
behavior invoked to achieve Goal 3 (“Search Area B”) must be 
entirely self-contained (i.e., atomic) unless it is in the form of 
flow-graph-connected atomic behaviors.  This requires that any 
prior knowledge of the characteristics of this area be taken into 
account.  

For the example being considered, if it is known that Area B 
contains no hazards or obstacles to vehicle motion, a 
rectangular “lawn mower” search pattern may be appropriate. 
Such decisions may be difficult to make without a great deal of 
knowledge concerning a given area of operations for a mobile 
robot. One effective way of achieving effective mission 
planning at both the Tactical and Strategic levels is to 
incorporate all available knowledge concerning the vehicle and 
its area of operation into a detailed physical-model-based 
computer simulation. One such simulation system, the AUV 
Workbench (Brutzman et al. 2016), can be used to present 
detailed examples and associated graphical display such as 
those presented in (Brutzman, Davis, et al. 2013). 

A final observation concerning Tactical Level mission 
software is that available behaviors can be combined by “task 
abstraction” to produce ever higher-level trusted behaviors until 
the commands from the Strategic Level can be directly executed 
as function calls. That is, once a flow graph accomplishing a 
specific purpose (e.g., depth-first search) has been suitably 
vetted, it effectively becomes a trusted Tactical Level behavior 
itself. This has proven to be an effective means of incrementally 
increasing autonomous capabilities. This means reinterpreting 
Tactical Level flow graphs as code specifications rather than 
actual code to be executed. This alternative has been 
implemented and tested using Allegro Common Lisp in 
(McGhee, Brutzman and Davis 2012). 
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Depth-First Search Execution Trace #1: 
?- execute_goal. 
Commence: Initialize Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Move Forward. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Commence: Observe Environment, Test Goal Found. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  fail. 
Commence: Move Forward. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  fail. 
Commence: Backtrack. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Commence: Observe Environment, Test Available Cell. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  fail. 
Commence: Backtrack. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  fail. 
Depth First Search:  Reporting Goal Failure!. 
 
Depth-First Search Execution Trace #2: 
?- execute_goal. 
Commence: Initialize Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? succeed. 
Commence: Move Forward. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Commence: Observe Environment, Test Goal Found. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  fail. 
Commence: Move Forward. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  fail. 
Commence: Backtrack. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Commence: Observe Environment, Test Available Cell. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Commence: Move Forward. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Commence: Observe Environment, Test Goal Found. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)?  succeed. 
Depth First Search:  Reporting Goal Success!. 
 
Depth-First Search Execution Trace #3: 
?- execute_goal. 
Commence: Initialize Search Area A. 
Did goal Succeed (s), Fail (f), or end with a Constraint (c)? constraint. 
Depth First Search:  Reporting Constraint Encountered! 
 

Figure 13. Execution trace examples of human-supervised depth-first search of Area A using Prolog MEA implementation shown in  
Figure 14. (bold indicates operator input) (adapted from (D. P. Brutzman, D. T. Davis, et al. 2013)). 
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E. Summary of Insights, Mission Execution Automata (MEA) 
As a generalization of the Turing Machine, the MEA 

provides a mathematically sound approach to the definition and 
exhaustive testing of unmanned vehicle missions.  The MEA 
includes a mission-specific FSM and unlimited memory.  
Consistent with the MEA generalization, the TM tape can be 
replaced by a physical robot or a human being to which output 
can be sent (commands) and inputs can be received (e.g. 
success, failure, or constraint-violation responses). Other 
external agents can be optionally added as well. 

In order to guarantee eventual termination of a mission, the 
structure of a Strategic Level mission must be constrained 
somewhat beyond the basic MEA definition.  Specifically, the 
mission FSM cannot include loops, unreachable states, or sink 
states (i.e., non-terminal states from which further transitions 
are not possible).  Further, the Strategic Level mission must be 
defined with few enough states and transitions to allow for 
tractable exhaustive testing by a human operator.  However, 
when a Strategic Level goal is iteratively refined to develop a  

 

 
 
Tactical Level behavior (as with the depth-first search example) 
these restrictions do not apply since the Tactical Level can 
implement a time-out failure to ensure termination of individual 
behaviors. 

Finally, a universal MEA can be achieved by implementing 
sequencing and communication functions as a separate MEE 
and then developing the mission flow graph as a set of mission 
orders in a form understandable by both the MEE and humans 
who are mission specialists, but who may not be programmers. 
There are many choices for expressing such mission orders 
including flow charts, text-based programming languages, and 
graphical user interface techniques. 
  

Autonomous Mission Execution Trace #1: 
?- auto_execute_mission. 
Commence: Search Area A. 
Goal execution constraint terminated! 
Commence: Rendezvous with vehicle 2 in Area C. 
Goal execution succeeded! 
Commence: Return to Base. 
Goal execution constraint terminated! 
Mission Abort! 
 
 
Autonomous Mission Execution Trace #2: 
?- auto_execute_mission. 
Commence: Search Area A. 
Goal execution succeeded! 
Commence: Take environmental sample from Area A. 
Goal execution failed! 
Commence: Return to Base. 
Goal execution succeeded! 
Mission Complete! 
 
Autonomous Mission Execution Trace #3: 
?- auto_execute_mission. 
Commence: Search Area A. 
Goal execution failed! 
Commence: Search Area B. 
Goal execution succeeded! 
Commence: Rendezvous with vehicle 2 in Area C. 
Goal execution failed! 
Commence: Return to Base. 
Goal execution constraint terminated! 
Mission Abort! 

Figure 14. Examples of mission log for simulation of fully autonomous execution of the mission defined in Figure 7 
(bold indicates operator input), adapted from (McGhee, Brutzman and Davis 2012). 
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VI. VALIDATION OF RBM SOFTWARE ARCHITECTURE 
THROUGH REAL-WORLD AND VIRTUAL EXPERIMENTATION 
Up to this point, all results presented have related to the 

Strategic Level and the Tactical Level of RBM software for a 
single example of a “search and sample” mission for a notional 
autonomous underwater vehicle (AUV). Furthermore, all 
results presented thus far have been obtained from high-level 
mission simulations written, except for Figure 11, in the Prolog 
logic programming language. However, beginning in 1993, in 
parallel with formalization and publication of details of RBM 
(Byrnes, et al. 1996), the authors and their collaborators 
demonstrated the value and practicality of this approach for 
undersea robots through a series of open-ocean experiments 
involving two small unmanned submarines. These experiments 
and results obtained are summarized in the following 
subsections. 

A. Phoenix Autonomous Underwater Vehicle (AUV) 
The Phoenix AUV was an unmanned submarine designed 

and built at the Naval Postgraduate School (NPS) beginning in 
1990. About six feet in length and weighing approximately 500 
pounds, Phoenix included four cross-body thrusters, enabling 
active control of five degrees of motion (x, y, z, pitch and yaw) 
(Ortiz and Šimkus 2012). Interestingly, roll motion was also 
controllable during forward motion when making a turn. In any 
case, such flexible control through multiple degrees of freedom 
enables maneuvering in tight spaces comparable to the 
capabilities of a helicopter. This maneuverability allowed early 
Phoenix testing in a swimming pool, and later in a special test 
tank which provided greater depth for vehicle motion and 
control (Marco, Healey and McGhee 1996). 

Phoenix’ real-time control software was developed in a 
bottom-up fashion starting with control of maneuvering planes 
and thrusters on a timed interrupt basis in response to sensory 
input from an on-board sonar system along with depth, water-
speed, and heading sensors. Commanded motions were 
monitored by a human operator observing the submarine in the 
test tank and connected by a floating network cable. 
Simultaneously, high-level Strategic Level mission-control 
software was developed in Prolog through the use of testing via 
computer simulation. Large numbers of high-fidelity physics-
based simulations were needed to correctly develop and test 
what were then considered AI approaches to replace human 
supervision.  While this simulation involved distinct mission 
phases in the form of a command “script” similar to Figure 1, 
no binary flow graph with phase-failure contingencies was 
abstracted from these phases as described in the preceding 
section of this paper. This meant that exhaustive testing of a 
mission was not possible, and there was therefore no proof of 
correctness available. Moreover, other than necessary 
supervision and safety monitoring, no concept of ethically 
constrained behavior was attempted in any of this work. 

To achieve proper sequencing of phases, the Phoenix system 
made use of the backward chaining theorem-proving capability 
of Prolog (Rowe 1988). Specifically, a mission was initiated 
and carried out by issuing a query to the top level of Prolog 
asking (adapted from Prolog syntax): “Using the given mission 

rules and initial facts, along with a set of mission goals, are there 
any variable bindings that make execution of the given mission 
script possible?” A negative result terminated the mission in an 
explicit abort command. This mode of operation obviated the 
need for an MEE, but did not allow branching on phase failure 
as in the simulation studies described in the preceding sections 
of this paper. 

During tank testing, the Phoenix was initially operated using 
an onboard “Gespac” real-time control computer for tactical 
and execution level functions. This simple computer was not 
able to host the backward-chaining Prolog program running the 
goal-driven Strategic level. Therefore, before at-sea testing, an 
onboard “Sparc” UNIX computer hosting Prolog was added to 
implement the Strategic Level and connected to the Gespac 
computer by an Ethernet cable (Ortiz and Šimkus 2012). 
Further testing was then carried out to validate the correct 
functioning of these two computers together to execute simple 
missions in the test tank (Marco, Healey and McGhee 1996). 
Finally, before commencing open-ocean testing in Monterey 
Bay, a full strap-down inertial navigation system employing 
GPS and water-speed sensing for drift correction was added to 
the onboard electronic suite of the Phoenix (Ortiz and Šimkus 
2012). Following successful at-sea testing, results obtained 
were used to design a larger vehicle, the Aries AUV, described 
in the next section. 

B. Aries AUV 
Aries was a somewhat larger vehicle than Phoenix, with a 

similarly rectangular hull, and was specifically designed for 
open-ocean surveys (Davis, D. T. 2006). It therefore used more 
efficient forward thrusters and lacked cross-body thrusters. This 
meant that extensive test tank debugging of strategic level code 
was not possible. Instead, a detailed and accurate physically 
based model of the vehicle and its environment, with three-
dimensional (3D) real-time graphical display, the Autonomous 
Unmanned Vehicle (AUV) Workbench, was developed and 
used for real-time testing of robot mission software (Brutzman, 
Davis, et al. 2013) (Brutzman, et al. 1998) (Brtuzman 1994) 
(Brutzman et al. 2016). 

Because of the cumbersome nature of the two-computer 
onboard control system used in Phoenix and the software 
complexity of issuing C function calls from Prolog, it was 
decided to use a single computer on Aries, and to write a custom 
onboard task sequencer as represented by Figure 2. 
Furthermore, realizing the desirability of branching on task 
failure but lacking as yet the concept of an MEA, a graphical 
user interface (GUI) was created to allow users to define phases 
and corresponding phase successors for strategic level mission 
definition and execution (Brutzman, Davis, et al. 2013).  At this 
time, however, the possibility of ternary branching to account 
for ethical or safety-related constraint failure had not occurred 
to the authors, and it was therefore not included in Aries 
programming tools or experiments. 

Aries AUV missions were defined with AVCL, a schema-
constrained XML data model supporting autonomous vehicle 
mission definition, execution, and management (Davis, D. T. 
2006).  While the mathematical concept of an MEA had not 
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been developed at the time of AVCL’s development, AVCL 
does provide a fixed set of goal types including area search, 
environmental sampling, and rendezvous and is thus suitable 
for the definition of mission flow diagrams such as the one 
depicted in Figure 4.  Further, AVCL was intentionally 
designed to support implementation of the RBM Strategic and 
Tactical Levels and was utilized to define RBM-controlled 
Aries missions for simulation in the AUV Workbench virtual 
environment and for open-ocean real-world tests. 

As an example, consider the XML snippet of Figure 15 which 
provides a hypothetical description of Goal 1 from Figure 7 for 
execution by an unmanned underwater vehicle. This 
specification defines the type of search to be conducted (area 
search for multiple targets with an expected probability of 
detection of 0.8), the area to be searched (a 500 meter by 3000 
meter rectangular area with a northwest corner at 36.7 north 
latitude and 121.9 west longitude), and stipulates that the search 
be conducted at a depth of between 25 and 50 meters.  

Evidently, the search goal definition describes what is required 
for successful completion of the goal.  It does not, however, 
dictate precisely how the goal is to be completed since such 
navigation and maneuvering decisions are left to the Tactical-
Level implementation. 

Simulation of a mission consisting an AVCL specification 
for a search goal similar to the one in Figure 15 and avoid areas 
specified as constraints in the AUV Workbench is shown in 
Figure 16.  During the mission, the Tactical Level plans a path 
and maneuvers to the search while remaining clear of the avoid 
areas and then develops and executes a suitable pattern for the 
required area search.  More complicated missions 
demonstrating the binary branching model were conducted in 
AUV Workbench simulations and also in open-ocean 
experiments in Monterey Bay (Davis, D. T. 2006) (Brutzman et 
al. 2016). A comprehensive comparison and consolidation of 
goal types can be found in (Davis, D. T. 2006). 

<Goal  description="search operating area A" id="Goal1" > 
 <Search  datumType="area" requiredPD="0.8" singleTarget="false" /> 
 <OperatingArea> 
  <Rectangle> 
   <NorthwestCorner> 
    <LatLonPosition  latitude="36.69" y="-121.90" /> 
   </NorthwestCorner> 
   <Width  value="500.0" /> 
   <Height  value="3000.0" /> 
  </Rectangle> 
  <DepthBlock  minimum="25" maximum="75" /> 
 </OperatingArea> 
</Goal> 
 

Figure 15. An Autonomous Vehicle Command Language (AVCL) specification of Goal 1 from Figure 7 
for execution on the NPS Aries unmanned underwater vehicle (Davis, D. T. 2006). 

 
Figure 16. AUV mission SimpleBoxTest.xml written in AVCL that demonstrates simulated conduct of 

a goal-oriented mission that was performed amidst constraints. (Brutzman, et al. 1998) 
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C. Dangers Associated with Using Rules and Fact Assertion 
to Implement Strategic-Level Logic 

As described above, Phoenix missions were executed as a 
result of an inferencing and reasoning process, using a set of 
rules and facts for mission definition. While all in-water 
missions succeeded, and Phoenix was never lost at sea, this 
approach provided no means of proving the correctness of 
Strategic Level software comparable to the exhaustive testing 
made possible by MEA formalism. The authors believe that this 
is a serious limitation that applies to all approaches for top-level 
Strategic Level mission definition that require specific actions 
to be derived from general principles rather than using a 
completely concrete finite-state machine (FSM) approach. 

Specifically, a set of rules and facts amounts to a formal 
mathematical system in which the rules and facts serve as 
axioms. Theoretically it is known that, in general, no such set 
of axioms can be proved complete. Here, completeness means 
that all true theorems can be proved by formal application of 
predicate calculus. Such properties are very hard to prove. In 
fact, to the astonishment of the entire mathematical world, 
Gödel proved in 1931 that such a simple system as integer 
arithmetic cannot have any axiomatic basis. Perhaps equally 
shocking, even plane geometry had no sound axiomatic basis 
until around fifty years ago. This meant that, from a strictly 
formal perspective, all of Euclid’s original “proofs” were 
merely plausibility arguments. Fortunately, all of the theorems 
believed to be true are in fact provable using the complete and 
consistent set of modern algorithms (Simpson 2000). 

The significance of the above observations relative to top 
level mission specification derives from the fact that, for rule-
based systems, mission execution can sometimes be regarded 
as a side effect of proving the theorem that “there exists a way 
to satisfy all specified mission goals while observing all given 
constraints.” If it eventually turns out that the mission axiom set 
contains a contradiction, then system execution behavior 
becomes unpredictable and not testable, as well as potentially 
hazardous and even self-defeating. 

The potential unpredictability of less-formal reasoning 
approaches and the inability to prove the correctness and 
completeness of axiomatically defined missions effectively 
precludes formal responsibility or liability for robot missions 
using these approaches. In fact, artificial intelligence (AI) 
approaches to top-level mission specification and control 
almost invariably make use of some form of reasoning and/or 
statistical pattern recognition. Applying such broad abstractions 
to the innumerable situations that can arise in the real world is 
very dangerous when applied to potentially lethal robots, and 
also makes the assumption of responsibility by human operators 
unrealistic. It is therefore apparent that the abstract reasoning of 
general AI approaches is inappropriate at the highest level of 
robot mission definition and control. 

Algorithms cannot replace human responsibility.  Even so, a 
fully testable technology such as that provided by the MEA 
formalism, allows for assignment of human accountability 
when directing robot mission outcomes and alternatives. It is 
possible that ever-emerging AI techniques may someday 
provide good methods for achieving specific individual Tactical 

Level behavior modules.  Such employment of AI capabilities 
(even when experimental) can be considered appropriate in 
these cases since success, failure, and constraint violation 
remain fully accounted for by the Strategic Level MEA. 

VII. ETHICAL VALIDATION OF MISSION DEFINITIONS 

A. Description Logics (DL) and a Robot Mission Ontology 
Thus far, the discussion of MEA mathematical 

underpinnings, capabilities, and implementations has focused 
on providing robot operators the ability to rigorously define and 
test Strategic Level missions to ensure high-level mission-flow 
understanding sufficient for the assignment of accountability 
for vehicle conduct throughout the mission.  The ability of an 
actual target vehicle to execute missions defined in this manner 
without further translation into a vehicle-specific form, 
however, has not been addressed.  Mathematical logic provides 
a mechanism for bridging Strategic Level missions described 
here and vehicle-specific code for specifying and ordering 
Tactical Level behaviors.  If properly implemented, formal 
logic can mathematically enforce MEA semantics in the 
definition of missions and during execution of those missions 
on target vehicles. 

Description Logics (DL) are a mathematical family of logic-
based knowledge representation systems that are used to 
describe concepts and roles within a knowledge-based system 
through a set of well-defined operations.  DL ontologies can be 
used to describe the requirements and relationships of a system 
in a semantically meaningful way.  That is, they define not only 
what the relationships are, but how they operate, how they are 
to be used, and to what specific entities they apply.  As depicted 
in the “Ontology Spectrum” of Figure 17, DLs provide 
expressive power almost equal to that of First Order Logic 
(FOL).  Further, these language constructs have been carefully 
defined to enable (and indeed guarantee) computationally 
efficient reasoning that can always identify the existence of 
hidden relationships and errors in the form of rule violations or 
contradictions (Ortiz and Šimkus 2012).  These are strong 
capabilities with great potential value. 

DLs provide the mathematical foundation of what has come 
to be known as the Semantic Web, an extension of the World 
Wide Web (Berners-Lee, Hendler and Lassila 2001).  The 
growth of the Semantic Web has fostered the development of 
tools and standards that take advantage of DL logical 
expressiveness and mathematical rigor to provide extensive 
knowledge representation, discovery, and utilization 
capabilities.  Most notably, the Web Ontology Language 
(OWL) (World Wide Web Consortium 2013) together with the 
Resource Description Framework (RDF) (World Wide Web 
Consortium 2014) encode a particularly powerful DL in a plain-
text, XML-based, computer-readable form (Horrocks 2008).  
Because of its formal and general DL implementation, OWL is 
potentially useful beyond the Semantic Web domain.  In 
particular, it is used here to define a robot mission description 
and execution ontology that applies and enforces MEA 
semantics. Further references of interest include (Daconta, 
Orbst and Smith 2003) and (Davis 2014) 
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B. Mission Execution Ontology (MEO) 
The mission execution ontology serves a number of 

purposes.  First, it provides a formal and semantically rich 
description of the characteristics of a MEA mission description.  
For instance, OWL expressions are used to declare the 
existence of concepts such as “Mission”, “Goal”, and 
“Constraint”.  OWL statements are also used to define possible 
relationships (roles) between concepts.  An entity to which the 
“Mission” concept applies, for example, can have an “includes” 
relationship with an entity to which the “Goal” concept applies.  
Additional OWL statements describe rules that govern how 
relationships are applied.  As an example, a “Mission” entity 
must have an “includes” relationship with at least one “Goal” 
entity and must have a “startsWith” relationship with exactly 
one of those entities.  A graphical depiction of the concepts and 
relationships defined in the mission execution ontology is 
provided in Figure 17.  As the diagram indicates, concepts and 
relationships are defined to accurately represent the semantics 
of the previously discussed flow diagrams to include the 
definition of individual mission goals and constraints; goal 
successors in the event of goal success, failure, or constraint 
termination; the mission’s first goal; and the application of 
constraints to individual goals or to the entire mission. 

 
 
 

 
 
 
In addition to the “Mission”, “Goal”, and “Constraint” 

concepts that are abstracted directly from Strategic Level 
mission-flow diagram semantics, the mission execution 
ontology introduces the “Vehicle” concept.  This concept 
provides the ability to include specific target vehicles in the 
mission-planning process.  In particular, the “canExecute” and 
“canIdentify” relationships allow mission planners to explicitly 
assert that the intended target vehicle has a Tactical Level 
behavior capable of completing a particular goal and 
recognizing potential violation of a particular constraint, 
respectively.  Evidently, if a mission includes goals for which 
the “canExecute” relationship does not exist with the intended 
vehicle or constraints for which the “canIdentify” relationship 

Figure 17. An “Ontology Spectrum” ranking knowledge-representation systems according to their ability to express 
semantic information (Daconta, Orbst and Smith 2003). 
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does not exist, then that mission is not appropriate for that 
particular vehicle.  Given this requirement (which is enforced 
by rules within the ontology), it is impossible to define a valid 
mission that cannot be executed by the intended vehicle. 

A second important characteristic of a DL-defined ontology 
is that it not only describes the rules and relationships of a 
knowledge domain, but also applies those rules and 
relationships to entities within that domain.  Stated differently, 
the mission execution ontology does more than describe what 
the “Mission”, “Goal”, “Constraint”, and “Vehicle” concepts 
are and how they relate to one another.  It also allows the 
application of those concepts to real-world entities and the 
establishment of relationships among those entities.  From a 
practical standpoint, this means that the atomic entities to which 
the “Goal” and “Constraint” concepts are applied become 
actual executable specifications for a set of target vehicles. 

OWL provides for the incorporation of atomic entities into 
an ontology using Uniform Resource Identifier (URI) labels 
that uniquely identify individual entities.  Thus, the mission 
execution ontology can be applied to the XML snippet above 
by defining an OWL statement declaring its existence and 
corresponding identifier.  OWL statements are also used to 
declaratively apply concepts to and establish relationships 
between atomic or composite entities within the knowledge 
base.  Figure 18 illustrates the example constraint-based 
mission of Figure 7 expressed in RDF/OWL syntax and 

logically validatable using the MEO illustrated in Figure 17, as 
rendered in the Stanford Protégé ontology development tool.  

The ability to provide a full description of all goals and 
constraints within the mission execution ontology using 
vehicle-executable code further strengthens the MEA construct.  
Specifically, not only is it impossible to define a mission for a 
particular vehicle without explicit “canExecute” relationships 
between the vehicle and all mission goals and “canIdentify” 
relationships between the vehicle and all mission constraints, 
but it is also impossible to assert these relationships without an 
appropriate vehicle-specific encoding of all mission goals and 
constraints. 

Finally, automated reasoning with DL-based ontologies is an 
important tool for ensuring Strategic Level mission validity 
before conducting exhaustive verification validation and 
accreditation (VV&A) testing using virtual simulators and real-
world operations.  If, for instance, an attempt is made to finalize 
a mission that includes goals that are not executable by the 
target vehicle, an OWL/RDF reasoner can quickly identify this 
shortcoming using the MEO.  Similarly, a reasoner can detect 
mission flow-graph structural errors based on ontology rules 
that preclude illogical loops, unreachable goals, or 
untasked/orphan goals without specified predecessors or 
successors.  A reasoner can also simplify the mission definition 
process by detecting implicit relationships that are not explicitly 
or correctly specified.  For example, if a particular “Goal” entity 

Figure 18. A Mission Execution Ontology (MEO) expressing concepts and roles (relationships across concepts) representing 
the flow-diagram MEA mission descriptions. 
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is defined and is reachable from the mission’s start goal (i.e., 
the one with which the containing “Mission” has a “startsWith” 
relationship) through a sequence of goal successes and failures, 
then it must be in an “includes” relationship with that particular 
mission whether the relationship is explicitly declared or not. 

As described, a DL-based mission execution ontology 
defined in OWL ties the MEA semantics discussed in previous 
sections to actual target vehicles.  The ontology ensures not 
only the validity of the mission structure for arbitrary Strategic 
Level mission flow graphs, but their executability on the 
particular target vehicles as well.  Thus, all of the requirements 
originally posed for assignment of human responsibility— that 
the mission is defined in a mathematically rigorous and 
fully-understood manner, that the mission specification is 

equally understandable by the human operator and the target 
vehicle, and that the mission is comprised entirely of trusted 
vehicle behaviors—are fully specified in the human-approved 
mission orders and enforced by the strict semantics encoded in 
the ontology. 

C. Specification and Implementation of the Ontology 
The principal concepts and relationships to be represented in 

the mission ontology were shown earlier in Figure 18. 
Definitions of the concepts and roles (also known as classes and 
properties) in this ontology need to satisfy a number of rules, as 
specified in Table 1, in order to support logical inferences 
relating to the validity of the mission structure. 

 
Table 1. Logical Expressions defining Concepts and Roles for the Mission Planning Ontology 

 
Rules Description Logic Equations Plain-language description 
M  = Mission Rules 
M1 Mission ⊑ ∃startsWith.Goal ⊓ =1.startsWith A Mission can only start with a Goal and must 

start with exactly one Goal 
M2 Mission ⊑ ∃includes.Goal ⊓ ≥1.includes A Mission can only include Goals and must 

include one of more Goals 
M3 Mission ⊑ ∃hasConstraint.Constraint ⊓ 

≥0.hasConstraint 
A Mission can be constrained only by 
Constraints and can have 0 or more 

M4 startsWith ⊑ includes A Mission must include the Goal that it starts 
with 

M5 Mission ⊑ ∃performableBy.Vehicle ⊓ 
≥0.performableBy 

A Mission can only be performed by a Vehicle 
and can be performable by 0 or more Vehicles 

M6 performableBy(M,V) ⊑ 
∀(hasConstraint(M,C) ∘ canIdentify(V,C)) 

A Mission cannot be performable by a Vehicle 
unless that Vehicle has the ability to identify all 
Constraints associated with that mission 

M7 performableBy(M,V)⊑ 
∀(includes(M,G) ∘ hasCapability(V,G)) 

A Mission cannot be performable by a Vehicle 
unless that Vehicle has the capability to 
accomplish all Goals included in that Mission 

V = Vehicle Rules 
V1 Vehicle ⊑ ∃hasFeature.Vehicle_Feature ⊓ 

≥0.hasFeature 
The only allowable features of a Vehicle are 
VehicleFeature.  A Vehicle can have 0 or more 
VehicleFeatures 

V2 canPerform ≡ performableBy- performableBy and canPerform are inversely 
equivalent 

V3 meetsRequirement ≡  
hasFeature ∘ canFulfill 

A Vehicle meets a GoalRequirement if and only 
if it has a VehicleFeature that can fullfill that 
GoalRequirement 

V4 hasFeature ∘ canTest ⊑ canIdentify If a Vehicle has a VehicleFeature that can test a 
Constraint, then that Vehicle can identify that 
constraint 

V5 hasCapability(V,G) ⊑ ∀(requires(G,R) ⊓ 
meetsRequirement(V,R)) 

If a Vehicle meets all GoalRequirements for a 
specific Goal, then that vehicle has the 
capability for that Goal 
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F = Feature Rules 
F1 VehicleFeature ⊑ 

∃canFulfill.GoalRequirement ⊓ ≥0.canFulfill 
A VehicleFeature can only fulfill 
GoalRequirements and may be able to fulfill 0 
or more GoalRequirements 

F2 VehicleFeature ⊑  
∃can_test.Constraint ⊓ ≥0.can_test 

A VehicleFeature can only test Constraints and 
may be able to test 0 or more Constraints 

C = Constraint Rules 
C1 Constraint ⊑ ∃appliesTo.(Mission ⊔ Goal) A Constraint can apply to a Mission or a Goal 

(and nothing else) 
C2 Constraint ⊑ ≥1.appliesTo.Goal A Constraint must apply to at least one Goal 
C3 appliesTo ∘ includes ⊑ appliesTo A Constraint that applies to a Mission must also 

apply to all of the Goals that Mission includes 
EC  = End Condition Rules 
EC1 EndCondition ≡ {SUCCEED, FAIL, 

VIOLATE} 
Possible ending conditions are "Succeed", 
"Fail", and "Violate" (i.e., imminent Constraint 
violation) 

G = Goal Rules 
G1 Goal ⊑  

∃requires.GoalRequirement ⊓ ≥0.requires 
A Goal can only require a GoalRequirement and 
may require 0 or more Goal Requirements 

G2 Goal ⊑ ∃hasEndCondition.EndCondition ⊓ 
≤1.hasEndCondition.End_Condition 

A Goal's ending state must be an EndCondition, 
and a Goal can end with at most one 
EndCondition 

G3 Goal ⊑ ∃isNext.Goal A Goal can only have other Goals next 
G4 hasEndCondition(G,SUCCEED) ⊔ 

hasEndCondition (G,FAIL) ⊔ 
hasEndCondition (G,VIOLATE) ⊑ 
isNext(G,G2) 

A Goal can only have an immediate successor 
based on the existence of an ending state for that 
Goal 

G5 Goal(G) ⊑  
≤1.(is_next(G,G2) ⊓ 
end_state(G,SUCCEED)) ⊔ 
≤1.(is_next(G,G2) ⊓ end_state(G,FAIL)) ⊔ 
≤1.(is_next(G,G2) ⊓ 
end_state(G,VIOLATE)) 

A Goal can have no more than one immediate 
successor in the event of a specific ending state 

G6 Goal ⊑ ∃follows.Goal A Goal can only be followed by another Goal 
G7 Goal(G) ⊑ ¬follows(G,G) A Goal cannot follow itself (no loops) 
G8 isNext ⊑ follows A Goal follows another goal if it is the next 

Goal 
G9 follows ∘ follows ⊑ follows follows is transitive (if follows(A,B) and 

follows(B,C), then follows(A,C)) 
G10 includes ≡ startsWith ∘ follows All Goals in a Mission must potentially follow 

the starting Goal (satisfiability vice entailment) 

To create a practical implementation of this ontology, we 
chose to employ the Protégé ontology specification tool 
developed by Stanford University (http://protege.stanford.edu). 
In the Protégé graphical user interface (GUI), classes 
corresponding to the concepts are shown in the left-hand panel 
in the screenshot in Figure 20. Annotations in the class and 
property definitions in Protégé reflect the plain language 
descriptions from Table 1 above. 

http://protege.stanford.edu/
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In this example, the Mission class is defined as equivalent 
to the class of all Things that has some Constraint (zero 
or more), starts with exactly one Goal, includes a minimum of 
one Goal, and is performable by some Vehicle (one or 
more). As a software application constructs instances for the 
knowledge base, it can focus on the properties and allow an 
automated reasoner to determine if the information correctly 
and completely specifies a mission; i.e., to classify a Thing 

having various property assertions as a Mission meeting the 
class specification. This approach provides a direct way to 
check the logical consistency of the created instances, rather 
than explicitly creating individuals of the Mission class (even 
without any properties, which remains valid under the open 
world assumption that something cannot be declared false just 
because it is not known to be true). 

 

Figure 19. Validatable RDF/OWL diagram of goals, relationships, assertions, and ethical constraints for the canonical mission of 
Figure 7.  Rules and rendering produced using Protégé Ontology Editor (Stanford University 2016). 

Figure 20. Protégé graphical user interface (GUI) showing the class hierarchy on left and 
 specification of Mission class in lower right. 
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Some of the rules in Table 1 are captured in the class 
hierarchy. For example, the disjoint covering of 
EndCondition by subclasses FAIL, SUCCEED, and 
VIOLATE (Rule EC1) is represented by defining class 
EndCondition as equivalent to the union of these 
subclasses, and a declaration that the subclasses are mutually 
disjoint. This approach is called a value partition in the 
literature (Horridge 2011). Defining these EndCondition 
“values” as subclasses (rather than, say, individuals) facilitates 
extension of the ontology through addition of other subclasses 
of end conditions and through possible subcategorization of 
each end condition, such as different FAIL conditions that later 
might need to become explicit in the ontology. This method also 
supports useful logical operations in classifying mission goal 
transitions and actual mission performance according to the 
assigned EndConditions. 

The specification of object properties encodes several of the 
rules from Table 1 above. A screenshot showing the hierarchy 
of object properties, with details on the definition of the 
includes property, is shown in Figure 21. 

Several of the rules in Table 1 are addressed by the assertion 
of Domain and Range constraints on the properties. In the 
definition of the includes property above, a Mission 
(domain) can only include Goals (range). This represents part 
of rule M2. The other part of rule M2 (that a Mission must 
include at least one Goal) is represented in the assertion 
includes min 1 Goal shown previously in the definition 
of the Mission class in Figure 19. In the same way, domain and 
range constraints on the property definitions partially address 
rules M1, M2, M3, M5, V1, F1, F2, and C1 (with the class 

definitions addressing the other parts of those rules dealing with 
cardinality on the properties, as shown in the definition of the 
Mission class above). Note that when there is exactly one 
association allowed on a property, it is asserted both in the class 
definition on the cardinality (e.g., in the definition of the 
Mission class: startsWith exactly 1 Goal) and in the 
property definition (Functional characteristic is checked in the 
Object Property window in Protégé). 

In the Object Property description, the property can be 
identified as Functional, Inverse Functional, Transitive, 
Symmetric, Asymmetric, Reflexive, and Irreflexive. These 
characteristics address rules in Table 1 such as M1 
(startsWith is functional) and G9 (follows is transitive), 
as well as providing additional specificity to such properties as 
hasEndCondition (functional) and isNext (irreflexive; 
i.e., a goal cannot come after itself).  In addition, explicit 
assertions can be made regarding the properties, as in 
canPerform is the inverse of performableBy (rule V2) 
and startsWith is a subproperty of includes (rule M4). 

 

Definition of the includes property in Figure 21 provides 
an example of the use of a “property chain” in the definition. 
The definition states that includes is a superproperty of the 
property chain formed by the composition of startsWith 
and isFollowedBy, addressing one direction of the logical 
equivalence stated in Rule G10 (note: in Protégé, there is no 
way to represent the assertion that includes is a subproperty 
of the property chain, in order to obtain the logical equivalence, 
other than by creating a new property that also has the above 
superproperty assertion, and then stating in the definition of 

Figure 21. Object property hierarchy in Protégé and specification of the includes property. 
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includes that it is both a subproperty of the newly defined 
property and a superproperty of the property chain as shown). 
This method is used to address rules V3 
(meetsRequirement is a superproperty on the composition 
of hasFeature and canFulfill), V4 (canIdentify is 
a superproperty on the composition of hasFeature and 
canTest), and C3 (appliesTo is a superproperty on 
the composition of appliesTo and includes). 

There are difficulties in OWL 2 in expressing the universal 
quantifier in Rules M6, M7, and V5. For example, Rule M6 
states that a Mission is performable by a Vehicle if that 
Vehicle has the ability to identify all Constraints 
associated with that Mission. It is straightforward to express 
the assertion from the opposite perspective; that is, if a 
Mission is performableBy a Vehicle, then the 
Vehicle has the ability to identify (canIdentify) all the 
Constraints associated with that Mission. Given the 
former, the reasoner could infer the latter. Note that the negation 
of each side of Rule M6 can be expressed with existential 
quantifiers; as in: a Mission is not performableBy a 
Vehicle if there exists a Constraint that cannot be 
identified (negation of canIdentify) by the Vehicle. 
Similarly, Rule M7 states that a Mission cannot be 
performable by a Vehicle unless that Vehicle has the 
capability to accomplish all Goals included in that Mission. 
Finally, Rule V5 states that if a Vehicle meets all 
GoalRequirements for a specific Goal, then that 
Vehicle canMeet (has the capability to achieve) that Goal. 
Implementation here involves ongoing work in the use of OWL 
and expression of rules, an area of further study for purposes of 
the MEO (Krisnadhi, Maier and Hitzler 2011). 

Regarding Rule G4 (a Goal can only have an immediate 
successor based on the existence of an ending state for that 
Goal) and Rule G5 (a Goal can have no more than one 
immediate successor in the event of a specific ending state), the 
approach taken in the ontology is to have explicit isNextOn* 
relations (where * is Fail, Succeed, or Violate) to allow 
specification of the branching to other goals based on the end 
condition. During mission planning, these relations express the 
link between a goal and successive goals based on the end 
condition; i.e., what goal follows on a Fail condition, what 
goal follows on a Succeed condition, and what goal follows 
on a Violate condition. During mission execution, when an 
actual end condition occurs during performance of a goal, the 
end condition would be recorded in the hasEndCondition 
and the actual goal selected to follow based on that condition 
would be recorded in the isNext relation (i.e., these become 
mission log entries rather than part of the initial plan 
description). 

Finally, regarding Rule G7 stating a goal cannot follow itself 
(no loops at strategic level), there is no abstract way to express 
this rule in the ontology per se (i.e., in the T-Box assertions), 
since enforcement of the rule requires logic dealing with a 
specific individual rather than generic members of the class. An 
executable implementation can readily perform this check in 

software operating in conjunction with the reasoner. In 
addition, a rule can be added to infer that a constraint that 
applies to a goal also applies to the mission that contains that 
goal (the ontology already has the converse, where a constraint 
on a mission applies to all the goals in the mission) simply by 
making hasConstraint a subproperty of the property chain 
includes o appliesTo-1. 

Figure 22 shows the classes and relationships as displayed by 
the Protégé OntoGraf plug-in. The key for the color-codings of 
the relationships is provided in Protégé in the OntoGraf tool. A 
partial display of the key is shown in Figure 23.  Exploration of 
ontological relationships is helpful for illustrating correctness, 
completeness and logical consistency. 

Several examples of mission specifications and their 
ontological representations are available from the authors. 

D. Mission Execution Ontology Summary 
It is possible to produce general robot mission orders that are 

understandable by (legally culpable) humans and are reliably 
and safely executable by robots. The semantic representation of 
the mission plans permits automated examination of the plans 
for logical consistency and provides an enhanced methodology 
for software implementations to process missions. Even if 
perfectly executable, proper robot logic is not useful in military 
context unless it is a directly compatible extension of warfighter 
logic. ROEs, concepts of operation, doctrine, tactics, etc. must 
be expressible in equivalent terms to be effective and usable. 
Constraint tests must be determinable by a human supervisor or 
critic, by a virtual environment running a simulation, or by on-
board robot sensors in the operating environment. Constraint 
test can match common guidelines such as rules of the road, 
water-space management, ROEs, operational orders, and other 
expressions of bounds on mission conduct. These expressions 
cannot be vague, must result in clear logical determinism (true 
or false), must be able to combine multiple logical constraints, 
and need to note reporting requirements when human 
permission is necessary. For strategic-level task controllers, the 
ternary tactical task sequencer using ethics constraints may 
allow traceability and accountability for the full set of executed 
robot tasks without loss of generality. ROEs and other 
expressions provide ethical constraints and boundary 
conditions on robot strategic planning and operational conduct 
that can work cooperatively and satisfactorily with humans. 
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Figure 22. OntoGraf representation of the Mission structure in Protégé (essentially, the right-hand side of Figure 18 in a slightly 
different layout to better illustrate ontology relationships). 

Figure 23. OntoGraf color-coding key associating property names to links in the displayed graph. 
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VIII. FINDINGS, CONCLUSIONS, AND RECOMMENDATIONS 
Humans given authority over potentially lethal robotic 

systems must be provided with realistic capabilities that enable 
meaningful supervision, responsibility and accountability.  
Autonomous Vehicle Command Language (AVCL) mission 
definitions provide one such example: the ability to define 
Strategic Level goals and Tactical Level tasks in a human-
understandable way, and in syntactically validatable form, that 
a wide variety of robots might interpret and execute.  Mission 
Execution Automata (MEA) formalisms show that the 
underlying programming constructs are tractable and 
sufficiently general to ensure broad feasibility.  Mission 
Execution Ontology (MEO) validation provides further abilities 
to logically evaluate the semantic correctness and completeness 
of ethically constrained mission definitions.  Together these 
capabilities provide a practical framework for ethically 
grounded human supervision of unmanned systems. 

 
Key findings of this work are summarized below: 

• An MEA is a generalization of a TM in the sense that it 
has communication links to at least one external agent 
that may be human or mechanical (or both). External 
agents have predefined input and output 
symbols/messages. 

• A fully testable MEA has no loops in its state graph, and 
does not access its tape. 

• We recommend that the top level of RBM code consist of 
a single fully testable MEA. Other levels of RBM can use 
MEAs without this restriction. 

• MEOs can be employed before mission execution to make 
sure that a given mission for a specified vehicle will 
execute and will terminate within a prescribed time. 

The research findings lead to the following general 
conclusions and recommendations for future work regarding 
unmanned systems that have the capacity for lethal force. 
• Ethical operation of autonomous systems requires human 

responsibility, accountability and understanding.  Any 
decision to deploy potentially lethal force without 
appropriate constraints or control may be dangerous, 
immoral and illegal. 

• Lethality requires an ethical and legal basis for 
unmanned system operations. Naval and military 
applications have well-defined requirements that are 
ultimately guided by ethical requirements such as the Law 
of Armed Conflict (LOAC) and treaty-based statutes.  
Similar concerns and aspects exist in civil robotics (e.g. 
safety of self-driving cars).  Principles such as vicarious 
liability clearly show that humans are both responsible 
and also vulnerable.  Robot self-preservation becomes 
irrelevant when human life is at stake. 

• Unmanned systems can remain supervised and semi-
autonomous, even if communications are lost, if 
appropriate guidance and checkpoints are provided.  
Robotic systems are capable of following well-defined 
orders within measurable constraints.  For today’s 
systems, loss of control typically occurs when shifting 
from direct supervision to semi-autonomous control to 
independent operations.  Mission orders need to account 

for such circumstances correctly, or a system should not 
be deployed. 

• Human clarity and cooperative action are essential for 
supervising robots together with human teams.  No 
magical on-board ethics-agent homunculus will be 
developed that substitutes for careful human planning and 
direction.  Meanwhile, even a perfect robot is unethical if 
not understood by humans.  Robots today are not capable 
of refusing to obey an order through complex inferencing 
from general principles.  Thus robot tasking must have 
explicit constraints to avoid misapplication of potentially 
lethal force. 

• Unmanned systems can be compatibly tasked in concert 
with human teams.  Ethical control of lethality is achieved 
via well-defined missions and well-understood 
constraints.  “Approved robot software that includes 
everything needed" is analogous to "the military operator 
is fully trained and qualified."  International military 
teams provide existence proofs on a daily basis that 
collaborative approaches are feasible, despite differences 
in operational policies, procedures and language.  This 
work presents a corresponding approach which 
historically and currently works well for formal tasking of 
human teams. 

• Applied ethics equals defining tasks and observing 
constraints prior to executing potentially harmful tasks.  
No human operator or team undertakes potentially life-
threatening activities without knowing necessary 
precautions and following the rules.  Tasking must 
therefore be clear, and prerequisite constraints must match 
necessary legal, safety and policy requirements. 

• The mathematical concepts of description logics and 
ontologies, as implemented by Semantic Web 
technologies, is proposed to capture common logical and 
ethical relationships for mission and task definition.  This 
approach to mission validation is mathematically rigorous 
and formally well-defined.  Mission correctness becomes 
fully validatable using widely deployed technology.  The 
defined relations and rules capture broad common 
practices for mission planning of robot and military 
missions.  A constraint-based approach to mission 
definition appears to present fundamental value. 

• A mission-definition approach to constrained tasking is 
actionable for all unmanned systems regardless of 
software architecture. The authors have carefully 
compared these mission-definition mechanisms to a wide 
variety of human-control approaches in the real world, in 
particular focusing on cooperative maritime and naval 
operations.  Although primarily in the maritime domain, a 
wide variety of unmanned systems have also been 
compared over the years.  This evaluation leads to 
specific conclusions that 
o The approach is practical, repeatable, and thorough. 
o The approach is compatible with a variety of robot 

system architectures. 
o Human role remains essential throughout, even when 

directness of control varies for remotely operated 
systems. 
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• For those choosing to adopt RBM for robot control, we 
urge that the strategic level be fail-safe and exhaustively 
testable. This means that this level can be based only on 
finite state machine theory and propositional logic, and 
not predicate logic, since systems based on the latter are 
generally undecidable. 

• Ethical constraints on robot mission execution are 
possible today. There is no need to wait for notional 
future developments in Artificial Intelligence (AI). It is 
moral imperative that ethical constraints in some form be 
introduced into the software of all robots capable of 
inflicting unintended harm to humans or property. 

 
Ethical operation of robotic systems requires human 

accountability.  In both the legal and moral sense, this implies 
that human operators be in a position to understand, and 
therefore control, robot mission outcomes. This level of 
understanding can be achieved through the satisfaction of 
three requirements:  operator understanding of high-level 
mission flow, mission descriptions understandable to both 
human operators and target vehicles, and mission descriptions 
consisting entirely of trusted behaviors and constraints. 

 
Early NPS UUV missions were executed as a result of an 

inferencing process over a mission definition comprised of a 
set of rules and facts. This approach provided no means of 
proving the correctness of strategic-level missions comparable 
to the exhaustive testing of MEA flow graphs.  For this type of 
system, errors in the mission axiom set can lead to 
unpredictable and potentially hazardous or self-defeating 
system execution behavior.  Ultimately, this unpredictability 
precludes the formal assumption of responsibility or liability 
for robot missions. 

 
AI approaches in general almost invariably make use of 

easily confounded inferential reasoning or statistical pattern 
recognition. Applying such broad mathematical abstractions to 
the innumerable situations that can arise in the real world is 
inherently unpredictable, and also makes unrealistic any 
assumption of responsibility by human operators. It is 
therefore apparent that the abstract reasoning of general AI 
approaches is inappropriate, at least at the present time, for the 
highest level of robot mission definition and control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithms cannot replace human responsibility.  Even so, a 
fully testable technology (such as that provided by the MEA 
and MEO formalisms) allows for the assignment of human 
accountability.  Specifically, the MEA provides a 
mathematically rigorous mechanism for mission definition and 
execution as an exhaustively testable flow diagram.  This 
approach ensures that accountable operators can fully 
understand all high-level task sequences before authorizing 
robot operations.  The MEO employs DLs and Semantic Web 
technologies to provide strong assurances that MEA mission 
definitions are semantically correct and fully executable by 
specific target vehicles. 
 

By applying the best strengths of human ethical 
responsibility, repeatable formal logic and directable 
unmanned systems together, these capabilities provide a 
practical framework for ethically grounded human supervision 
of unmanned systems.  Much important work awaits. 
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