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Abstract—The authors have been involved for a 

considerable time in research relating to computer control 

of robotic vehicles and mechanisms. For the past two 

decades, our work in this area has been focused primarily  

on unmanned untethered submersibles (UUVs ), especially  

those intended for eventual military use. This being the 

case, we have been guided in our efforts by our knowledge 

of the way task abstraction and mission execution are 

accomplished in manned submarines. Th is led us some time 

ago to propose and investigate a tri-level software 

architecture called the “Rational Behavior Model” (RBM) 

in which the top “strategic” level of code encompasses the 

functioning of a human submarine commander in carrying  

out formal written mission orders. Below this level, a  

“tactical” level of software decomposes high level 

commands from the strategic level into real time 

“execution” level commands to the sensors and actuators of 

the UUV. 

While we have been successful in demonstrating the utility  

of RBM in at sea experiments with two UUVs, we have 

been frustrated by the difficulty of finding a means of 

expressing strategic level mission orders in a way that can 

be understood by mission specialists who are not 

programmers. We have come to the conclusion that this 

goal can best be achieved by defining a new mathematical 

abstraction which we call a “Mission Execution  

Automaton”(MEA). An MEA is a generalizat ion of the 

previously defined notion of a “Turing Machine” (TM), 

which in turn serves as a general model for computation. 

Specifically, a Turing Machine consists of a Finite State 

Machine (FSM), provided with a potentially infinite 

memory in the form of an “incremental tape recorder”. The 

MEA generalization recognizes the tape recorder as an 

“external agent” of the FSM, and allows for the possibility  

that such an agent could alternatively be a human being or a 

sensor-based robot. This generalization takes a TM “out of 

its box”, and provides it with situational awareness, thereby 

engendering an ability to carry out real time missions in the 

physical world. 

In this paper, we show how to realize an MEA using the 

Prolog “logic programming language”. With this 

realization, we have demonstrated the power of the MEA 

abstraction by both theoretical and experimental means. 

The paper contains one detailed example along with all 

Prolog code used for mission specification and execution. 

While we have exp lored and discuss other realizat ions of 

MEAs, we find none to be as well suited as the Prolog 

implementation to verification of executable mission orders 

by mission specialists. Because our MEA model is based on 

formal mathemat ical logic, we are able to demonstrate 

“proof of correctness” of the code for the selected mission. 

We believe this to be of fundamental importance for 

military missions, and perhaps as well for some classes of 

civilian missions. 

1. Introduction 

The authors have been engaged for some time in research 

relating to computer control of complex robotic vehicles, 

including walking machines and autonomous underwater 

vehicles [1, 2, 3, 4]. Since 1996, we and a number of our 

colleagues at the Naval Postgraduate School (NPS) have 

used the Rational Behavior Model (RBM) tri-level software 

architecture to organize our activities in this area, especially  

in relation to control of autonomous submersibles [3, 4, 5]. 

In the vocabulary of the RBM formalis m, the execution 

level of vehicle control software is concerned with carrying 

out the hard real-time tasks typically associated with 

physical interaction of a vehicle with its surrounding 

medium. In a manned submarine, these tasks are usually 

carried out by crew members, and include responsibilit ies 

such as controlling diving planes, rudders, engine rpm, etc. 

Again in RBM terminology, above the execution level lie  

the soft real-time tasks of the tactical level. At the tactical 

level, execution level functions are organized into 

behaviors, which are somet imes associated with autopilots. 

Such functions include maintaining course and depth, sonar 

obstacle avoidance, maneuvering while surfaced, etc. 

However, the tactical level also includes more complicated 

behaviors such as sonar mapping, transit to navigational 

waypoints, construction of obstacle maps, response to 

emergency situations, etc. In a manned submarine, the 

Officer of the Deck (OOD) is responsible for coordinating 

the actions of the watch officers and crew members to 

ensure that such behaviors are correctly implemented and 

carried out [4, 5]. 
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The highest level of software in the RBM architecture is 

called the strategic level [3, 4, 5]. Th is level corresponds to 

the functioning of the commander of a manned submarine. 

Unlike the lower two levels, in RBM the strategic level 

operates entirely in a d iscrete event, non-numeric mode, 

considering alternative actions and making decisions 

without a sense of continuous time or space. That is, it is 

entirely in the domain of mathematical logic. This being the 

case, the strategic level so far has been implemented at NPS 

mainly by using logic programming in the form of the 

Prolog language [6, 7]. This language was employed 

successfully in encoding the strategic level for both test 

tank evaluation [3], and for open ocean missions conducted 

with the Phoenix unmanned autonomous submersible [4]. 

Although this vehicle has been retired from service, we 

have continued our research on RBM implementation by 

using computer simulation, including both real-time control 

software and a detailed representation of the nonlinear 

hydrodynamics of the Phoenix [8]. However, in this work, 

we have experienced to date a disappointingly slow rate of 

progress in developing improved strategic level software. 

This has been due in part to the lack of a strong 

mathematical model for the functioning this level of vehicle 

control. This paper addresses this need by defining and 

implementing a new type of mathematical machine [9] that 

we call a mission execution automaton (MEA). While the 

domain of application that motivates our work is onboard 

mission control for unmanned untethered vehicles (UUVs), 

it will be seen in this paper that the MEA we define 

subsumes Turing machines [9, 10], and thus constitutes a 

more general concept.  

A Turing machine (TM) consists of a finite state machine 

(FSM) augmented by an external agent in the form of a 

potentially infinite memory realized as the tape of an 

“incremental tape recorder” [10]. It is known that no digital 

machine can be more computationally powerful than a 

universal Turing machine, in which the logical behavior of 

a specific FSM is encoded on the tape of the machine in the 

form of a state table [9, 10]. Nevertheless, partly because 

their programming is so difficult [10], Turing machines 

have been almost exclusively relegated to the status of a 

mathematical concept, with practical computing being 

accomplished by digital computers. The main idea 

developed in this paper relates to a generalization of TMs to 

MEAs by allowing the external agent to be not only a tape 

recorder, but alternatively, either a human being or a 

sensor-based robot [11].   

The authors have chosen to use Prolog to both define and 

implement a universal multiphase human interactive MEA. 

We have done so because of our belief in the strong 

expressive power of Prolog predicate definitions when read 

declaratively [6], while at the same time representing 

executable code. In what fo llows, it  is assumed that the 

reader is familiar with ANSI Common Lisp [12], at least to 

the extent of being able to read the relatively simple code 

presented in the figures of this paper. A brief exp lanation of 

the syntax and semantics of the Allegro dialect of Pro log [7, 

13], implemented in Common Lisp, is included in what 

follows. 

2. A Universal Human Interactive Multiphase 

Mission Execution Automaton (MEA) 

Complex missions to be carried out by human agents are 

typically specified in terms of a series of phases with 

predetermined phase transition rules and defined mission 

end conditions.  For example, a simple five phase manned 

submarine reconnaissance mission might be phrased in 

specialized natural language as in Figure 1 below.  

This mission will be used to illustrate both the capabilit ies 

and syntax of Prolog, and the design of an MEA capable of 

carrying out any similar mission when expressed as a series 

of phases written in Prolog as mission orders. To avoid  

errors in execution, it is assumed that the syntax and 

semantics of specialized natural language mission orders 

are understood in the same way by both the person issuing 

the orders and the person receiving them. Orders written to 

achieve this objective are said to be syntactically well 

formed and semantically unambiguous. Figure 2 contains 

Prolog code for a universal human interactive multiphase 

MEA. This machine is believed to be “universal” in the 

sense that it is suited to cycling mission states for any set of 

well formed and unambiguous orders for a multiphase 

mission to be carried out by a human being. 

3. Reading Prolog Code 

In reading the code of Figure 2, per Lisp convention, it is 

important to recognize that a semico lon denotes that what 

follows is a comment intended to aid human code reading, 

and ignored by the Prolog compiler. Keep ing this in mind, 

the third line of this code is a Prolog fact [6, 7]. This fact 

Goal 1.  Proceed to Area A and search the area.  

If the search is successful execute goal 2.  If 

the search is unsuccessful, execute goal 3. 

Goal 2.  Obtain an environment sample from Area 

A.  If the sample is obtained, execute goal 3.  

If the sample cannot be obtained, proceed to 

recovery position to complete the mission. 

Goal 3.  Proceed to Area B and search the area.  

Upon search success or failure, execute goal 4. 

Goal 4.  Proceed to Area C and rendezvous with 

UUV-2.  Upon rendezvous success or failure, 

proceed to recovery position to complete the 

mission. 

 Figure 1:  Example Manned Submarine Mission Orders 

Expressed in Structured Natural Language Using 

Standardized Vocabulary 
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states that the current mission phase is Phase 0 (Start 

phase). Turning next to the mission execution rule set, 

Allegro Prolog [7, 13] syntax places a rule head 

immediately after a left arrow symbol. The rule body 

consists of all function calls listed after the rule head, and 

before the terminating parenthesis. Thus it can be seen that, 

in the context of the specified mission execution automaton, 

a mission is executed if it is in itialized and successive 

phases are executed until done. The looping implied by this 

statement is achieved by the “repeat” function call. 

Specifically, repeat is a Prolog system function that always 

succeeds, but cannot be entered from the right (during  

backtracking). More precisely, referring to the general 

nature of Prolog code execution [6, 7], it can be seen that 

when the done predicate fails, Prolog backtracks and tries 

to find another way of executing the current phase, which 

leads to searching the fact data base for a new value for 

current_phase. Providing that the previous call to execute_ 

phase has updated this fact appropriately, this action 

continues until done is satisfied by either mission 

complet ion or mission abort. Finally, the execute_mission 

and execute_current_phase predicate definitions end with a 

“!” symbol called a cut. The meaning of this symbol is that 

it stops backtracking by always succeeding when 

encountered during forward code execution (evaluation of 

successive predicates from left to right in a given ru le 

body), but always failing on backtrack. In this particular 

case, the cut assures that when the test function tm is called, 

as intended, only one attempt to execute a mission will 

occur. Likewise, execute_current_phase can be entered 

only from the left, thereby ensuring that the latest value for 

current_phase will be used in executing this function call.  

;C:/Documents and Settings/mcghee/My Documents/Mission Control/mission-controller.cl 

 

;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   

;Robert B. McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 

;CA. Date of last revision: 13 March 2011. 

 

;Allegro Prolog uses Lisp syntax. Rule head is first expression following "<--" symbol. Rule 

;body is rest of expressions. Subsequent definitions of rule use "<-" symbol. 

   

;Note that mission orders must be saved as "mission-orders.cl" in "Mission Control" folder, 

;and then compiled before attempting execution by mission-controller. After compiling 

;"mission-orders.cl", if "mission-controller.cl" has not been previously compiled, it  

;may be necessary to open it in a new Allegro Editor window to avoid "name conflict error"  

;response from compiler. 

 

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 

(load "C:/Documents and Settings/mcghee/My Documents/Mission Control/mission-orders.fasl") 

 

 

;Facts 

 

(<-- (current_phase 0)) ;Start phase. 

 

 

;Mission execution rule set  

 

(<-- (execute_mission) (initialize_mission) (repeat) (execute_current_phase) (done) !) 

(<-- (initialize_mission) (abolish current_phase 1) (asserta ((current_phase 1))))  

(<-- (execute_current_phase) (current_phase ?x) (execute_phase ?x) !) 

(<-- (done) (current_phase 'mission_complete))  

(<- (done) (current_phase 'mission_abort))  

 

 

;Human external agent communication functions 

 

(<-- (negative nil)) 

(<- (negative n)) 

(<-- (affirmative ?x) (not (negative ?x))) 

(<-- (report ?C) (princ ?C) (princ ".") (nl)) 

(<-- (command ?C) (princ ?C) (princ "!") (nl)) 

(<-- (ask ?Q ?A) (princ ?Q) (princ "?") (read ?A)) 

 

 

;Test function (illustrates format for calling for mission execution from Lisp) 

 

(defun tm () (?- (execute_mission))) 

 Figure 2: A Universal Human Interactive Multiphase Mission Execution Automaton (MEA)  
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;C:/Documents and Settings/mcghee/My Documents/Mission Control/Mission Orders Archive/ 

;AVCL-mission.cl" 

 

;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.   

;Robert B. McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey, 

;CA. Date of last revision: 13 March 2011. 

 

;This code can be executed only if it is first saved in /My Documents/Mission Control/ as  

;"mission_orders.cl" and then compiled. When this has been done, it can be executed by loading  

;and compiling "mission_controller.cl", which is also located in /My Documents/Mission Control/. 

 

;The "<--" predicate definition symbol should be used only for the first definition of a  

;given predicate. After that, subsequent definitions must use "<-" to avoid overwrite.  

 

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 

 

 

;Utility functions 

 

(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) (asserta ((current_phase ?new)))) 

 

 

;Mission specification 

 

(<-- (execute_phase 1) (command "Search Area A") (phase_completed 1))  

(<-- (phase_completed 1) (ask "Search successful" ?A) (affirmative ?A) (change_phase 1 2)) 

(<- (phase_completed 1) (change_phase 1 3)) 

 

(<- (execute_phase 2) (command "Sample environment") (phase_completed 2)) 

(<- (phase_completed 2) (ask "Sample obtained" ?A) (affirmative ?A) (change_phase 2 3)) 

(<- (phase_completed 2) (change_phase 2 5)) 

 

(<- (execute_phase 3) (command "Search Area B") (phase_completed 3))  

(<- (phase_completed 3) (ask "Search successful" ?A) (change_phase 3 4)) 

 

(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4)) 

(<- (phase_completed 4) (ask "Rendezvous successful" ?A) (change_phase 4 5)) 

 

(<- (execute_phase 5) (command "Return to base") (phase_completed 5)) 

(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)  

    (change_phase 5 'mission_complete) (report "Mission succeeded")) 

(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed")) 

 
Figure 3: Prolog Mission Orders for a Human Interactive Submarine Reconnaissance Mission 

Turning next to the other rules in Figure 2, it can be seen 

that the second definition of the predicate “done” uses a 

shorter arrow than the line above it. This is because, by 

Allegro Pro log convention, a long arrow redefines a 

predicate, replacing all prior defin itions, while a short arrow 

signifies a secondary definition [13]. Next , “init ializing” a 

mission involves abolishing the “Start phase” and replacing 

it with “Phase 1”. This asserts a convention of this MEA 

definit ion that execution of any multiphase mission must 

begin with Phase 1. The predicate abolish is another Prolog 

system function (there are only  approximately fifty such 

functions), that erases  all occurrences of the named 

predicate, providing there is at least one such occurrence. 

The syntax of the “abolish” function requires that the arity 

(number of variables in the definition) of a predicate 

selected to be erased from the Prolog database be specified  

(in this case the arity of current_phase is equal to 1). 

Finally, the execute_current_phase predicate definition  

introduces the logic variable, “?x”. Logic variables are 

initially unbound, and values are found by Prolog by 

searching the fact database from top to bottom. Logic 

variables are uniquely signified in Allegro Pro log by the 

first character in the variable name being a “?” character. 

Once a logic variable acquires a value, the unification 

feature of Pro log [6, 7] assures that all subsequent 

appearances of this variable in a given rule body will use 

the same value. 

Following the mission execution rule set is another set of 

predicates called human external agent communication 

functions. It is this set of functions that gives the MEA a 

potential for situational awareness. It should be noted that 

this capability is obtained because a human being is able to 

respond to a restricted and predefined set of commands, 

queries, and statements to and from the MEA. More 

generally, a sensor-based robot could fulfill this function 

[3,4]. 
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4. Mission Specification 

Figure 3 contains additional Prolog code for mission orders 

defining and implementing the above described 

reconnaissance mission.  Because of the interactive nature 

of these mission orders, the external agent communication  

functions defined in the “mission-controller.cl” code 

provide for issuing commands, making statements, and 

asking questions via a computer screen, and also for 

receiving responses from the keyboard. These predicates 

make use of the Common Lisp system functions princ and 

read [12]. In addition, the Prolog system functions not and 

nl (new line) are used in these definitions. Of course, in the 

case of UUV applicat ions, the intent of such interactive 

execution is to validate mission coding by a human expert  

before embedding the mission controller in a real physical 

vehicle. Thus this form of code constitutes a kind of Turing 

test [14] for the mission controller and a specific set of 

mission orders. It is the authors’ belief that no mission 

controller or mission orders should be deployed in an actual 

physical robot until such a test has been successfully 

completed. A “tongue in cheek” way of expressing this is 

that a human should provide artificial AI to the mission 

controller MEA for the first stage of mission debugging. 

Once this stage has been completed, subsequent testing 

must verify the functioning of this system by using real AI 

from the robot vehicle. 

The code of Figure 3 can be v iewed as providing executable 

mission specifications. That is, this code can be either read 

declaratively as specifications by a human, or compiled to 

executable code by the Prolog compiler. Th is is the main  

advantage of the RBM software architecture and the MEA 

realization of the strategic level. That is, when a Prolog  

implementation of the strategic level of RBM is used, no 

recoding of mission orders into computer readable form is 

needed.  

Examining the code of Figure 3, it can be seen that five 

mission phases are defined. Beyond this observation, the 

authors feel that this code is self explanatory, so no further 

discussion is provided here. Rather, the results of an 

interactive debugging session are presented below as Figure 

4. It is important for the reader to note that, per comments 

at the top of Figure 2, obtaining results of this sort requires 

that code for “mission-orders.cl” be appropriately compiled  

and loaded before calling “execute_mission” via the given 

test function “tm.” 

It is the authors’ opinion that the above results are in  

agreement with the natural language definition of th is 

mission. However, Figure 4 does not constitute an 

exhaustive test. Fortunately, since mission orders for an 

MEA define a FSM, exhaustive testing is possible, though 

tedious. The authors have completed such a test, and still 

believe that the specified mission has been correctly 

encoded. Note, however, that a dialogue can now be 

initiated between the person who coded this mission and the 

person who provided the natural language definition as to 

whether or not the desired mission logic has been captured. 

We have ourselves found this kind of dialogue to be very 

useful during the writing of the present paper. 

Once the correctness of the Prolog form of the mission 

orders has been agreed upon, it then becomes possible to 

replace the human external agent by a sensor-based robot. 

Ev idently, this requires rewrit ing the external agent 

communicat ion functions to suit the robot agent. Since this 

is vehicle specific, it is not done here. However, an example 

of such coding, using an earlier idea of an MEA, can be 

found in [3]. 

 

International Allegro CL Free Express Edition 

8.2 [Windows] (Jan 25, 2010 15:08) 

Copyright (C) 1985-2010, Franz Inc., Oakland, 

CA, USA.   

 

CG-USER(1): (?- execute_mission)) 

Search Area A! 

Search successful?y 

Sample environment! 

Sample obtained?y 

Search Area B! 

Search successful?y 

Rendezvous UUV2! 

Rendezvous successful?y 

Return to base! 

At base?y 

Mission succeeded. 

Yes 

 

No. 

CG-USER(2): (?- execute_mission)) 

Search Area A! 

Search successful?y 

Sample environment! 

Sample obtained?n 

Return to base! 

At base?y 

Mission succeeded. 

Yes 

 

No. 

CG-USER(3): (?- execute_mission)) 

Search Area A! 

Search successful?n 

Search Area B! 

Search successful?n 

Rendezvous UUV2! 

Rendezvous successful?y 

Return to base! 

At base?n 

Mission failed. 

Yes 

 

No. 

CG-USER(4): 

 Figure 4: Partial Test Results for Submarine 

Reconnaissance Mission Execution (user input in bold)  



6 
 

5. Mission Execution as Theorem Proving 

From the perspective of first order predicate logic, the 

MEA presented above constitutes a formal system. Viewed  

in this way, the code of Figure 2 can be called the axioms of 

the system. A specific set of mission orders, as in Figure 3, 

constitutes a theorem to be proved by purely algebraic 

means, without reference to the semantics of either the 

axioms or the mission [15]. Specifically, if Prolog  

successfully compiles a set of mission orders and associated 

mission controller, then the Prolog syntax is correct. Once 

this has happened, if execute_mission returns “yes”, then 

the mission orders have been proved “true”. This is the case 

regardless of whether the outcome of the mission is 

mission_complete or mission_abort. If Prolog fails to return 

“yes” then the mission orders are not “true”, and Prolog 

returns “no”. Such an outcome could come about because 

no value could be found for one or more unbound logic 

variables, because an infinite loop has resulted from 

unintended errors in phase completion conditions, because 

of Prolog syntax or semantic erro rs detected only at run 

time, or for many other reasons. 

In understanding the above discussion from the perspective 

of mathemat ical logic, it is important to realize that Prolog  

implements only a subset of first order predicate logic [6, 7, 

15]. In particular, Pro log uses “proof by example” as its 

sole means for theorem proving. Th is means that it can 

prove only existentially quantified theorems [15], and even 

then only in the world defined by the facts presented to it. 

Thus when Prolog says “no”, it means “I couldn’t find a 

binding of logic variab les that satisfies your query within  

the rules and facts you provided to me”. While this sounds 

limit ing, it may be exactly the kind of behavior desired of 

an autonomous robot, since too much freedom in mission 

execution could potentially lead to disastrous unforeseen 

consequences. As a final remark, from a theorem proving  

point of view, the actual execution of a specific mission 

resulting from Pro log calls to the tactical level during  

theorem proving is a side effect [12]. 

6. Turing Machine Realization as MEA 

Mission Orders 

As defined thus far, there are no limits on MEA mission 

orders other than that the format implied by the Prolog 

definit ions of the MEA in Figure 2 be respected. That is, 

mission orders must take the form of a series of phases with 

predetermined mission end conditions, and specified state 

transitions conditioned on the outcome of phase execution. 

In Turing machine terminology [9], such orders define a 

state table in which state transitions are determined by the 

current state (current mission phase) and the input from the 

doubly infinite tape of the machine. From the perspective of 

MEA mission orders, a “Turing machine mission” involves 

a specific type of external agent, called an “incremental 

tape recorder”, capable only of reading from or writing to 

the tape using a finite predefined set of symbols, and 

moving the tape right or left one step as determined by the 

state table. Clearly, tape recorder functionality could be 

achieved either by mechanical means, by computer 

simulation [10], or by a human external agent. 

7. How to Run Lisp/Prolog Code Examples 

The reader is invited to copy and execute the code 

presented in this paper. In order to accomplish this, a free 

trial copy of Allegro Common Lisp 8.2, including an 

integrated development environment (IDE), can be 

downloaded from www.franz.com. When this system has 

been installed, the code of interest can be copied and pasted 

into an Allegro Editor pane. It should then be saved in an 

appropriate directory, and compiled (by clicking on the 

“dumptruck” icon). When this has been done, entering 

commands to the debug window, as shown in Figure 4, 

should produce the indicated results. Of course the load 

function calls in your code should be modified to match 

your file structure before compilat ion. 

8. Alternatives to Prolog for MEA Realization 

It is an important to note that, although Prolog provides an 

attractive mechanism for MEA realization, it is not the only 

option.  Generally speaking any data manipulation system 

that is Turing complete, including context sensitive 

grammars, lambda calculus, and all commonly utilized  

computer programming languages, is suitable for MEA 

implementation [9].  In virtually all cases, however, the 

MEA will be indecipherable by anyone unfamiliar with that 

particular system.  Other declarative programming  

languages, especially those based on predicate logic, might 

allow for fairly user-friendly implementations, but the 

authors have yet to encounter a system capable of realizing  

both the MEA and the mission orders that provides the 

intuitive readability of Pro log. 

If the MEA and the mission orders are implemented with  

different systems, it is possible to achieve a level of 

readability approaching that of our Prolog implementation. 

If, for instance, the MEA is implemented with a 

programming language along the lines of Java or C++, the 

mission orders FSM can be implemented using a more user-

friendly mechanism.  One such system utilizes a Java 

program to execute FSM missions authored in an 

Extensible Markup Language (XML) vocabulary [16].  

Use of XML provides a format that is specifically designed 

to be easily read and interpreted by both computers and 

humans, making it an attractive choice for the defin ition of 

autonomous vehicle missions.  Figure 5 depicts one 

possible XML encoding of the multi-phase UUV mission 

from the previous natural language and Prolog examples.  

In the authors’ opinion, this version is equivalent to the 

previous versions and is as intuitive as well. 

http://www.franz.com/
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Because XML is not a programming language, it is not 

suitable for full MEA implementation by itself.  

Notwithstanding the availability of programming language 

functionality that makes XML easier to process than many 

other potential mission-specification fo rmats, full MEA 

implementation will be significantly more complex than a 

Prolog version.  A more thorough discussion of XML/Java 

implementation details and requirements, including a 

discussion of the full XML vocabulary of the 

implementation, can be found in [8] and [16].  

9. MEA Testing and Integration 

As discussed in Section 4, the MEA mission-control 

paradigm has been tested primarily by querying a human 

external agent rather than a sensor-based robot.  It is the 

authors’ intention to continue testing and development in 

simulation and ultimately in real vehicles.  Specifically, the 

MEA will be implemented to direct vehicles operating in  

the Autonomous Unmanned Vehicle Workbench [8] virtual 

environment.  This system has also been shown to be 

suitable for use with actual vehicles of various types [16].  

It goes without saying that strategic level mission 

specification for an MEA does not contain all of the 

informat ion required to define all aspects of a mission.  For 

example, the locations and characteristics of the operating 

areas, the launch and recovery positions, and the specific 

objectives and requirements of the individual goals must be 

specified before the mission can commence.  It is an 

interesting observation, however, that this information is 

completely irrelevant to the MEA—if the information is 

available to the lower control layers, they will be able to  

respond appropriately to MEA queries.  An implementation 

as depicted in Figure 6 is therefore appropriate for MEA 

control of arbitrary real or simulated vehicles . 

In this implementation, a phase controller is instantiated for 

each phase of the mission (i.e., each state of the MEA 

FSM).  The phase controller is implemented as a Java 

object that provides tactical-level control for the completion  

of a single phase.  All numerical data related to the 

complet ion of a single phase is maintained by or available 

to the phase controller for that phase.  Because the 

requirements of each mission phase are different, a separate 

phase controller object is instantiated for each phase.  Thus, 

the mission of Figure 6 will require five phase controllers 

for the defined phases.  As the mission is executed, the 

MEA ensures that only the controller for the current phase 

is active at any specific time. 

The phase controller is responsible for all activ ity and path 

planning in support of phase execution, sensor fusion and 

interpretation, and onboard system monitoring.  Most 

importantly, the phase controller monitors the progress of 

the current phase, provides direction to the lower control 

levels, and responds appropriately to strategic-level MEA 

queries.  In order to meet its control requirements, each 

phase controller must have access to parameters such as 

operating area, timing constraints, and any other phase-

specific requirements.  Additionally, vehicle state 

informat ion, sensor data, and onboard systems status must 

be obtained from other tactical-level modules or from the 

execution level controller.  

Since the communication mechanis m of the MEA consists 

solely of queries, control of the tactical level must be 

realized as a side effect of these queries.  Queries are 

actually implemented as function calls from the Prolog  

MEA to the Java phase control object.  Because the Prolog 

associated with a specific phase only makes calls (i.e., 

queries) to the phase controller fo r its phase, activation and 

deactivation of the individual controllers is an implicit  

byproduct of the MEA-level state transitions.  Each MEA-

query will in itiate a single cycle of the tactical-level control 

loop.  When queried by the strategic-level MEA, a phase 

<?xml version="1.0" encoding="UTF-8"?> 

<UUVMission> 

    <GoalSet> 

        <Goal area=”A” id=”goal1”> 

            <Search nextOnSucceed=”goal2” nextOnFail=”goal3”/> 

        </Goal> 

        <Goal area=”A” id=”goal2”> 

            <SampleEnvironment nextOnSucceed=”goal3” nextOnFail=”recover”/> 

        </Goal> 

        <Goal area=”B” id=”goal3”> 

            <Search nextOnSucceed=”goal4” nextOnFail=”goal4”/> 

        </Goal> 

        <Goal area=”C” id=”goal4”> 

            <Rendezvous nextOnSucceed=”recover” nextOnFail=”recover”/> 

        </Goal> 

        <Goal area=”recoveryPosition” id=”recover”> 

            <Transit nextOnSucceed=”missionComplete” nextOnFail=”missionAbort”/> 

        </Goal> 

    </GoalSet> 

</UUVMission> 

Figure 5: XML Mission Orders for a Human Interactive Submarine Reconnaissance Mission 
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controller obtains and analyzes all required data from the 

execution level and other tactical-level modules, performs  

any required planning and assesses phase progress, provides 

direction to the execution level as required, and responds to 

the query.  In this way, the phase controller implements a 

tactical-level sense-decide-act loop in support of a single 

mission phase, and the MEA controls transitions between 

mission phases. 

10. Summary and Conclusions 

Thoughtful analysis of the above results shows that any 

specific multiphase mission could be specified as an FSM 

without making use of the MEA and mission orders 

abstraction. However that is not the intent of our work. 

Rather, we are looking for a fully general means capable of 

animating any syntactically correct set of mission orders. 

That is, through the use of the RBM and MEA formalisms, 

we desire to replicate in a UUV the level of “end-user 

programmability” attained in a manned submarine by  

means of formal written mission orders. 

We have not dealt with problems of e mbedding an MEA in 

a real vehicle. This is vehicle specific, and requires that a 

fin ite set of queries and responses be defined for 

communicat ion between the strategic and tactical software 

levels, and that real-time execution issues be resolved. 

However, we have done some work of th is sort [3, 4, 8], 

and intend to do more. Moreover, in [10], a fu lly coded 

example of the use of a tape recorder external agent to 

achieve a universal Turing machine as an MEA is provided. 

This example proves the Turing completeness of MEA. 

It is noteworthy that all of the code presented in this paper 

uses only eight Prolog system functions. Moreover, most of 

these functions have common English names relating to 

their behavior. We know of no other computer 

programming language with so few primit ive functions. 

This is one reason that we are optimistic about the 

practicality of mission specialists being able to read mission 

orders written in Prolog after on ly a short period of training. 

This possibility is enhanced by the fact that Prolog 

execution closely resembles human reasoning with a one 

track mind dedication to a specific task. 

Nothing in either Prolog or our definition of an MEA 

requires a binary response to queries from the mission 

controller. For example, a response from an external agent 

of “ny” could stand for the meaning “not yet” by simply  

asserting the Prolog fact: (not_yet ny). To understand this, 

note that this is analogous to the definition of “affirmative” 

and “negative” in the code presented above. Evidently, 

allowing for more than two answers to queries permits 

general n-way branching on exit from mission phases. In 

addition, more than just two halt states are possible for an 

MEA. An example of a mission exhibit ing both of these 

features can be found in [10]. 

In this paper, we have introduced and exp lained what we 

believe to be a new formalis m for specification and 

execution of arb itrary multiphase missions by unmanned 

vehicles. However, we do not consider what we have done 

to be a contribution to artificial intelligence, since the 

performance we envisage for MEA and their associated 

vehicles is far too limited and regimented to be compared to  

that of human beings. On the other hand, we do hope that 

Search Area A 

Sample Environment 
in Area A Search Area B 

Rendezvous with 

UUV-2 in Area C 

Succeed Fail 

Fail 
Fail Succeed 

Succeed 

MEA 

Sample Environment   Phase 

Controller 

Area Definition 

Sampling Requirements 

Operational Constraints 

Query 

Response 

Tactical Level 

State and 

Sensor Data 

Control  Params 

Sensor Settings 

Return to Base 
Succeed 

Fail 

Abort Complete 

Succeed Fail 

Execution Level 

Other  Tactical-

Level Modules 
Commands 

Figure 6: MEA Implementation for a Sensor-Based Robot 
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we have made a contribution to machine intelligence by 

defining and implementing a general solution to the 

problem of achiev ing enhanced unmanned vehicle mission 

specification and execution, without constraints on the 

length or branching factors of mission orders.  

In summary, MEA implemented in Pro log provide a means 

of stating mission orders in an executable form that may be 

easier for mission specialists to read than when written in 

other languages. Moreover, MEA mission orders are 

subject to mathematical proof o f correctness by means of 

exhaustive pre-mission testing involving dialogue between 

the originator of the natural language orders and the person 

responsible for their Prolog implementation. This being the 

case, we believe that the use of a multilingual 

implementation of UUV control software as in RBM 

facilitates transparency and accountability in planning, 

coding, and after action evaluation of autonomous mobile 

robot missions. These are key issues in gaining acceptance 

of such robots as trusted highly-autonomous decision-

making systems, one of four “grand challenge” science and 

technology problems selected by the US Air Force as being 

central to national defense for the next  twenty years [17].  

Finally, at the present time, XML together with Java (or 

another high-level programming language) provides the 

only practical alternative to Prolog known to the authors for 

expressing executable mission specificat ions more or less 

directly from natural language mission definit ion. More 

research is needed to determine the possibility of other 

solutions to this problem, and to investigate the relative 

utility of each. W ith respect to the languages used in this 

paper, readers should be aware that the combination of 

commercial industrial strength Lisp and Prolog on 

Windows and similar platforms is new technology, provided 

at this time only by one source [13], and only since about 

2003. The stabilization of Pro log in the form of an ISO 

standard was completed only in 2000. Since then, there has 

been a proliferat ion of Prolog implementations [18]. Some 

of these may turn out to be more suited to imbedded 

systems than the Prolog/Lisp implementation used in this 

paper. Much remains to be learned about what can be 

accomplished using these tools in a variety of realms of 

application, including specifically UUV mission 

specification and execution. We look forward to dialogue 

with others interested in this topic. 
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