
Proceedings of the 17
th

 International Symposium on Unmanned Untethered Submersible Technology , Portsmouth,

NH, August, 2011.

1

A UNIVERSAL MULTIPHASE MISSION EXECUTION AUTOMATON
(MEA) WITH PROLOG IMPLEMENTATION FOR UNMANNED

UNTETHERED VEHICLES

R. B. McGhee, D. P. Brutzman, and D. T. Davis

Naval Postgraduate School, MOVES Institute

Monterey, CA 93943
robertbmcghee@gmail.com, brutzman@nps.edu and dtdavi1@nps.edu

Abstract—The authors have been involved for a

considerable time in research relating to computer control

of robotic vehicles and mechanisms. For the past two

decades, our work in this area has been focused primarily

on unmanned untethered submersibles (UUVs), especially

those intended for eventual military use. This being the

case, we have been guided in our efforts by our knowledge

of the way task abstraction and mission execution are

accomplished in manned submarines. Th is led us some time

ago to propose and investigate a tri-level software

architecture called the “Rational Behavior Model” (RBM)

in which the top “strategic” level of code encompasses the

functioning of a human submarine commander in carrying

out formal written mission orders. Below this level, a

“tactical” level of software decomposes high level

commands from the strategic level into real time

“execution” level commands to the sensors and actuators of

the UUV.

While we have been successful in demonstrating the utility

of RBM in at sea experiments with two UUVs, we have

been frustrated by the difficulty of finding a means of

expressing strategic level mission orders in a way that can

be understood by mission specialists who are not

programmers. We have come to the conclusion that this

goal can best be achieved by defining a new mathematical

abstraction which we call a “Mission Execution

Automaton”(MEA). An MEA is a generalizat ion of the

previously defined notion of a “Turing Machine” (TM),

which in turn serves as a general model for computation.

Specifically, a Turing Machine consists of a Finite State

Machine (FSM), provided with a potentially infinite

memory in the form of an “incremental tape recorder”. The

MEA generalization recognizes the tape recorder as an

“external agent” of the FSM, and allows for the possibility

that such an agent could alternatively be a human being or a

sensor-based robot. This generalization takes a TM “out of

its box”, and provides it with situational awareness, thereby

engendering an ability to carry out real time missions in the

physical world.

In this paper, we show how to realize an MEA using the

Prolog “logic programming language”. With this

realization, we have demonstrated the power of the MEA

abstraction by both theoretical and experimental means.

The paper contains one detailed example along with all

Prolog code used for mission specification and execution.

While we have exp lored and discuss other realizat ions of

MEAs, we find none to be as well suited as the Prolog

implementation to verification of executable mission orders

by mission specialists. Because our MEA model is based on

formal mathemat ical logic, we are able to demonstrate

“proof of correctness” of the code for the selected mission.

We believe this to be of fundamental importance for

military missions, and perhaps as well for some classes of

civilian missions.

1. Introduction

The authors have been engaged for some time in research

relating to computer control of complex robotic vehicles,

including walking machines and autonomous underwater

vehicles [1, 2, 3, 4]. Since 1996, we and a number of our

colleagues at the Naval Postgraduate School (NPS) have

used the Rational Behavior Model (RBM) tri-level software

architecture to organize our activities in this area, especially

in relation to control of autonomous submersibles [3, 4, 5].

In the vocabulary of the RBM formalis m, the execution

level of vehicle control software is concerned with carrying

out the hard real-time tasks typically associated with

physical interaction of a vehicle with its surrounding

medium. In a manned submarine, these tasks are usually

carried out by crew members, and include responsibilit ies

such as controlling diving planes, rudders, engine rpm, etc.

Again in RBM terminology, above the execution level lie

the soft real-time tasks of the tactical level. At the tactical

level, execution level functions are organized into

behaviors, which are somet imes associated with autopilots.

Such functions include maintaining course and depth, sonar

obstacle avoidance, maneuvering while surfaced, etc.

However, the tactical level also includes more complicated

behaviors such as sonar mapping, transit to navigational

waypoints, construction of obstacle maps, response to

emergency situations, etc. In a manned submarine, the

Officer of the Deck (OOD) is responsible for coordinating

the actions of the watch officers and crew members to

ensure that such behaviors are correctly implemented and

carried out [4, 5].

mailto:robertbmcghee@gmail.com
mailto:brutzman@nps.edu
mailto:dtdavi1@nps.edu

2

The highest level of software in the RBM architecture is

called the strategic level [3, 4, 5]. Th is level corresponds to

the functioning of the commander of a manned submarine.

Unlike the lower two levels, in RBM the strategic level

operates entirely in a d iscrete event, non-numeric mode,

considering alternative actions and making decisions

without a sense of continuous time or space. That is, it is

entirely in the domain of mathematical logic. This being the

case, the strategic level so far has been implemented at NPS

mainly by using logic programming in the form of the

Prolog language [6, 7]. This language was employed

successfully in encoding the strategic level for both test

tank evaluation [3], and for open ocean missions conducted

with the Phoenix unmanned autonomous submersible [4].

Although this vehicle has been retired from service, we

have continued our research on RBM implementation by

using computer simulation, including both real-time control

software and a detailed representation of the nonlinear

hydrodynamics of the Phoenix [8]. However, in this work,

we have experienced to date a disappointingly slow rate of

progress in developing improved strategic level software.

This has been due in part to the lack of a strong

mathematical model for the functioning this level of vehicle

control. This paper addresses this need by defining and

implementing a new type of mathematical machine [9] that

we call a mission execution automaton (MEA). While the

domain of application that motivates our work is onboard

mission control for unmanned untethered vehicles (UUVs),

it will be seen in this paper that the MEA we define

subsumes Turing machines [9, 10], and thus constitutes a

more general concept.

A Turing machine (TM) consists of a finite state machine

(FSM) augmented by an external agent in the form of a

potentially infinite memory realized as the tape of an

“incremental tape recorder” [10]. It is known that no digital

machine can be more computationally powerful than a

universal Turing machine, in which the logical behavior of

a specific FSM is encoded on the tape of the machine in the

form of a state table [9, 10]. Nevertheless, partly because

their programming is so difficult [10], Turing machines

have been almost exclusively relegated to the status of a

mathematical concept, with practical computing being

accomplished by digital computers. The main idea

developed in this paper relates to a generalization of TMs to

MEAs by allowing the external agent to be not only a tape

recorder, but alternatively, either a human being or a

sensor-based robot [11].

The authors have chosen to use Prolog to both define and

implement a universal multiphase human interactive MEA.

We have done so because of our belief in the strong

expressive power of Prolog predicate definitions when read

declaratively [6], while at the same time representing

executable code. In what fo llows, it is assumed that the

reader is familiar with ANSI Common Lisp [12], at least to

the extent of being able to read the relatively simple code

presented in the figures of this paper. A brief exp lanation of

the syntax and semantics of the Allegro dialect of Pro log [7,

13], implemented in Common Lisp, is included in what

follows.

2. A Universal Human Interactive Multiphase

Mission Execution Automaton (MEA)

Complex missions to be carried out by human agents are

typically specified in terms of a series of phases with

predetermined phase transition rules and defined mission

end conditions. For example, a simple five phase manned

submarine reconnaissance mission might be phrased in

specialized natural language as in Figure 1 below.

This mission will be used to illustrate both the capabilit ies

and syntax of Prolog, and the design of an MEA capable of

carrying out any similar mission when expressed as a series

of phases written in Prolog as mission orders. To avoid

errors in execution, it is assumed that the syntax and

semantics of specialized natural language mission orders

are understood in the same way by both the person issuing

the orders and the person receiving them. Orders written to

achieve this objective are said to be syntactically well

formed and semantically unambiguous. Figure 2 contains

Prolog code for a universal human interactive multiphase

MEA. This machine is believed to be “universal” in the

sense that it is suited to cycling mission states for any set of

well formed and unambiguous orders for a multiphase

mission to be carried out by a human being.

3. Reading Prolog Code

In reading the code of Figure 2, per Lisp convention, it is

important to recognize that a semico lon denotes that what

follows is a comment intended to aid human code reading,

and ignored by the Prolog compiler. Keep ing this in mind,

the third line of this code is a Prolog fact [6, 7]. This fact

Goal 1. Proceed to Area A and search the area.

If the search is successful execute goal 2. If

the search is unsuccessful, execute goal 3.

Goal 2. Obtain an environment sample from Area

A. If the sample is obtained, execute goal 3.

If the sample cannot be obtained, proceed to

recovery position to complete the mission.

Goal 3. Proceed to Area B and search the area.

Upon search success or failure, execute goal 4.

Goal 4. Proceed to Area C and rendezvous with

UUV-2. Upon rendezvous success or failure,

proceed to recovery position to complete the

mission.

 Figure 1: Example Manned Submarine Mission Orders

Expressed in Structured Natural Language Using

Standardized Vocabulary

3

states that the current mission phase is Phase 0 (Start

phase). Turning next to the mission execution rule set,

Allegro Prolog [7, 13] syntax places a rule head

immediately after a left arrow symbol. The rule body

consists of all function calls listed after the rule head, and

before the terminating parenthesis. Thus it can be seen that,

in the context of the specified mission execution automaton,

a mission is executed if it is in itialized and successive

phases are executed until done. The looping implied by this

statement is achieved by the “repeat” function call.

Specifically, repeat is a Prolog system function that always

succeeds, but cannot be entered from the right (during

backtracking). More precisely, referring to the general

nature of Prolog code execution [6, 7], it can be seen that

when the done predicate fails, Prolog backtracks and tries

to find another way of executing the current phase, which

leads to searching the fact data base for a new value for

current_phase. Providing that the previous call to execute_

phase has updated this fact appropriately, this action

continues until done is satisfied by either mission

complet ion or mission abort. Finally, the execute_mission

and execute_current_phase predicate definitions end with a

“!” symbol called a cut. The meaning of this symbol is that

it stops backtracking by always succeeding when

encountered during forward code execution (evaluation of

successive predicates from left to right in a given ru le

body), but always failing on backtrack. In this particular

case, the cut assures that when the test function tm is called,

as intended, only one attempt to execute a mission will

occur. Likewise, execute_current_phase can be entered

only from the left, thereby ensuring that the latest value for

current_phase will be used in executing this function call.

;C:/Documents and Settings/mcghee/My Documents/Mission Control/mission-controller.cl

;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.

;Robert B. McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey,

;CA. Date of last revision: 13 March 2011.

;Allegro Prolog uses Lisp syntax. Rule head is first expression following "<--" symbol. Rule

;body is rest of expressions. Subsequent definitions of rule use "<-" symbol.

;Note that mission orders must be saved as "mission-orders.cl" in "Mission Control" folder,

;and then compiled before attempting execution by mission-controller. After compiling

;"mission-orders.cl", if "mission-controller.cl" has not been previously compiled, it

;may be necessary to open it in a new Allegro Editor window to avoid "name conflict error"

;response from compiler.

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog.

(load "C:/Documents and Settings/mcghee/My Documents/Mission Control/mission-orders.fasl")

;Facts

(<-- (current_phase 0)) ;Start phase.

;Mission execution rule set

(<-- (execute_mission) (initialize_mission) (repeat) (execute_current_phase) (done) !)

(<-- (initialize_mission) (abolish current_phase 1) (asserta ((current_phase 1))))

(<-- (execute_current_phase) (current_phase ?x) (execute_phase ?x) !)

(<-- (done) (current_phase 'mission_complete))

(<- (done) (current_phase 'mission_abort))

;Human external agent communication functions

(<-- (negative nil))

(<- (negative n))

(<-- (affirmative ?x) (not (negative ?x)))

(<-- (report ?C) (princ ?C) (princ ".") (nl))

(<-- (command ?C) (princ ?C) (princ "!") (nl))

(<-- (ask ?Q ?A) (princ ?Q) (princ "?") (read ?A))

;Test function (illustrates format for calling for mission execution from Lisp)

(defun tm () (?- (execute_mission)))

 Figure 2: A Universal Human Interactive Multiphase Mission Execution Automaton (MEA)

4

;C:/Documents and Settings/mcghee/My Documents/Mission Control/Mission Orders Archive/

;AVCL-mission.cl"

;This code was written in Allegro ANSI Common Lisp, Version 8.2, by Prof.

;Robert B. McGhee (robertbmcghee@gmail.com) at the Naval Postgraduate School in Monterey,

;CA. Date of last revision: 13 March 2011.

;This code can be executed only if it is first saved in /My Documents/Mission Control/ as

;"mission_orders.cl" and then compiled. When this has been done, it can be executed by loading

;and compiling "mission_controller.cl", which is also located in /My Documents/Mission Control/.

;The "<--" predicate definition symbol should be used only for the first definition of a

;given predicate. After that, subsequent definitions must use "<-" to avoid overwrite.

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog.

;Utility functions

(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) (asserta ((current_phase ?new))))

;Mission specification

(<-- (execute_phase 1) (command "Search Area A") (phase_completed 1))

(<-- (phase_completed 1) (ask "Search successful" ?A) (affirmative ?A) (change_phase 1 2))

(<- (phase_completed 1) (change_phase 1 3))

(<- (execute_phase 2) (command "Sample environment") (phase_completed 2))

(<- (phase_completed 2) (ask "Sample obtained" ?A) (affirmative ?A) (change_phase 2 3))

(<- (phase_completed 2) (change_phase 2 5))

(<- (execute_phase 3) (command "Search Area B") (phase_completed 3))

(<- (phase_completed 3) (ask "Search successful" ?A) (change_phase 3 4))

(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4))

(<- (phase_completed 4) (ask "Rendezvous successful" ?A) (change_phase 4 5))

(<- (execute_phase 5) (command "Return to base") (phase_completed 5))

(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)

 (change_phase 5 'mission_complete) (report "Mission succeeded"))

(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed"))

Figure 3: Prolog Mission Orders for a Human Interactive Submarine Reconnaissance Mission

Turning next to the other rules in Figure 2, it can be seen

that the second definition of the predicate “done” uses a

shorter arrow than the line above it. This is because, by

Allegro Pro log convention, a long arrow redefines a

predicate, replacing all prior defin itions, while a short arrow

signifies a secondary definition [13]. Next , “init ializing” a

mission involves abolishing the “Start phase” and replacing

it with “Phase 1”. This asserts a convention of this MEA

definit ion that execution of any multiphase mission must

begin with Phase 1. The predicate abolish is another Prolog

system function (there are only approximately fifty such

functions), that erases all occurrences of the named

predicate, providing there is at least one such occurrence.

The syntax of the “abolish” function requires that the arity

(number of variables in the definition) of a predicate

selected to be erased from the Prolog database be specified

(in this case the arity of current_phase is equal to 1).

Finally, the execute_current_phase predicate definition

introduces the logic variable, “?x”. Logic variables are

initially unbound, and values are found by Prolog by

searching the fact database from top to bottom. Logic

variables are uniquely signified in Allegro Pro log by the

first character in the variable name being a “?” character.

Once a logic variable acquires a value, the unification

feature of Pro log [6, 7] assures that all subsequent

appearances of this variable in a given rule body will use

the same value.

Following the mission execution rule set is another set of

predicates called human external agent communication

functions. It is this set of functions that gives the MEA a

potential for situational awareness. It should be noted that

this capability is obtained because a human being is able to

respond to a restricted and predefined set of commands,

queries, and statements to and from the MEA. More

generally, a sensor-based robot could fulfill this function

[3,4].

5

4. Mission Specification

Figure 3 contains additional Prolog code for mission orders

defining and implementing the above described

reconnaissance mission. Because of the interactive nature

of these mission orders, the external agent communication

functions defined in the “mission-controller.cl” code

provide for issuing commands, making statements, and

asking questions via a computer screen, and also for

receiving responses from the keyboard. These predicates

make use of the Common Lisp system functions princ and

read [12]. In addition, the Prolog system functions not and

nl (new line) are used in these definitions. Of course, in the

case of UUV applicat ions, the intent of such interactive

execution is to validate mission coding by a human expert

before embedding the mission controller in a real physical

vehicle. Thus this form of code constitutes a kind of Turing

test [14] for the mission controller and a specific set of

mission orders. It is the authors’ belief that no mission

controller or mission orders should be deployed in an actual

physical robot until such a test has been successfully

completed. A “tongue in cheek” way of expressing this is

that a human should provide artificial AI to the mission

controller MEA for the first stage of mission debugging.

Once this stage has been completed, subsequent testing

must verify the functioning of this system by using real AI

from the robot vehicle.

The code of Figure 3 can be v iewed as providing executable

mission specifications. That is, this code can be either read

declaratively as specifications by a human, or compiled to

executable code by the Prolog compiler. Th is is the main

advantage of the RBM software architecture and the MEA

realization of the strategic level. That is, when a Prolog

implementation of the strategic level of RBM is used, no

recoding of mission orders into computer readable form is

needed.

Examining the code of Figure 3, it can be seen that five

mission phases are defined. Beyond this observation, the

authors feel that this code is self explanatory, so no further

discussion is provided here. Rather, the results of an

interactive debugging session are presented below as Figure

4. It is important for the reader to note that, per comments

at the top of Figure 2, obtaining results of this sort requires

that code for “mission-orders.cl” be appropriately compiled

and loaded before calling “execute_mission” via the given

test function “tm.”

It is the authors’ opinion that the above results are in

agreement with the natural language definition of th is

mission. However, Figure 4 does not constitute an

exhaustive test. Fortunately, since mission orders for an

MEA define a FSM, exhaustive testing is possible, though

tedious. The authors have completed such a test, and still

believe that the specified mission has been correctly

encoded. Note, however, that a dialogue can now be

initiated between the person who coded this mission and the

person who provided the natural language definition as to

whether or not the desired mission logic has been captured.

We have ourselves found this kind of dialogue to be very

useful during the writing of the present paper.

Once the correctness of the Prolog form of the mission

orders has been agreed upon, it then becomes possible to

replace the human external agent by a sensor-based robot.

Ev idently, this requires rewrit ing the external agent

communicat ion functions to suit the robot agent. Since this

is vehicle specific, it is not done here. However, an example

of such coding, using an earlier idea of an MEA, can be

found in [3].

International Allegro CL Free Express Edition

8.2 [Windows] (Jan 25, 2010 15:08)

Copyright (C) 1985-2010, Franz Inc., Oakland,

CA, USA.

CG-USER(1): (?- execute_mission))

Search Area A!

Search successful?y

Sample environment!

Sample obtained?y

Search Area B!

Search successful?y

Rendezvous UUV2!

Rendezvous successful?y

Return to base!

At base?y

Mission succeeded.

Yes

No.

CG-USER(2): (?- execute_mission))

Search Area A!

Search successful?y

Sample environment!

Sample obtained?n

Return to base!

At base?y

Mission succeeded.

Yes

No.

CG-USER(3): (?- execute_mission))

Search Area A!

Search successful?n

Search Area B!

Search successful?n

Rendezvous UUV2!

Rendezvous successful?y

Return to base!

At base?n

Mission failed.

Yes

No.

CG-USER(4):

 Figure 4: Partial Test Results for Submarine

Reconnaissance Mission Execution (user input in bold)

6

5. Mission Execution as Theorem Proving

From the perspective of first order predicate logic, the

MEA presented above constitutes a formal system. Viewed

in this way, the code of Figure 2 can be called the axioms of

the system. A specific set of mission orders, as in Figure 3,

constitutes a theorem to be proved by purely algebraic

means, without reference to the semantics of either the

axioms or the mission [15]. Specifically, if Prolog

successfully compiles a set of mission orders and associated

mission controller, then the Prolog syntax is correct. Once

this has happened, if execute_mission returns “yes”, then

the mission orders have been proved “true”. This is the case

regardless of whether the outcome of the mission is

mission_complete or mission_abort. If Prolog fails to return

“yes” then the mission orders are not “true”, and Prolog

returns “no”. Such an outcome could come about because

no value could be found for one or more unbound logic

variables, because an infinite loop has resulted from

unintended errors in phase completion conditions, because

of Prolog syntax or semantic erro rs detected only at run

time, or for many other reasons.

In understanding the above discussion from the perspective

of mathemat ical logic, it is important to realize that Prolog

implements only a subset of first order predicate logic [6, 7,

15]. In particular, Pro log uses “proof by example” as its

sole means for theorem proving. Th is means that it can

prove only existentially quantified theorems [15], and even

then only in the world defined by the facts presented to it.

Thus when Prolog says “no”, it means “I couldn’t find a

binding of logic variab les that satisfies your query within

the rules and facts you provided to me”. While this sounds

limit ing, it may be exactly the kind of behavior desired of

an autonomous robot, since too much freedom in mission

execution could potentially lead to disastrous unforeseen

consequences. As a final remark, from a theorem proving

point of view, the actual execution of a specific mission

resulting from Pro log calls to the tactical level during

theorem proving is a side effect [12].

6. Turing Machine Realization as MEA

Mission Orders

As defined thus far, there are no limits on MEA mission

orders other than that the format implied by the Prolog

definit ions of the MEA in Figure 2 be respected. That is,

mission orders must take the form of a series of phases with

predetermined mission end conditions, and specified state

transitions conditioned on the outcome of phase execution.

In Turing machine terminology [9], such orders define a

state table in which state transitions are determined by the

current state (current mission phase) and the input from the

doubly infinite tape of the machine. From the perspective of

MEA mission orders, a “Turing machine mission” involves

a specific type of external agent, called an “incremental

tape recorder”, capable only of reading from or writing to

the tape using a finite predefined set of symbols, and

moving the tape right or left one step as determined by the

state table. Clearly, tape recorder functionality could be

achieved either by mechanical means, by computer

simulation [10], or by a human external agent.

7. How to Run Lisp/Prolog Code Examples

The reader is invited to copy and execute the code

presented in this paper. In order to accomplish this, a free

trial copy of Allegro Common Lisp 8.2, including an

integrated development environment (IDE), can be

downloaded from www.franz.com. When this system has

been installed, the code of interest can be copied and pasted

into an Allegro Editor pane. It should then be saved in an

appropriate directory, and compiled (by clicking on the

“dumptruck” icon). When this has been done, entering

commands to the debug window, as shown in Figure 4,

should produce the indicated results. Of course the load

function calls in your code should be modified to match

your file structure before compilat ion.

8. Alternatives to Prolog for MEA Realization

It is an important to note that, although Prolog provides an

attractive mechanism for MEA realization, it is not the only

option. Generally speaking any data manipulation system

that is Turing complete, including context sensitive

grammars, lambda calculus, and all commonly utilized

computer programming languages, is suitable for MEA

implementation [9]. In virtually all cases, however, the

MEA will be indecipherable by anyone unfamiliar with that

particular system. Other declarative programming

languages, especially those based on predicate logic, might

allow for fairly user-friendly implementations, but the

authors have yet to encounter a system capable of realizing

both the MEA and the mission orders that provides the

intuitive readability of Pro log.

If the MEA and the mission orders are implemented with

different systems, it is possible to achieve a level of

readability approaching that of our Prolog implementation.

If, for instance, the MEA is implemented with a

programming language along the lines of Java or C++, the

mission orders FSM can be implemented using a more user-

friendly mechanism. One such system utilizes a Java

program to execute FSM missions authored in an

Extensible Markup Language (XML) vocabulary [16].

Use of XML provides a format that is specifically designed

to be easily read and interpreted by both computers and

humans, making it an attractive choice for the defin ition of

autonomous vehicle missions. Figure 5 depicts one

possible XML encoding of the multi-phase UUV mission

from the previous natural language and Prolog examples.

In the authors’ opinion, this version is equivalent to the

previous versions and is as intuitive as well.

http://www.franz.com/

7

Because XML is not a programming language, it is not

suitable for full MEA implementation by itself.

Notwithstanding the availability of programming language

functionality that makes XML easier to process than many

other potential mission-specification fo rmats, full MEA

implementation will be significantly more complex than a

Prolog version. A more thorough discussion of XML/Java

implementation details and requirements, including a

discussion of the full XML vocabulary of the

implementation, can be found in [8] and [16].

9. MEA Testing and Integration

As discussed in Section 4, the MEA mission-control

paradigm has been tested primarily by querying a human

external agent rather than a sensor-based robot. It is the

authors’ intention to continue testing and development in

simulation and ultimately in real vehicles. Specifically, the

MEA will be implemented to direct vehicles operating in

the Autonomous Unmanned Vehicle Workbench [8] virtual

environment. This system has also been shown to be

suitable for use with actual vehicles of various types [16].

It goes without saying that strategic level mission

specification for an MEA does not contain all of the

informat ion required to define all aspects of a mission. For

example, the locations and characteristics of the operating

areas, the launch and recovery positions, and the specific

objectives and requirements of the individual goals must be

specified before the mission can commence. It is an

interesting observation, however, that this information is

completely irrelevant to the MEA—if the information is

available to the lower control layers, they will be able to

respond appropriately to MEA queries. An implementation

as depicted in Figure 6 is therefore appropriate for MEA

control of arbitrary real or simulated vehicles .

In this implementation, a phase controller is instantiated for

each phase of the mission (i.e., each state of the MEA

FSM). The phase controller is implemented as a Java

object that provides tactical-level control for the completion

of a single phase. All numerical data related to the

complet ion of a single phase is maintained by or available

to the phase controller for that phase. Because the

requirements of each mission phase are different, a separate

phase controller object is instantiated for each phase. Thus,

the mission of Figure 6 will require five phase controllers

for the defined phases. As the mission is executed, the

MEA ensures that only the controller for the current phase

is active at any specific time.

The phase controller is responsible for all activ ity and path

planning in support of phase execution, sensor fusion and

interpretation, and onboard system monitoring. Most

importantly, the phase controller monitors the progress of

the current phase, provides direction to the lower control

levels, and responds appropriately to strategic-level MEA

queries. In order to meet its control requirements, each

phase controller must have access to parameters such as

operating area, timing constraints, and any other phase-

specific requirements. Additionally, vehicle state

informat ion, sensor data, and onboard systems status must

be obtained from other tactical-level modules or from the

execution level controller.

Since the communication mechanis m of the MEA consists

solely of queries, control of the tactical level must be

realized as a side effect of these queries. Queries are

actually implemented as function calls from the Prolog

MEA to the Java phase control object. Because the Prolog

associated with a specific phase only makes calls (i.e.,

queries) to the phase controller fo r its phase, activation and

deactivation of the individual controllers is an implicit

byproduct of the MEA-level state transitions. Each MEA-

query will in itiate a single cycle of the tactical-level control

loop. When queried by the strategic-level MEA, a phase

<?xml version="1.0" encoding="UTF-8"?>

<UUVMission>

 <GoalSet>

 <Goal area=”A” id=”goal1”>

 <Search nextOnSucceed=”goal2” nextOnFail=”goal3”/>

 </Goal>

 <Goal area=”A” id=”goal2”>

 <SampleEnvironment nextOnSucceed=”goal3” nextOnFail=”recover”/>

 </Goal>

 <Goal area=”B” id=”goal3”>

 <Search nextOnSucceed=”goal4” nextOnFail=”goal4”/>

 </Goal>

 <Goal area=”C” id=”goal4”>

 <Rendezvous nextOnSucceed=”recover” nextOnFail=”recover”/>

 </Goal>

 <Goal area=”recoveryPosition” id=”recover”>

 <Transit nextOnSucceed=”missionComplete” nextOnFail=”missionAbort”/>

 </Goal>

 </GoalSet>

</UUVMission>

Figure 5: XML Mission Orders for a Human Interactive Submarine Reconnaissance Mission

8

controller obtains and analyzes all required data from the

execution level and other tactical-level modules, performs

any required planning and assesses phase progress, provides

direction to the execution level as required, and responds to

the query. In this way, the phase controller implements a

tactical-level sense-decide-act loop in support of a single

mission phase, and the MEA controls transitions between

mission phases.

10. Summary and Conclusions

Thoughtful analysis of the above results shows that any

specific multiphase mission could be specified as an FSM

without making use of the MEA and mission orders

abstraction. However that is not the intent of our work.

Rather, we are looking for a fully general means capable of

animating any syntactically correct set of mission orders.

That is, through the use of the RBM and MEA formalisms,

we desire to replicate in a UUV the level of “end-user

programmability” attained in a manned submarine by

means of formal written mission orders.

We have not dealt with problems of e mbedding an MEA in

a real vehicle. This is vehicle specific, and requires that a

fin ite set of queries and responses be defined for

communicat ion between the strategic and tactical software

levels, and that real-time execution issues be resolved.

However, we have done some work of th is sort [3, 4, 8],

and intend to do more. Moreover, in [10], a fu lly coded

example of the use of a tape recorder external agent to

achieve a universal Turing machine as an MEA is provided.

This example proves the Turing completeness of MEA.

It is noteworthy that all of the code presented in this paper

uses only eight Prolog system functions. Moreover, most of

these functions have common English names relating to

their behavior. We know of no other computer

programming language with so few primit ive functions.

This is one reason that we are optimistic about the

practicality of mission specialists being able to read mission

orders written in Prolog after on ly a short period of training.

This possibility is enhanced by the fact that Prolog

execution closely resembles human reasoning with a one

track mind dedication to a specific task.

Nothing in either Prolog or our definition of an MEA

requires a binary response to queries from the mission

controller. For example, a response from an external agent

of “ny” could stand for the meaning “not yet” by simply

asserting the Prolog fact: (not_yet ny). To understand this,

note that this is analogous to the definition of “affirmative”

and “negative” in the code presented above. Evidently,

allowing for more than two answers to queries permits

general n-way branching on exit from mission phases. In

addition, more than just two halt states are possible for an

MEA. An example of a mission exhibit ing both of these

features can be found in [10].

In this paper, we have introduced and exp lained what we

believe to be a new formalis m for specification and

execution of arb itrary multiphase missions by unmanned

vehicles. However, we do not consider what we have done

to be a contribution to artificial intelligence, since the

performance we envisage for MEA and their associated

vehicles is far too limited and regimented to be compared to

that of human beings. On the other hand, we do hope that

Search Area A

Sample Environment
in Area A Search Area B

Rendezvous with

UUV-2 in Area C

Succeed Fail

Fail
Fail Succeed

Succeed

MEA

Sample Environment Phase

Controller

Area Definition

Sampling Requirements

Operational Constraints

Query

Response

Tactical Level

State and

Sensor Data

Control Params

Sensor Settings

Return to Base
Succeed

Fail

Abort Complete

Succeed Fail

Execution Level

Other Tactical-

Level Modules
Commands

Figure 6: MEA Implementation for a Sensor-Based Robot

9

we have made a contribution to machine intelligence by

defining and implementing a general solution to the

problem of achiev ing enhanced unmanned vehicle mission

specification and execution, without constraints on the

length or branching factors of mission orders.

In summary, MEA implemented in Pro log provide a means

of stating mission orders in an executable form that may be

easier for mission specialists to read than when written in

other languages. Moreover, MEA mission orders are

subject to mathematical proof o f correctness by means of

exhaustive pre-mission testing involving dialogue between

the originator of the natural language orders and the person

responsible for their Prolog implementation. This being the

case, we believe that the use of a multilingual

implementation of UUV control software as in RBM

facilitates transparency and accountability in planning,

coding, and after action evaluation of autonomous mobile

robot missions. These are key issues in gaining acceptance

of such robots as trusted highly-autonomous decision-

making systems, one of four “grand challenge” science and

technology problems selected by the US Air Force as being

central to national defense for the next twenty years [17].

Finally, at the present time, XML together with Java (or

another high-level programming language) provides the

only practical alternative to Prolog known to the authors for

expressing executable mission specificat ions more or less

directly from natural language mission definit ion. More

research is needed to determine the possibility of other

solutions to this problem, and to investigate the relative

utility of each. W ith respect to the languages used in this

paper, readers should be aware that the combination of

commercial industrial strength Lisp and Prolog on

Windows and similar platforms is new technology, provided

at this time only by one source [13], and only since about

2003. The stabilization of Pro log in the form of an ISO

standard was completed only in 2000. Since then, there has

been a proliferat ion of Prolog implementations [18]. Some

of these may turn out to be more suited to imbedded

systems than the Prolog/Lisp implementation used in this

paper. Much remains to be learned about what can be

accomplished using these tools in a variety of realms of

application, including specifically UUV mission

specification and execution. We look forward to dialogue

with others interested in this topic.

7. References

[1] McGhee, R.B., " Vehicular Legged Locomotion," in

Advances in Automation and Robotics, Vol. 1,pp. 259-

284, ed. by G. N. Saridis, Jai Press, Inc., 1985.

[2] Song, S.M., and Waldron, K. J., Machines That Walk:

The Adaptive Suspension Vehicle, MIT Press,

Cambridge, MA, 1989.

[3] Marco, D.B., Healey, A.J., and McGhee, R.B.,

“Autonomous Underwater Vehicles: Hybrid Control

of Mission and Motion”, Autonomous Robots 3, pp.

169-186, 1996.

[4] Brutzman, D., et al, “The Phoenix Autonomous

Underwater Vehicle”, Arti ficial Intelligence and

Mobile Robots: Case Studies of Successful Robot

Systems, Ch. 13, pp. 323-360, ed. by Kortenkamp, D.,

et al, MIT Press, Cambridge, MA 02142, 1998.

[5] Byrnes, R.B., et al, “The Rational Behavior Software

Architecture for Intelligent Ships”, Naval Engineers

Journal, pp. 43-55, March, 1996.

[6] Rowe, N.C., Artificial Intelligence Through Prolog ,

Prentice Hall, Englewood Cliffs, NJ 07632, 1988.

[7] Norvig, P., Paradigms of Artificial Intelligence

Programming: Case Studies in Common Lisp , Morgan

Kaufmann Publishers, 1992.

[8] Davis, D.T., and Brutzman, D.P., “The Autonomous

Unmanned Vehicle Workbench: Mission Planning,

Mission Rehearsal, and Mission Replay Tool for

Physics-Based X3D Visualizat ion”, Proc. Of 14
th

International Symposium on Unmanned Untethered

Submersible Technology, Durham, NH, August, 2005.

[9] Minsky, M.L., Computation: Finite and Infinite

Machines, Prentice Hall, 1967.

[10] McGhee, R.B., Brutzman, D.P., and Davis, D.T., A

Taxonomy of Turing Machines and Mission Execution

Automata with Lisp/Prolog Implementation , Technical

Report NPS-MV-11-002, Naval Postgraduate School,

Monterey, CA 93943, Ju ly, 2011. Available at

https://savage.nps.edu/AuvWorkbench/website/docum

entation/reports/reports.html

[11] McGhee, R.B., "Future Prospects for Sensor-Based

Robots," in Computer Vision and Sensor-Based

Robots, pp. 323-333, ed. by G. G. Dodd and L.

Rossal, Plenum Publishing Corp., 1979.

[12] Graham, P., ANSI Common Lisp, Prentice Hall, 1996.

[13] Franz, Inc., Allegro Prolog Online Documentation,

2011. Availab le at

www.franz.com/support/documentation/current/doc/p

rolog.html

[14] Russell, S.J., and Norvig, P., Artificial Intelligence: A

Modern Approach, Prentice Hall, 1995.

[15] Hofstadter, D.R., Godel, Escher, Bach: An Eternal

Golden Braid, Basic Books, New York, 1999, pp. 204

- 230.

https://savage.nps.edu/AuvWorkbench/website/documentation/reports/reports.html
https://savage.nps.edu/AuvWorkbench/website/documentation/reports/reports.html
http://www.franz.com/support/documentation/current/doc/prolog.html
http://www.franz.com/support/documentation/current/doc/prolog.html

10

[16] Davis, D.T., Brutzman, D.P., and Becker, W.J.,

“Facilitation of Autonomous Vehicle Coordination

through an XML-Based Vehicle-Independent Control

Architecture”, Proc. Of the 16
th

 International

Symposium on Unmanned Untethered Submersible

Technology, Durham, NH, August, 2009.

[17] Technology Horizons, Vol. 1, AF/ST-TR-10-01,

United States Air Force Chief Scientist, 15 May 2010,

pg. 100. Available at

www.flightglobal.com/assets/getasset.aspx?ItemID=3

5525

[18] Wikipedia contributors, “Comparison of Prolog

implementations,” Wikipedia, The Free Encyclopedia,

April 2011. Available at

http://en.wikipedia.org/w/index.php?title=Comparison

_of_Prolog_implementations&oldid=425200212

http://www.flightglobal.com/assets/getasset.aspx?ItemID=35525
http://www.flightglobal.com/assets/getasset.aspx?ItemID=35525
http://en.wikipedia.org/w/index.php?title=Comparison_of_Prolog_implementations&oldid=425200212
http://en.wikipedia.org/w/index.php?title=Comparison_of_Prolog_implementations&oldid=425200212

