




Traditional internet technologies, including the World Wide Web, facilitate the 
access and presentation of networked data.  These technologies have obvious 
applications in both classified and unclassified government systems, and make 
volumes of potentially useful information available to operational commanders and 
decision-makers.  This information includes raw and annotated data from tactical, 
strategic, and national sensors; composed and analytic products derived from 
various data sources; and operational information about friendly assets to name a 
few.

As the amount of available data explodes, however, it becomes more and more 
difficult to utilize it effectively.  Access to hyperlinked documents and web-accessible 
data repositories does not provide the end user any contextual background or 
insight into how the information relates to information from other sources.  
Additionally, it can be difficult to separate useful information from digital clutter.  
Search engines can locate information based on keywords, but they have no ability 
to tailor results according to an “understanding” of the encountered data.

In this context, traditional distributed data storage has three significant 
shortcomings.  First, it is difficult to efficiently separate useful data from digital 
clutter—imagine the difficulty in locating a specific contact of interest in hundreds of 
hours of unmanned air vehicle imagery over thousands of square miles.  A second 
potential issue is efficient data fusion.  Ideally, we would like to process data from 
multiple sources and locations so that redundant information is eliminated and 



related data is correlated.  Finally, even after sorting through and fusing the data, we 
would like to be able to automatically draw conclusions and make predictions based 
on the available information.



Semantic Web technologies provide not only access to data, but access to 
contextual information that allows for its interpretation as well.  Specifically, the 
Semantic Web uses ontologies, taxonomies, data models, and other tools to 
describe content characteristics and relationships.  The mathematical rigor of 
Semantic Web constructs provides for their discovery and utilization by networked 
applications and also allows for automated inferencing to derive new information 
and draw conclusions from distributed information.

Realization of the Semantic Web has two crucial requirements.  First, is a set of 
standardized means of representing information.  Towards this end, the World Wide 
Web Consortium (W3C) has approved languages such as the Resource Description 
Format (RDF), its extension RDF(S), and Web Ontology Language (OWL) that will 
be discussed in this work.  The second essential element involves reasoning about 
represented data.  Formal logic, and specifically Description Logics (DL), has 
received significant research attention in support of this requirement.  (Rudolph, 11)



Traditional distributed technologies provide access to information as opposed to 
knowledge.  This means that data is accessible, displayable, and available for 
manipulation, but there is no basis for more than cursory understanding without 
human intervention and analysis.  Semantic Web technologies, on the other hand, 
express meaning along with the data by adding formal semantics (Daconta, et al., 
03).  Formal semantics allow for the development of knowledge bases (KB) that 
utilize metadata to place information in context, describe relationships, make 
interpretations and draw conclusions in a mathematically rigorous way (Kashyap, 
04).  This mathematical rigor, along with recognized standards allows for the 
expressed knowledge to be machine read and computationally processed in ways 
that support automation, integration and reuse of data.



Representation of information in a form that effectively conveys knowledge requires 
more than simple markup of the data comprising the information.  It requires a 
model or language that is capable of representing strong semantics about the data.  
(Daconta, et al., 03) uses an “Ontology Spectrum” to rank various data expression 
mechanisms relative to one another.  Traditional database techniques including 
Schemas, Entity-Relationship (ER) Models and Extended Entity-Relationship (EER) 
Models are on the lower end of this spectrum while logical forms including 
Description Logic, First Order Logic, and Modal Logic in the figure are on the upper 
end.

Much of what we might think of as the Semantic Web technology, particularly the 
aspects that support automated reasoning and inferencing, are based on 
Description Logics (DL).  DLs provide significant expressive power and have been a 
focus of knowledge engineering research for some time.  In addition, there has been 
significant work in developing reasoning algorithms for working with DLs that can be 
proven to meet specific mathematical requirements (completeness, soundness, 
tractability, etc.).





DLs are a family of logic-based knowledge representation systems that fall between 
Propositional Logic and First Order Logic (FOL) on the Ontology Spectrum of the 
(Daconta, et al., 03), meaning that they are more semantically expressive than 
Propositional Logic, but less so than FOL.  The advantages that they possess over 
FOL involve the decidability and tractability of associated reasoning problems.  
Reasoning with DLs can often be done more efficiently than with FOLs, and 
reasoning problems are much more likely to be computationally undecidable with 
FOLs than with DLs (Rudolph, 11).

DLs describe individuals within a domain of interest using concepts and roles, 
which describe groups of individuals and relationships between individuals 
respectively.  For instance, “Ship” might be a concept that includes individuals 
(literals) such as “Antietam”, “Sullivans”, and “Nimitz”, and “inBattleGroup” might be 
a role for declaring that a ship is assigned to a specific battlegroup.  DL statements, 
or axioms, take the form of predicates where concepts and roles are the predicate 
names and individuals are the objects of the predicate (e.g., “Ship(Antietam)” and 
“inBattleGroup(Antietam, CSG-3)” ).  Every name within a DL, then, is either a literal 
(individual), a unary predicate (named concept), or a binary predicate (named role) 
from FOL (Rudolph, 11).

DL axioms describing a particular domain are typically separated into three groups:  
the Terminology Box (TBox) is used to define relationships between concepts, the 
Relational Box (RBox) is used to define properties of roles, and the Assertional Box 



(ABox) makes assertions about individuals.  Together, the TBox and RBox define the 
intensional portion of KB while the ABox comprises the extensional portion 
(Haarslev, 06).  Only DLs that allow complex roles (i.e., those that include operations 
for combining and manipulating roles) require an RBox.  Not unexpectedly, those 
languages that do allow complex roles provide additional expressive power at the 
cost of increased reasoning complexity (Krötzsch, et al., 12).

For this report, discussion will focus primarily on the TBox and ABox.  Adding an 
RBox does not fundamentally change the reasoning algorithms beyond accounting 
for the role operations available in the particular DL.  In practice (and in much of the 
literature), the TBox and RBox can be implemented and considered as a single entity 
(Baader, et al., 07).



DLs provide a operators that can be used to build complex concepts.  Specific DLs 
are characterized (and named) according to operations that are permitted.  The 
most commonly utilized DLs are those that fall in the AL family (AL stands for 
attributive language).  The basic AL allows the definition of atomic concepts and 
roles and provides the operations described below (C and D represent arbitrary 
concept descriptions, A and B represent atomic concepts, and r represents an 
atomic role):

An atomic concept is one utilizing a single unary predicate
The universal concept (١) includes every concept in the domain (i.e., all )
The bottom concept (٣) excludes every concept in the domain
Atomic negation (¬A) describes all individuals for which the concept is false
Intersection (C ⊓ D) describes the intersection between two concepts (i.e., 

all individuals to which both operand concepts apply)
Value restriction (∀r.C) describes all individuals that participate as the first 

entry of the specified role with only individuals from the concept specified by 
the operand

Limited existential quantification (∃r.١) describes all individuals that 
participate as the first individual in the specified role with no restrictions on 
the other role participant



The following examples demonstrate simple applications of AL operations 
where “Aircraft”, “Fighter”, “Weapon” are atomic concepts and “payload” is an 
atomic role:

Weapon denotes all members of the Weapon concept
Aircraft ⊓ ¬Fighter denotes all Aircraft that are not Fighters
Aircraft ⊓ ∃payload.١ denotes all Aircraft with a payload
Aircraft ⊓ ∀payload.Weapon denotes all Aircraft with a Weapon payload
Aircraft ⊓ ∀payload.٣ denotes all Aircraft with a no payload

In these examples and definitions, it is important to note that negation is only allowed 
for atomic concepts, and that existential is only universal (i.e., the operator describes 
all individuals that are participating in the role relationship with no restrictions on the 
other role participant).  Additionally, AL allows only atomic roles, meaning that there 
are no role-forming constructs that can be used to generate complex roles.



While AL is considered a minimally robust DL, its expressive power is fairly limited.  
It does, however, form the basis for a family of languages that are used extensively 
by Semantic Web technologies.  Extensions to the AL language are specified by the 
operations that they add to the basic AL language (a few of the possibilities are 
described below).  The most common operations are union, full existential 
qualification, unqualified cardinality restrictions, and negation of arbitrary concepts.

Union (C ⊔ D) describes all individuals that are included in either of the operand 
concepts.

Full existential quantification (∃r.C) extends limited existential qualification of AL 
to describe individuals participating in the specified role with the second participant 
restricted to individuals described by a specific concept.

Unqualified cardinality restrictions (≥n.r and ≤n.r) describe all individuals that 
participate in at least (or at most) role relationships of the specific type (e.g., 
“≤5.commands” describes individuals participating in five or fewer “commands” 
relationships) without placing any restrictions on the role’s other participating 
individuals.

Qualified cardinality restrictions (≥n.r.C and ≤n.r.C) are similar to unqualified 
cardinality restrictions except they only restrict the numbers for role participants of 
the specified concept (i.e., “≤5.commands.Squadron” describes individuals 
participating in five or fewer “commands” relationships with individuals to which the 
“Squadron” concept applies).

Negation of arbitrary concepts (¬C) extends AL’s atomic negation beyond atomic 



concepts by allowing the negation of arbitrary concepts.
Nominals provide a mechanism for defining enumerated concepts in an shorthand 

fashion (e.g., “AirWing ≡ { SH-60R } ∪ { MH-60F } ∪ { EA=6B } ∪ { E2-C } ∪ { 
FA-18C } ∪ { FA-18E } ∪ { FA-18F }” defines the “AirWing” concept as 
consisting of the seven specific individuals listed).

A specific AL-family DL is specified by the letter(s) associated with the extension(s).  
For example, ALEN is the basic AL language extended to allow full existential 
quantification and unqualified cardinality restrictions.

By convention, the ALC language also includes union, full existential quantification, 
and a few other capabilities that will be discussed later in this report (Schmidt-Schaub 
and Smolka, 91).  This language is among the more useful DLs and serves as the 
basis for what are termed expressive DLs.  Because they are among the more useful 
(and most commonly  used) DLs, the DL naming convention uses the shorthand, S, 
to denote ALC languages (Rudolph, 11).

There are a number of additional extensions are utilized by typical Symantic Web 
applications that will not be specifically discussed here (Krötzsch, et al., 12).  In 
most cases, they add expressive power to the DL but do not fundamentally change 
the knowledge representation or inferencing paradigms.



DLs are utilized through interpretations that operate on a domain of interest.  The 
domain of interest is simply the set of all individual entities with which we are 
concerned.  An interpretation function is used to map individuals within the domain 
of interest to atomic concepts and roles.  Each atomic concept will consist of a 
subset of members the interpretation’s domain, while each atomic role will consist of 
a subset of the cross product of the domain of interest with itself.

Complex concepts (i.e., those that are defined using the DL’s available operators) 
are mathematically computed using the formulas above, which coincide with the 
descriptions of the previous two slides.



The TBox (T) defines properties and definitions for concepts that will be applied to 
one or more domains of interest.  Essentially, the TBox defines the rules and 
terminology for the concepts.  There are two primary types of TBox relationships:  
inclusion and equivalence.

Inclusion:      C ⊑ D iff C(a) → D(a)
Equivalence:  C ≡ D iff ((C(a) → D(a)) ⋀ (D(a) → C(a)))

Axioms  defining an equivalence between an atomic concept and another 
concept are called definitions.  In the example of the slide, an equivalence 
relationship between the concept “Helicopter” and the complex concept of an 
“Aircraft” that is not “FixedWing”.  “FixedWing”, on the other hand, is simply 
described as being included in the concept “Aircraft”.  By these definitions, 
one can infer that any individual that is an “Aircraft” must also be a 
“Helicopter” or a “FixedWing” (but not both).  “NavalUnit”, “AircraftCarrier”, 
“SurfaceUnit”, and “AirCapable” are similarly defined.  If all definitions are 
acyclic, that is, it is not possible for a concept on the left hand side to use 
itself in its own definition, then definitions can be expanded so that atomic 
concepts and roles appear only on the right hand side (e.g., “AircraftCarrier ≡ 
(Ship ⊔ Submarine) ⊓ ∃operatedBy.Military ⊓ ∃operates.FixedWing”).  An 
acyclic TBox is said to be definitorial, because if we know what each base 



symbol is (i.e., those on the right side of the expanded definitions) then the 
meaning of the name symbols (i.e., those on the left side of the expanded 
definitions) is completely determined (Baader, et al., 07).



For DLs that allow complex roles, the RBox (R) performs the same function for 
roles that the TBox does for concepts.  That is, it defines the rules and terminology 
for roles.  As with concepts, relationships for roles can be defined in terms of 
inclusion and equivalence.

Inclusion:      r ⊑ s iff r(a, b) → s(a, b)
Equivalence:  r ≡ s iff ((r(a, b) → s(a, b)) ⋀ (s(a, b) → r(a, b)))

Roles can be defined using many of the same operators that are available for 
concepts, specifically, the top concept (universal role), bottom concept 
(empty role), intersection, union, and negation (¬rI ⇒ ∆I x ∆I \ rI).  In addition, 
many DLs allow role-specific operators.  Among the most important are 
inversion, composition, disjointedness.

Inverse:  r- = { (a, b) | rI(b, a) }  (i.e., the relationship is reversed)
Composition:  r ∘ s = { (a, c) | ∃j.(rI(a, b) ⋀ sI(b, c)) } (i.e. if an 

interpretation holds that the role r applies to two individuals, a and b, and the 
role s applies to individuals b and c, then the role r ∘ s applies to individuals a 
and “c”)

Disjointedness:  disjoint(r, s) = ( rI(a, b) → ¬sI(a, b) ) ⋀ ( sI(a, b) → ¬rI(a, 
b) ) (i.e., if the role r applies to two individuals, a and b, then the role s cannot 



apply, and vice versa).

These particular extensions are particularly important because they allow the 
definition of a number of important complex roles:

Symmetry:  r ≡ r- and asymmetry:  disjoint(r, r-)
Transitivity:  r ∘ r ⊑ r
Reflexivity:  ١ ⊑ r.Self    and areflexivity:  ١ ⊑ ¬r.Self 

The example defines some simple command relationship semantics.  The role 
“commands” is defined to be reflexive (all individuals command themselves), 
transitive (if an individual, a, commands an individual, b, then individual a also 
commands any individuals that individual b commands), and asymmetric (two 
individuals cannot command one another); and the role “commandedBy” is 
defined as the inverse of commands, which implicitly confers the transitive and 
disjointedness properties associated with the “commands” role.  The role 
“supports” is defined to be transitive as well, and the composition of the roles 
“supports” and “commandedBy” is included in the role “supports” (i.e., if an 
individual, a, supports an individual, b, and individual b is commanded by an 
individual, c, then individual a also supports individual c).

For the remainder of this report, the RBox will be treated as part of the TBox 
for those DLs allowing complex roles.



The ABox (A) describes what is known about the state of the world by making 
assertions about individual named entities.  Assertions can be either concept 
assertions or role assertions and can utilize any operators allowed by the specific 
DL.  A concept assertion assigns a named entity to a concept, while a role assertion 
establishes a role relationship between two named entities.  In the example above, 
assertions are made that the concept “Ship” applies to “Nimitz”, “Princeton”, and 
“Minnow” and that the pairs “(Nimitz, Military)” and “(Princeton, Military)”.

We can use this information to develop and test interpretations where the domain of 
interest is made up of named entities from the ABox.  An interpretation satisfies a 
concept assertion, C(a), if aI ∈ CI.  That is if the concept, C, is interpreted to 
apply to the element in ∆I corresponding to individual a (satisfaction of role 
concepts works similarly).  An interpretation satisfies the ABox if it satisfies all 
of the roles contained in the ABox.  If the interpretation also satisfies the 
TBox then it amounts to a reasonable abstract view of the domain and is said 
to be a model for the ABox and TBox.

It is appropriate at this point to bring up two additional points.  First, it is 
possible for the ABox and TBox to conflict.  For instance, an ABox assertion 
“SurfaceUnit(Nimitz)” would conflict with the TBox definition of the 
“SurfaceUnit” concept.  Second, multiple interpretations might qualify as 
models for the same ABox/TBox pair, and these interpretations may conflict 



with one another.  DLs describe only what is known, so anything missing is 
simply unknown and can be interpreted multiple ways.  In the example, an 
interpretation that includes “operatedBy(Minnow, Civilian)” satisfies the ABox, 
but one that includes “operatedBy(Minnow, Military)” does as well.  This is an 
example of open-world semantics. (Baader, et al., 07).   Traditionally 
databases typically use closed-world semantics, meaning that any missing 
information is assumed to be false.



Based on the previous slides the notions of TBox satisfiability, subsumption, 
equivalence, and disjointness can be described intuitively.  A concept is satisfiable 
if there exists at least one model interpretation with at least one entity to which the 
concept applies.  By extension, the entire TBox is satisfiable if a modeling 
interpretation exists in which every concept can be applied to at least one individual.  
A concept, C, subsumes a concept, D, if the set of individuals to which C applies is 
a subset of the set of individuals to which D applies for every model interpretation.  
Concepts C and D are equivalent if the sets of individuals to which they apply are 
the same for every model interpretation.  Finally, concepts C and D are disjoint if for 
every model interpretation the concepts C and D do not both apply to any 
individuals.  Notice that the requirements for satisfiability are be met by the 
existence of a single model interpretation, while subsumption, equivalence, and 
disjointness require that the requirements be met by every model interpretation.

In fact, all four of these reasoning tasks can be reduced to subsumption as 
described by the following rules (Horrocks and Patel-Schneider, 08):

C is satisfiable iff C ⋢T ٣
C ≡T D iff C ⊑T D and D ⊑T C
C and D are disjoint iff (C ∩ D) ⊑T ٣

They can also be reduced to unsatisfiability as follows:



C ⊑T D iff (C ⊓ ¬D) is unsatisfiable
C ≡T D iff (C ⊓ ¬D) and (D ⊓ ¬C) are both unsatisfiable
C and D are disjoint iff (C ⊓ D) is unsatisfiable

The final TBox reasoning task is classification, which determines the 
subsumption hierarchy of all contained concepts.  This can be a 
computationally complex (n2 subsumption checks for a TBox containing n 
concepts), however, it can be computed off-line with the results stored for later 
use.  TBox classification is particularly useful for ontology design and 
visualization and is also the basis for many optimizations for other types of 
reasoning (Rudolph, 11).

The use of satisfiability as the basis for reasoning about the TBox is 
noteworthy because it is the basis for most implemented reasoning systems.



The most fundamental form of reasoning with an ABox is determining whether or 
not it is consistent.  In lay terms, consistency simply means that the ABox is 
reasonable and  does not contain any contradictions either inherently (e.g., 
asserting both C(a) and ¬C(a) ) or with the definitions of the TBox.  
Consistency is proven by the existence of an interpretation is a model for 
both the ABox and TBox.  As discussed previously, an acyclic TBox can be 
expanded so that all definition right hand sides contain only primitives.  We 
can use the definitions from this expanded TBox to generate an expanded 
ABox that contains only atomic concepts.  Taking this approach, consistency 
checking of the ABox is reduced to checking for inconsistencies in the 
expanded ABox (Baader, et al., 07).  TBoxes with cycles cannot be expanded 
this way, so this method cannot be used with cyclic TBoxes.  Additionally, 
generating the expanded TBox can be computationally expensive making 
other approaches attractive even for some acyclic TBoxes.

Possibly the most common ABox reasoning task is instance checking (or 
entailment), which is used to determine whether or not a specific assertion 
(concept or role) is satisfied by every model interpretation.  Additional 
reasoning tasks include retrieval, which identifies all individuals to which a 
concept applies; and realization, which is used to find the most specific 
concept of a set of concepts (i.e., most subsumed) that applies to an 



individual.  All three of these reasoning tasks can be reduced to consistency 
checking:

Instance checking:     A ⊨ α iff A ∪ {¬C(a) } is inconsistent.
Retrieval:  a naïve approach can test every individual in KB for entailment 

by the concept (this approach can be optimized).
Realization:   This is essentially a subsumption problem.  If the 

subsumption hierarchy has been established through TBox classification, 
realization amounts to finding the most specific concept that entails the 
individual

The fact that ABox reasoning can so frequently be reduced to consistency 
checking is important, and it facilitates the development of versatile algorithms 
that can be applied to numerous problems.  Algorithms often fall into one of 
three categories.  Simpler DLs can often use structural subsumption 
algorithms (Küsters and Molitor, 05).  Tableau Algorithms are more broadly 
applicable and are used in a number of Semantic Web reasoners (Baader and 
Sattler, 01).  Additional approaches that have proven applicable to working 
with propositional and first-order logics have proven useful as well when DL 
inferencing can be reduced to known problems from other areas of artificial 
intelligence and knowledge management (Rudolph, 11).



DLs that allow complex role definitions are considered expressive DLs.  
These languages can include all of the constructs of the AL-family languages 
(and must include all of those of AL), but provide additional extensions for 
defining relationships and rules for roles (Baader, et al., 07).  Any language 
that utililizes an RBox (even if it is implemented as part of the TBox) is 
considered an expressive DL.  Expressive DLs are almost exclusively 
extensions of ALC (or S, for short) (Ortiz, 10).

Almost all of today’s commonly used expressive DLs are sublanguages of the 
SROIQ language (Rudolph, 11).  Importantly, this language is the basis for OWL, 
which is the W3C-approved standard for developing Semantic Web Ontologies, 
which will be discussed later in this work.

SROIQ has the following characteristics, most of which have been discussed 
previously (Rudolph, 11):

“S” means that SROIQ has all of the characteristics and operations of the ALC 
language including AL operations, union, universal existential qualification, and 
transitive roles

“R” provides for limited complex role inclusion and means that roles can be 
composed for inclusion in other roles.  Specific restrictions are required in order to 



ensure reasoning decidability.  Also included in the ‘R’ designation are the ability to 
define reflexive and disjoint roles.  The nature of the restrictions will be discussed 
shortly.

“O” means that nominals are allowed for enumerated definition of concepts.

“I” means that inverses are allowed as in the RBox example.

“Q” means that qualified cardinality restrictions are supported.



SROIQ is a powerful DL, but the expressive power greatly complicates reasoning.  
Reasoning even with simple DLs, such as AL, is proven to be EXPTime-hard 
(Baader, et al., 07), but unrestricted role composition leads to undecidability 
(Rudolph, 11).  Strict partial ordering of non-simple roles ensures decidability of 
reasoning problems with the SROIQ DL and ensures that the reasoning process will 
terminate.

A non-simple role, as depicted above, is one that includes a rule composition, 
another non-simple role, or is the inverse of a non-simple role.

To determine whether or not a KB complies with strict partial ordering, all simple 
roles must be ordered so that if an atomic role is ordered below another atomic role, 
then so is its inverse.  Each role inclusion axiom for non-simple roles must then 
comply with one of a number of forms (Horrocks, et al., 06):

R1:  The role inclusion axiom (RIA) conveys transitivity of role r.
R2:  The role includes its inverse.
R3:  The RIA consists only roles of lower order.
R4:  The RIA consists of r composed with roles of lower order (r must come first).
R5:  The RIA consists of roles of lower order with r (r must come last).



The DLs discussed thusfar are highly expressive, but their ability to capture certain 
types of knowledge is limited.  Specifically, the knowledge capable of being 
expressed is limited to time-independent, objective, and certain knowledge (Baader, 
et al., 07).  It is possible, however, to implement extensions that can convey this sort 
of information without compromising decidability.

Concrete domains provide a means of bounding data.  The most obvious concrete 
domains are numerical, but they can also be used to capture any bounded data for 
which relationships can be defined.  Allen’s temporal calculus for defining 
expressing temporal relationships (Allen, 83) and regional connection calculus for 
expressing spatial relationships (Randell, et al., 92 and Bennett, 97) are two notable 
examples.  Concrete domains can be expressed extending the DL to include the 
following existential predicate restriction:

∃(r1,…, rn).P

where P is a range-restricting predicate and r1 through rn is a chain of 
functional roles to which the restricting predicate is applied in order.  For 
instance, the declaration

AirContact ⊓ ∃(inArea.Restricted, isActive.Radar).overlapsWith 



uses a predicate taken from Allen’s Interval Calculus to describe “AirContacts” 
that were found in a restricted area while emitting radar.

Typical DLs are also not capable of representing uncertainty.  Extensions have 
been proposed for expressive DLs that provide for the expression of 
probabilistic, fuzzy, and probabilistic knowledge.

Probabilistic information is expressed through the addition of TBox rules for 
conditional probabilities of the form P(C|D)=p and ABox assertions of the form 
P(C(a))=p and P(r(a,b))=p.  Reasoning with probabilistic knowledge bases 
involves finding upper and lower probability bounds for each concept, which 
amounts to an optimization problem that can be solved with linear regression 
(Baader, et al., 07) or other techniques.  Fuzzy information describes the 
degree to which concepts and roles hold.  This requires extending the typical 
Boolean operators from the set { 0, 1 } to the range [ 0, 1 ] and redefining the 
DL operators (e.g., conjunction is minimum, disjunction is maximum, etc.) 
(Straccia, 01).  Possibilistic DLs can be considered as between probabilistic 
and fuzzy approaches in that they are used to model uncertainty but use fuzzy 
set semantics (Baader, et al., 07).  A number of inductive reasoning techniques 
that will be discussed later can also be used to effectively model uncertainty 
within a KB.

A few additional extensions are worth mentioning briefly as well.  Modal logic 
provides for the specification of dynamic information such as belief, obligation, 
and other types of information that can change over time.  Temporal 
extensions are a special type of modal logic for capturing timing.  Finally, 
default values provide for the specification of non-monotonic knowledge, that 
is concepts and implications that are usually true, but can be false in some 
cases.  (Baader, et al., 07)  Many of these extensions can also be captured by 
inductive reasoning algorithms to be discussed.



A number of DL systems provide for the definition of inductive rules that can be 
used to extend KB.  These rules take the form of trigger rules expressed as FOL 
implications of the form C → D.  Trigger rules are typically restricted to Horn 
clauses, which restrict the form of the consequent of the implication (D) to an 
atomic role or concept.  The antecedent of a trigger rule (C), on the other 
hand, can be comprised of an arbitrary number of disjunctive (possibly 
complex) concepts and roles.  A trigger rule expresses the notion that a 
specific conclusion can be asserted if certain facts are known.  Thus, the 
statement C → D is saying that if the ABox contains assertions to support the 
concept “C” for an individual, then the concept “D” also applies to that 
individual.  This provides a powerful  mechanism for inductively extending a 
knowledge base.

Rules can be used to extend a knowledge base using the following 
inferencing algorithm:

Match rules—find all rules with left hand sides satisfied by contents of the 
ABox for which no assertion for the right hand side exists

Select rules—determine which rules to fire in a particular iteration of the 
algorithm.

Make assertions—for the selected rules, add an appropriate assertion 



matching the rule’s right hand side.

This algorithm can be repeated until the first step returns no results.  The 
algorithm is guaranteed to complete because both the ABox and rule set are 
finite.  Also, the results are deterministic regardless of the order of rule 
application.  Upon completion of the algorithm, the resultant knowledge base 
is referred to as the procedural extension of the original knowledge base. 
(Baader, et al., 07)

In the example, the original ABox initially contains the first five depicted 
assertions.  Using a simple first-rule-that-matches selection heuristic, the first 
application of the algorithm will add “Military(contact3)” to the ABox.  The 
second application will add “Military(contact1)” after which no more additions 
will be possible.

Because of the open-world semantics of DLs, there is a subtle, but important 
issue regarding the implementation of DL trigger rules.  In FOL, an implication 
is equivalent to its contrapositive (i.e., A → B ≡ ¬B → ¬A).  With open-world 
semantics, however, we cannot assume ¬B to be true based on the absence 
of a positive assertion of B, and we therefore cannot conclude ¬A without an 
explicit assertion of ¬B.  For this reason, trigger rules cannot be implemented 
as inclusions in the TBox (e.g., Submarine ⊑ Military).  From a mathematical 
standpoint, trigger rules can be implemented by extending the DL with an 
epistemic concept operator as described in (Baader, et al., 07).  In practice, 
rule bases are typically implemented as an adjunct to the DL, so the 
intensional portion of KB is not impacted (Sing and Karwayun, 10).





The explosion of web-accessible data has already been noted as a primary 
motivator for the development of Semantic Web technologies.  To paraphrase an 
early description of Semantic Web potential, goals of these technologies include 
bringing mathematically rigorous structure to previously disorganized data; providing 
unified access to distributed, heterogeneous data stores and services; facilitating 
seamless runtime interoperability between applications; and ultimately, improving 
the efficiency and productivity of human-computer interaction (Berners-Lee, et al., 
01).

Mathematically rigorous web data organization fosters information discovery and 
use, effectively making it possible for web-based agents to eliminate meaningless 
and irrelevant data in favor of more meaningful and important data.  Unified access 
requires that information be accessible to disparate applications that are not aware 
of its existence, much less its structure and format and semantics until runtime.  
Essentially, a lingua franca of sorts for web applications will be necessary for 
applications to process and interpret data so that services and applications can 
operate together effectively.  In the end, Semantic Web technologies will allow 
applications to process more information without a human in the loop so that the 
human-computer interactive experience is more efficient and productive.

These overarching goals have a number of implications for Semantic Web content.  
First, Semantic Web content should be able to be understood by humans and 
automatically processed by machines.  Both of these goals are directly supported 



by data that is self describing—that is, data combined with meta-data describing what 
the data is, what units and formats are used, and the relationships between various 
data items.  All of these goals rely on standards that provide a well-defined 
vocabulary for creating metadata descriptions.  In practice, metadata frameworks for 
Semantic Web technologies allow for abstraction of content semantics from syntax 
and structure.  This allows applications to meaningfully process information without 
regard for storage, implementation, or display details.  (Kashyap, et al., 08)



Metadata is the fundamental underpinning of Semantic Web technologies—so much 
so that Semantic Web content can accurately be described as the data itself 
combined with the associated metadata.  Metadata can be divided into a number of 
intuitive categories and subcategories.

Content-independent metadata is information about data that does not describe 
the data itself.  Examples might include a contact report number, a data store 
location (URI), or an intelligence summary author identifier.  This sort of metadata 
does not say anything about the actual data but can be useful in organizing, 
locating, and classifying data.

Content-based metadata, on the other hand, describes some aspect of the actual 
data.  Content-based metadata can be subcategorized into structural metadata and 
domain-specific metadata.

Structural metadata describes how the data is stored and organized.  Metadata of 
this type can be as simple as the size of a data record or file, but a more useful 
example might be metadata that describes the sections of an operation order to 
which portions of a data record apply.  Data of this sort is largely independent of the 
domain of the data itself.  Rather, it describes how the data record is arranged so 
that the various pieces can be parsed and applied to specific domains of interest.

Domain-specific metadata describes data in the context of a particular domain of 



interest.  Terminology and vocabulary are key aspects of this type of metadata, as it 
is this metadata that enables applications to actually locate and interpret relevant 
data.  Domain-specific metadata can be further subcategorized into two further sub-
categories:

Intra-domain-specific metadata captures relationships  and associations between 
data in a single domain.  As an example, consider an air contact report for a specific 
type of aircraft.  Intra-domain-specific metadata in the threat data domain might be 
used to categorize the contact according to the types of ordnance that it carries, 
missions that it executes, and the countries from which it operates.

Inter-domain-specific metadata, on the other hand, captures relationships between 
data across two or more domains.  Continuing with the air contact report example, 
inter-domain-specific metadata might be useful in correlating this particular contact 
with intelligence assessments (i.e., inter-domain-specific metadata describing 
associations between the threat data domain and the intelligence domain to provide 
additional context between the contact report and the current operation).



A metadata framework is the formal mechanism for creating metadata; associating it 
with actual data; and manipulating, processing, and querying it (Kashyap, et al., 08).  
In order to be useful, a metadata framework has a number of fairly well-vetted 
components.

First, the framework provides a well-defined data model.  The data model defines a 
collection of datatypes suitable for defining abstract views of web content.  Available 
datatypes might include strings, integers, single- and double-precision floating point 
numbers, URLs, and hyperlinks.  In addition to the atomic datatypes, a data model 
will typically provide rules and mechanisms for defining complex data types or 
restrictions on existing data types.  For instance, the atomic integer type might be 
restricted to non-negative values to represent a count, or multiple atomic types 
might be combined to represent a geographic location (this would require range 
restrictions on the atomic data types as well).

Semantics provide the mathematical foundation for interpreting metadata.  
Semantics for a metadata framework are typically described in terms of model-
theoretic semantics (Marker, 07).

Serialization format provides a formal specification for how the metadata is 
encoded.  The most common serialization format for metadata frameworks is the 
eXtensible Markup Language (XML), but this is by convention, not necessity (XML 
is designed to be human understandable and machine processable, so it aligns well 



with Semantic Web goals).

Finally, one or more query languages are usually available so that users (including 
applications) can process metadata.  The query language is the mechanism by which 
specific data is located within a document or data source.

XML and the Resource Description Framework (RDF) have become well-established 
as the preeminent metadata frameworks for the Semantic Web (Berners-Lee, et al., 
01).



XML (Bray, et al., 08) stores both data and content-based metadata in a tree 
structure.  Each node in the tree is a named element that can have named 
attributes and child elements.  In addition, namespaces are frequently used to 
identify the vocabulary from which element and attribute names are drawn.

The inclusion of metadata in the form of named elements, named attributes, and 
namespaces make XML documents self describing to a point.  The structural 
requirements of the document and the actual nature of the relationships implied by 
the tree structure are not explicitly contained in the document, however.

XML Schema (XML(S)) (Gao, et al., 12 and Peterson, et al., 12) provides a limited 
mechanism for conveying semantics of compliant XML documents.  The schema for 
an XML document defines its vocabulary and structure, and to a degree the 
relationships between elements.  The types of relationships and properties that can 
be implicitly conveyed by an XML schema are primarily limited to the “part of” 
relationship implied by the tree structure, the “refers to” relationship of the ID/IDREF 
construct, the “has characteristic of” property conveyed by attributes, and the 
semantics inherent in the vocabulary defined by a particular schema.

Query capability is provided by XQuery (Boag, et al., 10) and XPath (Clark and 
DeRose, 99) as described in (Deutsch, et al., 99).

The (partial) document of the example provides a simplified description of  a contact 



report.  All element and attribute names are in the “gccs” namespace, which in 
combination with the governing schema (not indicated in the excerpt) define the 
domain and vocabulary.  This particular report includes information about the report in 
the “gccs:reportInfo” element.  The element’s structure makes it clear that the report 
information includes the unit making the report, the sensor source for the report, and 
the date and time of the report (using the “gccs:dtg” attribute).  The portion of the 
document relating to the contact itself is similarly encoded in the “gccs:contactInfo” 
element.



The simple example of the slide captures information for a single “Operation” 
represented by the root element of the tree.  The name and commander of the 
operation are represented using the “ID” and “opcon” elements respectively.  The 
elements of the operation are implicitly represented using the “Tasks” element and 
their “Task” children.  The subordinate units that will be assigned specific tasks are 
depicted under the “Assigned” element as “TaskUnit” elements, while the units that 
will be supporting the operation are included in the “Supporting” element.

The tree data structure has a significant limitation that becomes evident even in this 
simple example.  Specifically, the “assignedTo” and “supporting” attributes of the 
“TaskUnit” and “SupportingUnit” elements indicate the relevant task and unit in a 
human-understandable way, but given no other information there is no way to 
definitively associate the relevant element in a machine-processable way.  XML 
provides the ID and IDREF datatypes to effectively extend the tree structure by 
which the data is encoded to a logical graph.  In the example, each “Task”, 
“TaskUnit”, and “SupportingUnit” element is assigned a unique ID.  The 
“assignedTo” and “supporting” attributes use the IDREF datatype to reference the 
relevant element.  In this way, complex relationships between the various elements 
can be captured in an unambiguous way.  The actual XML document associated 
with the graph of the example might be encoded as follows:

<opord:Operation opcon=“CTF1”>Op1</opord:Operation>
<opord:Tasks>



<opord:Task>Task1<opord:Task/>
<opord:Task>Task2<opord:Task/>

</opord:Tasks>
<opord:Assigned>

<opord:TaskUnit opord:assignedTo=“Task1”>TU1</opord:TaskUnit>
<opord:TaskUnit opord:assignedTo=“Task2”>TU2</opord:TaskUnit>

<opord:Assigned>
<opord:TaskUnit opord:assignedTo=“Task2”>TU3</opord:TaskUnit>
<opord:TaskUnit opord:assignedTo=“Task2”>TU3</opord:TaskUnit>

</opord:Assigned>
</opord:TaskUnit>

</opord:Assigned>
<opord:Supporting>

<opord:SupportingUnit opord:supporting=“TU4”>SU1</opord:SupportingUnit>
</opord:Supporting>

</opord:Operation>

Although XML has the capability of expressing significant semantics, particularly 
when the vocabulary and structure is governed by an XML schema, it is not without 
shortcomings.  Specifically, while it is possible to overcome the limitations of the tree 
structure of XML documents through the use of the ID and IDREF datatypes, this can 
quickly become cumbersome in practice.  Also, it is difficult or impossible to enforce 
relationships that might be obvious to humans.  For instance, in the example “TU4” is 
a subordinate of “TU2”, so “TU4” should be assigned only to tasks that have been 
assigned to “TU2”.  Unfortunately, there is no structural constraint that would prevent 
TU4’s assignment to a task associated with “TU1” or some other entity.

Because of the issues noted (and others not discussed here), XML on its own is not 
capable of expressing semantics with the mathematical rigor required of Semantic 
Web applications (Kashyap, et al., 08).  It does however provide an underlying 
encoding that can be used as the basis for more expressive frameworks (Berners-
Lee, et al., 01).



Whereas XML encodes data in a tree structure, RDF utilizes a more generic graph 
structure.

Basic RDF components include resources, properties, and literals.  Resources 
are the things being described and are referred to in RDF using a URL.  A resource 
might be an individual data record or item, a subsection of a data record, or a 
collection of records (additional possibilities also exist).  Properties are specific 
aspects, characteristics, attributes or relationships that are used to describe 
resources.  Literals are simply names that are used in RDF statements.

An RDF statement can be thought of as a triple of the form { subject, predicate, 
object } where “subject” is a resource, “predicate” is a property that is being 
ascribed to that resource, and “object” is the value that is being ascribed.  The 
object of a statement can be either a literal or another resource. Underlying 
encoding of RDF data can take a number of forms (the W3C recommendation calls 
for an XML encoding), but a triples-based approach will be used here.

As an example consider the previous contact report XML example.  This example 
might be encoded with RDF using the following statements (note:  shorthand is 
used for the URLs for clarity):

{ shipURL, navalUnit, DDG-70 }



{ sensorURL, sensorType, SPY-1D }
{ reportURL, report, 1234 }
{ reportURL, reportBy, shipURL }
{ reportURL, source, SPY-1D }
{ reportURL, airContact, contactURL }
{ contactURL, location, positionURL }
{ positionURL, latitude, “32 52 21.3N” }
{ positionURL, longitude, “127 32 15.7E” }
{ positionURL, uncertainty, 1000 }
{ contactURL, altitude, 15000 }
{ contactURL, heading, 210 }
{ contactURL, speed, 350 }

This RDF description has resources for the ship, the sensor, the report, the contact 
info, and the position; properties for associating characteristics to these objects; and 
literals for the concrete names and values.  The statements above define the 
relationships as depicted in the slide.

The RDF Schema (RDF(S)) (Brickley and Guha, 04) provides facilities in the “rdf” 
and “rdfs” namespaces to define vocabularies, classes, and relationships between 
classes.  Graphs defined in a document governed by an RDF schema are required to 
comply with the rules and structure defined in the schema in the same way that an 
XML document governed by an XML schema must comply with its constraints.

The SPARQL Query Language for RDF (Klyne and Carroll, 08) provides a language 
for accessing specific information from RDF descriptions.



Both XML(S) and RDF(S) are used to constrain the content of governed documents.  
As discussed previously, XML(S), is used to define the vocabulary, structure, and 
datatypes of governed documents, but is limited in its ability to convey the 
relationships and semantics.  RDF(S), on the other hand, provides a vocabulary that 
is more suited to describing relationships.  In particular, RDF(S) enables the 
specification of subclass and subproperty relationships, property domains and 
ranges (subject class and object class respectively), and other useful 
characteristics.

In diagram of the slide represents a simple RDF(S) description.  In this diagram, 
“Aircraft” and “Munition” are instances of the RDF(S) “rdfs:Class”.  “Fighter” and 
“Attack” are subclasses of “Aircraft”, and “FighterAttack” is a subclass of both 
“Fighter” and “Attack”.  Similar subclasses are depicted for the “Munition” class.  
Properties, “Airspeed”, “AirOrdnance”, and “GrndOrdnance”, are defined as 
instances of the RDF(S) type “rdf:Property”.  The domain (“rfds:domain”) classes for 
each property are depicted with red arrows, and range classes (“rdfs:range”) are 
depicted with green arrows.  In the example, the range for the “Airspeed” property is 
specified as a double precision floating point number from the XML(S) namespace 
(“xsd”).

The SPARQL query language bears a superficial resemblance to Structured Query 
Language (SQL).  SPARQL is capable of significantly more robust queries than 
SQL, however.  SPARQL uses a pattern matching paradigm that takes into account 



the relationships defined in the RDF document and governing RDF(S) schema 
(Kashyap, et al., 08).  For example, the following query will return all of the air 
ordnance carried by F-16 aircraft (the example assumes that a “Type” property has 
been defined).

SELECT $ordnance
WHERE {

$acft Type “F-16”
$acft AirOrdnance $ordnace

}

Mechanisms are provided to allow for significantly more complex queries that return 
multiple values, place restrictions or conditions on the query, perform set operations, 
etc.  The subclass and subproperty relationship descriptions available with RDF(S) 
have also facilitated the extension of SPARQL to perform many reasoning tasks 
appropriate for DLs (e.g., entailment) (Patel-Schneider and Simeon, 02 and Hayes, 
04).

It is evident that RDF and RDF(S) provide a significantly richer mechanism for 
semantic expression than XML, however, they are still limited in their ability to 
express semantics.  They are not capable, for instance, of constraining or expressing 
cardinality or defining conjunctive classes (Horrocks, 08).  More generally, RDF, 
RDF(S), and SPARQL do not possess the semantic expressiveness of the basic 
expressive DL, ALC, or even the “minimally interesting” DL, AL.  They do, however, 
provide a framework that can be used as the basis for implementing the required 
expressiveness.



The metadata descriptions with the semantic expressiveness required for the 
Semantic Web are in the form of ontologies.  In the context of knowledge 
representation, an ontology is “a specification of a conceptualization consisting of a 
collection of concepts, properties and interrelationships of properties” (Gruber, 93).  
Ontologies for the Semantic Web define the terms of interest for a particular 
information domain and describe the relationships among them.  Semantic Web 
data described in terms of a specific ontology can therefore be processed 
alongside, compared to, and combined with other data described with the same 
ontology regardless of location, source, format, or composition (Horrocks, 08).

An argument can be made that many model forms might reasonably be considered 
ontologies.  Database schemas, ER/EER Models, Unified Modeling Language 
(UML) Models, XML schemas, and RDF schemas all define terminologies and 
describe relationships to one degree or another.  As discussed previously, however, 
even the most semantically rich of these modeling approaches are insufficient for 
realizing the goals of the Semantic Web.  These models can represent information 
and can be queried, but they do not support automated interpretation and reasoning 
required by Semantic Web applications.

Description logics, first-order logics, modal logics provide robust description 
capabilities and mathematically rigorous mechanisms for reasoning.  Of these, 
description logics have proven most applicable to Semantic Web applications.  
FOLs and higher logics highly expressive semantically, but reasoning problems are 



often undecidable (Baader, et al., 07).  Description logics, on the other hand, provide 
both significant semantic expressiveness and decidable reasoning (Ortiz, 10).

The Web Ontology Language (OWL) has emerged as the ontology definition 
mechanism of choice for Semantic Web content (Horrocks, 08).



OWL is a World Wide Web Consortium (W3C) recommendation for the specification 
of Semantic Web ontologies.  OWL allows for the definition of classes and 
subclasses, the association of specific properties to classes, and the definition of 
conjunctive classes by means of DL-based axioms.  OWL is an extension of RDF 
meaning that OWL ontologies can be used to extend existing RDF data stores.

The OWL 1 recommendation was released in 2004 and was based on the SHOIN 
DL (Horrocks, 08) which included the operations of the basic expressive DL, ALC, 
plus role hierarchy, role transitivity, role inverses, unqualified cardinality restrictions, 
and nominals (Baader, et al., 08).  OWL 1 included three profiles, OWL Lite, OWL 
DL, and OWL Full, of which OWL DL provided the most broadly applicable blend of 
expressiveness and decidability (Kashyap, et al., 08).

The OWL 2 recommendation was released in 2008 as an extension of OWL 1 (i.e., 
all OWL 1 ontologies are also valid OWL 2 ontologies).  OWL 2 implements SROIQ 
semantics described previously along with additional features for data typing 
(Horrocks, et al., 06 and W3C, 12).

The RDF(S) description presented earlier might be described by an OWL ontology 
as depicted in the slide.  OWL, however, is capable of expressing significantly more 
complex semantics than this simple example.  Even here, one advantage of OWL 
might be evident.  Properties in this example are associated with classes rather 
than having classes (resources) tied to properties using the “rdfs:domain” and 



“rdfs:range”.  Association of properties with classes (and instances of classes) is a 
more semantically accurate representation than associating classes with properties 
which probably do not have instances outside of the context of specific class 
instances.

In addition to OWL 2 Full, the OWL 2 specification provides three profiles—OWL 2 
EL, OWL 2 RL, and OWL 2 QL—that restrict modeling features to improve reasoning 
performance.  Algorithms designed specifically for reasoning with each of these 
profiles have been developed that execute in polynomial time (Krötszch, 12).

OWL 2 EL derives its name from the EL family of DLs which provide only 
existential quantification.  This profile is particularly useful for large ontologies 
(i.e., those containing a large number of named classes and properties).  
(Motuk, et al., 12)

OWL 2 RL has different rules for the left and right sides of inclusion axioms.  
For instance, value restriction is not permitted on the right side of an axiom, 
while union is not allowed on the left side.  This profile is the most expressive 
of the three.  The RL acronym reflects that reasoning can be implemented 
using a standard rule language. (Motuk, et al., 12)

OWL 2 QL is the least expressive of the three profiles, but is useful for 
applications that work with large sets of instance data.  The OWL 2 QL profile 
includes most of the key features of UML and ER models that are often used 
with databases.  The QL name reflects that queries can be implemented using 
a standard query language.  (Motuk, et al., 12)

Because OWL is an extension of RDF, SPARQL queries can be utilized to 
query OWL ontologies.



OWL ontologies are commonly encoded with either an RDF/XML syntax or 
functional syntax.  Examples in this section will follow this RDF/XML convention, but 
they are not presented as complete or consistent documents (e.g., references may 
not refer to actual resources, examples may conflict with one another, etc.), and 
they should be interpreted here individually as excerpts from larger ontologies.

Class Statements
Definition:   <owl:Class rdf:ID=“Aircraft”/>

<owl:Class rdf:ID=“Munition”/>
<owl:Class rdf:ID=“Contact”/>

Subclass:  <owl:Class rdf:ID=“Missile”><rdfs:subClassOf 
rdf:resource=“#Munition”/></owl:Class>

<owl:Class rdf:ID=“AirContact”><rdfs:subClassOf 
rdf:resource=“#Contact”/></owl:Class>
Equivalence:  <owl:Class rdf:ID=“AttackMunition”>

<owl:equivalentClass rdf:resource=“#GroundMunition”/>
</owl:Class>

Disjointness:  <owl:AllDisjointClasses>
<owl:members rdf:parseType=“Collection”>

<owl:Class rdf:resource=“#FriendlyContact”/>
<owl:Class rdf:resource=“#HostileContact”/>
<owl:Class rdf:resource=“#UnknownContact”/>

</owl:members/>



</owl:AllDisjointClasses>
Instances:  <AirContact rdf:ID=“air1234”>

Set operations
Intersection:     <owl:Class rdf:ID=“FriendlyContact”>

<owl:intersectionOf rdf:parseType=“Collection”>
<owl:Class rdf:resource=“#Contact”/>
<owl:Class rdf:resource=“#Friendly”/>

</owl:intersectionOf>
</owl:Class>

Union and complement:  <owl:Class rdf:ID=“unknownContact”>
<owl:complementOf rdf:parseType=“Collection”>

<owl:Class>
<owl:unionOf rdf:parseType=“Collection”>

<owl:Class rdf:resource=“FriendlyContact”/>
<owl:Class rdf:resource=“HostileContact”/>

</owl:unionOf>
</owl:Class>

</owl:complementOf>
</owl:Class>

Enumeration:  <owl:Class rdf:ID=“NavalUnitType”>
<owl:oneOf rdf:parseType=“Collection”/>

<owl:Thing rdf:about=“#CVN”/>
<owl:Thing rdf:about=“#CG”/>
<owl:Thing rdf:about=“#DDG”/>
<owl:Thing rdf:about=“#FFG”/>

</owl:oneOf>
</owl:Class>

Simple Properties
Definition:  <owl:ObjectProperty rdf:ID=“reportedBy”>

<rdfs:domain rdf:resource=“#ContactReport”/>
<rdfs:range rdf:resource=“#ReportingUnit”/>

</owl:ObjectProperty>
Subproperties:  <owl:ObjectProperty rdf:ID=“#canDeliverGround”>

<rdfs:subPropertyOf rdf:resource=“#canDeliver”/>
<rdfs:range rdf:resource=“#GroundOrdnance”/>

</owl:ObjectProperty>
Assertion:  <owl:PropertyAssertion>

<owl:sourceIndividual rdf:resource=“#air1234”/>
<owl:assertionProperty rdf:resource=“#airspeed”/>
<owl:targetValue 

rdf:datatype=“$xsd;unsignedinteger”>350</owl:targetValue>
</owl:PropertyAssertion>



Negative assertion:  <owl:NegativePropertyAssertion>
<owl:sourceIndividual rdf:resource=“#HOPPER”/>
<owl:assertionProperty rdf:resource=“#reporting”/>
<owl:targetValue rdf:resource=“#air1234”/>

</owl:NegativePropertyAssertion>
Property Characteristics

<owl:ObjectProperty rdf:ID=“isLinkedWith”>
Transitive:       <rdf:type rdf:resource=“&owl;TransitiveProperty”/>
Symmetric:      <rdf:type rdf:resource=“&owl;SymmetricProperty”/>

<rdf:domain rdf:resource “#LinkUnit”/>
<rdf:range rdf:resource “#LinkUnit”/>

</owl:ObjectProperty>
Inverse: <owl:ObjectProperty rdf:ID=“reporting”>

<owl:inverseOf rdf:resource=“reportedBy”/>
</owl:ObjectProperty>

Property restrictions:
<owl:Class rdf:resource=“#AttackAcft”>

<owl:Restriction>
<owl:onProperty rdf:resource=“#canDeliver”/>
….   (statements below go here)

</owl:Restriction>
</owl:Class>
Membership: <owl:allValuesFrom rdf:resource=“#GroundOrdnance”/>  or

<owl:someValuesFrom rdf:resource=“#GroundOrdnance”/>
Cardinality:  <owl:cardinality 
rdf:datatype=“$xsd;nonNegativeInteger”/>3</owl:cardinality>
Assignment:  <owl:hasValue rdf:resource=“#air1234”/>

It is worth noting that class and property definitions are not required to be contiguous, 
so class properties do not have to be contained within the “owl:Class” declaration and 
can use the “rdf:resource” attribute to extend existing classes and properties.  Also, 
the inclusion of both “owl” and “rdf” namespace items in the examples clearly 
demonstrate the relationship between OWL and RDF (i.e., that OWL is an extension 
of RDF).

These examples demonstrate only a small subset of the available OWL structures.  A 
complete description of OWL components, semantics, and encodings is available in 
(W3C, 12).



The table above provides a few examples of the relationship between statements in 
an OWL ontology and DLs.  The examples of this slide utilize the OWL 2 functional 
syntax, which aligns more closely with the DL syntax of previous sections.



The discussion thus far might lead to one of two equally erroneous conclusions:  
that ontology definition is trivially easy, or that it is extremely difficult.  Ontology 
development is, in fact, difficult and requires significant collaboration between 
domain subject matter experts and ontology implementers.

Prior to developing an ontology, a number of considerations must be taken into 
account (Vidya and Punitha, 12):

Level of detail:  To what level of detail must the concepts and relationships be 
defined?  What level of semantic description is required?
Conceptual scope:  How broad or narrow is the domain to be described (e.g., joint 
operational planning versus strike planning).  Is the ontology a detailed component 
of an upper level ontology?  Are the way in which the concepts and relationships are 
described constrained in any way?
Instantiation:  Will the the ontology itself include instantiated individuals?  
Historically, all ontologies include a terminological component and applications build 
(or add to) the assertional knowledge base.  It might be beneficial, however, to build 
assertional components directly into the ontology as well.
Specification language:  Numerous mechanisms for defining ontologies are 
available (particularly if the term is loosely applied to include taxonomies, thesauri, 
database schemas, etc.).  This work assumes that OWL ontologies will be utilized.

Once high-level decisions requirements are determined and decisions made, 



ontologies are commonly developed in a stepped process along the lines of the 
following (Daconta, et al., 03):

Acquire domain knowledge:  assemble information resources and expertise to 
formally describe the domain of interest.
Organize the ontology:  identify the domain’s principle concrete concepts and 
properties, identify relationships, create abstract organizational concepts and 
features.
Flesh out the ontology:  add concepts, relations, and individuals to obtain the required 
level of detail.
Check the ontology:  locate and correct syntactic errors, and logical and semantic 
inconsistencies.  This can be partially completed using reasoning techniques that 
check for consistency of an ontology.  This is also an appropriate time for domain 
subject matter experts to verify the ontology.
Commit the ontology:  completed ontologies must be published and made available 
to the applications that will rely on them.

In practice, this process will not progress as linearly as described, and might involve 
piecemeal development, correction, additional information gathering and consultation, 
etc.  Further, ontology definition can still be daunting even when following a 
systematic development process.  In fact, useful ontologies are often large enough 
that full human conceptualization, much less manual implementation, is impractical or 
impossible.  The SNOMED Clinical Terms ontology contains over 400,000 named 
classes (Horrocks, et al., 08).  Fortunately, authoring tools are available that make 
ontology development and maintenance tractable.

The following provides a short comparison of a number of commonly utilized tools for 
ontology development and maintenance.  This summary focuses on tools that 
support OWL ontology development and maintenance.  For a more complete 
comparison of the most ubiquitous tools, see (Kashyap, et al., 08), (Kapoor and 
Sharma, 10), and (Vidya and Punitha, 12)

Protégé 4.1 (4.2 in beta) (CBIR, 13):  Protégé is a free, open source software project 
implemented in Java and managed by the Stanford University Center for Biomedical 
Informatics Research.  Protégé is a standalone system that uses a plug-in 
architecture to support extension.  Protégé uses frames, first-order logic, and 
metaclasses (as opposed to a purely DL-based approach) for knowledge 
representation  A Protégé-OWL extension is available for support of OWL ontologies.  
It provides a built-in inference engine, consistency checking, and also supports 
selected external inference engines.  It does not include support for distributed 
ontology development.

OntoStudio (Semafora, 08):  OntoStudio is a powerful ontology modeling 
environment commercially developed by the German Company Semafora Systems.  



It utilizes frames and first-order logic for knowledge representation, and plugins are 
available for inferencing, consistency checking, rule-based inference, and 
collaborative ontology development.  OntoStudio does not support external inference 
engines but its built-in inference engine provides consistency checking and other 
inferencing services.

Ontolingua Server (KSL, 13):  Ontolingua Server is a set of tools and services 
developed and maintained by the Stanford University Knowledge Systems, AI 
Laboratory (KSL) for building of shared ontologies between distributed groups.  
Ontolingua utilizes the same knowledge representation mechanism as Protégé but 
utilizes a client-server model.  Ontolingua does not include a built-in inference engine, 
but consistency checking and limited support for external inference engines is 
provided.

ICOM (Franconi, 10):  The Intelligent Conceptual Modeling Tool (ICOM) is an open 
source tool for conceptual design of information systems maintained by the Free 
University of Bozen-Bolzano, Italy.  ICOM is based on an entity-relationship model, 
but utilizes DL-based knowledge representation.  Consistency checking is provided, 
but built-in inferencing relies on connectivity with the ICOM server.  ICOM does, 
however, support external inferencing engines.

IODE (Highfleet, 13):  The Integrated Ontology Development Environment (IODE) is 
a commercially produced modeling tool by Highfleet Semantic Technologies 
(previously Ontology Works) that was designed to support ontology development for 
database applications.  IODE is a standalone system that represents knowledge 
using common logic (based on first-order logic) with extensions for temporal 
reasoning and quantification.  It includes a built-in inference engine and consistency 
checking, but does not support external inference engines.

Visual Ontology Modeler (Sandpiper, 13):  Visual Ontology ModelerTM 2.0 (VOM2) 
is a commercial product of Sandpiper Software for visual development of component-
based ontologies.  VOM2 uses DLs for knowledge representation and includes fairly 
robust facilities for merging, version control, and life-cycle maintenance.  VOM2 does 
not include a built-in inference engine, but supports multiple DL reasoners and rules 
engines.

TopBraid Composer (TopQuadrant, 11):  The TopBraidTM Composer is a product of 
TopQuadrant, Inc. that is implemented as a standalone Eclipse plugin (Eclipse is an 
open-source software integrated development environment).  TopBraid is designed as 
an enterprise-class modeling environment for developing Semantic Web ontologies 
and applications and represents OWL and RDF knowledge directly.  It provides built-
in constraint and consistency checking but does not include a built-in inference 
engine.  It does, however, support multiple external inference engines.



NeOn Toolkit (Suárez-Figueroa, 12):  The NeOn Toolkit is an open source ontology 
engineering environment implemented as a standalone Eclipse plugin.  Knowledge 
representation relies on Frame Logic (an alternative to DLs for ontology definition), 
OWL, and RDF.  NeOn provides built-in constraint and consistency checking and 
includes a built-in inference engine.  It also supports external inference engines.

Given the inherent difficulties of the ontology development process, it is not surprising 
that automatic ontology development is an area of ongoing research.  Three general 
approaches have been proposed.

Supervised Machine learning employs (often manually generated) positive and 
negative examples to “train” the tool (i.e., tune the algorithmic parameters and 
thresholds).  The utility of machine learning approaches to automated ontology 
development is limited by the requirement for large numbers of training examples.  
Nevertheless, examples of automated and semi-automated machine-learning-based 
approaches to ontology development are available (Maedche, et al., 03 and Kashyap, 
et al., 08).

Natural language processing (NLP) has also been used as the basis for automated 
ontology development as well.  This is not surprising in light of the direct application 
of DLs to the field of NLP.  In particular, the Suggested Upper Merged Ontology 
(SUMO) has produced a mapping between WordNet parts of speech and SUMO 
classes (Pease, 04) that can be used to extract meaning and relationships from free-
form text documents (Lin and Sandkuhl, 08).

Statistical clustering and data mining have also been utilized to cull patterns and 
groupings from large volumes of data.  Although effective at identifying related entities 
and visualizing data, these approaches do not lend themselves to identifying the 
nature of relationships or generating labels for statistically grouped entities (Kashyap, 
et al., 08).



Experiences in the development of Semantic Web technologies have clearly 
demonstrated a need for ontology matching and merging.  Development of 
ontologies in isolation has inevitably led to multiple ontologies being applied to a 
single domain, overlapping of domains, and definition of ontologies for different but 
related domains.  In all three cases, differences in terminology, level of detail, 
definition of concepts and relationships and other factors will occur.  In order to fully 
leverage ontologies’ knowledge representation, it must be possible to align differing 
ontologies to enable Semantic Web applications to utilize all available data.

In the depicted example, O1 is an excerpt from a notional strike planning ontology 
and O2 is an excerpt from a notional flight scheduling ontology.  It might be obvious 
to a human observer that the elements “sp:FA-18E” and “sp:GBU-38” in O1 are 
equivalent to “ap:FA-18E” and “ap:GBU-38” respectively in O2.  It is also the case in 
this example that all members of the “sp:ATOEvent” class are also members of the 
“sp:StkElement” class (the reverse is not, however, true).  Finally, it might also be 
inferred that O1’s “sp:assignedAC” property is related to O2’s “ap:assignedUnit” and 
“ap:operates” properties.

Taking advantage of these relationships effectively increases the size of an ontology 
and potentially improves the fidelity as well.  In the case of multiple ontologies in a 
single domain, additional classes, relationships and individuals are effectively added 
to both ontologies.  This is also the case with merging overlapping ontologies for the 
region of overlap, but the merge yields the additional benefit of making the 



relationships between the two domains exploitable by applications as well.  Similarly, 
formally defining the relationships between two disparate but related domains 
enables Semantic Web applications to exploit those relationships and use knowledge 
from both domains.

The problem of ontology matching can be formally defined as follows:  given two 
ontologies O1 and O2, determine an alignment, A, defining correspondences between 
O1 and O2 where A is a set of correspondences defined as 5-tuples of the form Aid = 
< id, e1, e2, n, r > (Shvaiko and Euzenat, 08).  The tuple components are defined as 
follows:

id is a unique identifier for the correspondence.
e1 and e2 are entities (classes, relationships, individuals, data values, etc.) from O1

and O2 respectively.
n is a confidence value (typically in the [0, 1] range) for the alignment between e1 and 
e2.  In the matching process, the confidence level will be used by the matching 
algorithm to determine whether or not to actually apply the presumed relation based 
on the application’s requirements.  If the relation confidence reduces to a binary value 
(0 or 1), then the correspondences can be specified as 4-tuples of the form Aid = < id, 
e1, e2, r > (Shvaiko and Euzenat, 13).
r is a relation holding between e1 and e2.  The relationship does not have to be 
equivalence (although it can be), but can be any relation definable within the 
ontologies (e.g., more general (⊒), less general (⊑), disjoint (٣), overlapping (⊓), 
etc.).



Ontology matching is an area of significant ongoing research.  Matching techniques 
are typically placed into one of four categories:  terminological, structural, semantic, 
or extensional (Shvaiko and Euzenat, 13).

Terminological matching can be either string-based or linguistic.  String-based
matching directly compares strings and substrings from the two ontologies.  Basic 
string comparison techniques include prefix/suffix checking (i.e., does one string 
start or end with the other), edit distance (number of changes required to 
“transform” one string into the other), n-gram testing (common sequences of n 
characters in both strings), tokenization, and other manipulations that provide 
metrics that can be compared from string to string.  Linguistic matching utilizes 
the linguistic characteristics of the entities being compared.  These approaches 
leverage general or domain-specific knowledge contained in external thesauri, 
dictionaries or taxonomies (WordNet is the most frequently utilized common 
knowledge source) to facilitate interpretation of individual names.  Linguistic 
matching techniques exploit known relationships and definitions associated with 
ontological terms to infer relationships between the entities with which they are 
associated.

Structural matching analyzes the graph structures of portions of the ontologies to 
find similarly structured sections. Structural similarity between inner ontology nodes 
can be based on the similarity of their children, their leaves, their relations or some 
combination of the three.  Graph matching is typically encoded as an optimization 



problem where a match minimizes some dissimilarity measurement (Kashyap, et al., 
08).  Alternatively, approaches that compare graphs based on similar hierarchical (is-
a, has-a) characteristics or predetermined anchors (i.e., matches that are known a 
priori) have been shown to be effective (Schvaiko and Euzenat, 13).

Semantic matching utilizes model-theoretic analysis to make comparisons.  These 
methods rely on DL- or rule-based reasoning, or other logical reasoning to deduce 
correspondences.  Although the mathematical foundations of these approaches are 
well vetted, they have only recently received significant attention in research and 
production systems for ontology matching.

Extensional matching attempts to find relationships between instantiated instances 
of ontology classes.  These approaches can use many of the previous techniques to 
identify matching or related individuals in the two ontologies.

A comparison of a few state-of-the-art ontology matching/merging systems is 
provided above.  A reasonable conclusion to be drawn from the comparison is that no 
single technique is likely to prove sufficient.  Rather, each of the depicted systems 
uses a number of techniques to achieve reasonable results.  Even so, ontology 
matching is not an error-free process:  benchmark testing documented in (Schvaiko 
and Euzenat, 13) yielded precision, recall, and F-measure results in the 0.8 to 0.95 
range, however testing on difficult real-world problems yielded results in the 0.4 to 
0.65 range.  For this reason, ontology matching is not yet a fully-automated process.  
All of the systems summarized above generate recommended correspondences that 
can be either accepted or rejected by a human operator. 

A more thorough comparison of each system, including benchmark metrics is 
provided in (Schvaiko and Euzenat, 13).



Closely related to the issue of ontology matching and merging is data integration, 
which deals with actual utilization of web-accessible data by Semantic Web 
applications.  Data must frequently be drawn from databases and other types of 
archives that are not governed by any sort of ontology.  In order for these data 
sources to be used by Semantic Web applications, the data must be integrated into 
an ontology.  Three general approaches have been utilized for this purpose:  a 
single ontology approach, a multiple ontology approach, and a hybrid 
approach (Kashyap, et al., 08).

With the single ontology approach, a single domain ontology is used by the 
application to access multiple data stores.  This method has proven useful in cases 
where all of the data sources view the domain similarly.  Even so, differences in 
level of granularity can make the definition of a single ontology into which all of the 
data can be integrated difficult.  As the heterogeneity of the various data stores 
increases (i.e., the less they overlap) or the similarity of their views of the data 
decreases the definition of a single ontology for working with all of them becomes 
more  difficult.  The tendency towards a prohibitively monolithic ontology can be 
partially overcome through modularity, however the difficulties cannot be completely 
eliminated in this manner.

With a multiple ontology approach, a separate ontology is defined for each data 
source.  The advantage of this approach is that each ontology can be designed 
around the specific data sources to which it will apply.  In practice, however, 



differences in terminology and organization require significant ontology match/merge 
efforts to enable an application to utilize all of the data stores together.

The hybrid ontology approach attempts to combine the advantages of the single and 
multiple ontology approaches.  With this approach, a single shared vocabulary (which 
might, itself, be defined as an ontology) is utilized for the application domain, and 
local ontologies based on the shared vocabulary are developed for specific data 
sources.  Because the shared vocabulary does not have to include all of the 
relationships and semantics of the individual data stores, it can be more easily 
defined than can a single ontology.  On the other hand, because the terminology is 
available, matching between local ontologies is not required (the shared vocabulary 
makes merging implicit).



Recall from the material on DLs that inductive trigger rules can be implemented as 
a DL extension.  These take the form of implications where the truth of a 
consequent clause is implied by the truth of an antecedent clause:  C → D.  In order 
to be useful, rules are typically constructed as Horn clauses, meaning that the 
consequent (D) consists of an atomic concept or role and the antecedent is a 
disjunctive series (0 or more) of complex and/or atomic concepts and roles.

Rules can be added to an ontology as an additional layer that effectively extends 
the semantic expressiveness of the ontology.  For instance, the following trigger rule 
expresses the notion that if an individual, A, is operated by an individual, B, and 
individual B is in hostilities with a third individual, C, then individual A will attack 
individual C:

Country( A ) ⋀ Unit( B ) ⋀ Country( C ) ⋀ operates ( A, B ) ⋀ inHostilities( B, C 
) → willAttack( A, C )

The notion of this example is difficult or impossible to express with most DLs and is 
not possible with OWL.

A number of relevant observations can be made regarding the utilization of Horn-
clause-based rules with ontologies.  First, rules can be thought of as an extension of 
an ontology framework that provides an additional expressive operation (Baader, et 



al., 07).  Also, rules are applied to individuals to make new assertions about those 
individuals:  the rule itself is universally quantified (i.e., it applies to every set of 
applicable individuals), but it is only executed (i.e., assertions are only made) in cases 
where the antecedent conditions hold for specific individuals.  Further, since the 
knowledge base is finite, there is are finite possible rule applications.  Thus, once 
every possible rule execution has been triggered, the knowledge base will have been 
deterministically expanded.

The Semantic Web Rule Language (SWRL) (Horrocks, et al., 04) is a W3C member 
submission that extends OWL by adding Horn-like rules from the Rule Markup 
Language (RuleML).





The notion of open-world semantics was discussed previously in the context of DLs, 
but bears further discussion here.  The distinction between open-world and closed-
world semantics is particularly important in the context of reasoning with ontologies.  
With the closed-world semantics of traditional databases (typically characterized by 
ER, EER, or UML models), missing information is treated as false.  The database 
schema, therefore, can be viewed as a set of constraints on the contained data.  
With the open-world semantics of ontologies, missing information is considered 
unknown.  The axioms of the ontology, therefore, can be viewed as inference rules 
for expanding KB (Horrocks, 08).

Consider the examples of the slide.

The simplified EER diagram on the left specifies that “MilitaryAcft” and “CivilianAcft” 
are both subtypes of the “Aircraft” supertype and that “Missile” and “Bomb” are 
subtypes of “Weapon”.  In order to add a record specifying that an individual aircraft, 
“FA-18_172396”, is armed with an “AIM-120X”, it must already be known (i.e., 
present in the appropriate database tables) that “FA-18_172396” is an “Aircraft”, 
that it is a “MilitaryAcft”, and that “AIM-120X” is a “Weapon”.

Similar relationships are specified in the ontology diagram depicted on the right.  
Specifically, that “MilitaryAcft” and “CivilianAcft” are (disjoint) subclasses of 
“Aircraft”, that “Missile” and “Bomb” are (disjoint) subclasses of “Weapon”, and that 
an entity of the class “MilitaryAcft” can have an “armed” property associating it with 



entities of the “Weapon” class.  With open-world semantics, however, the KB does 
not need to include any information about “FA-18E_172396” prior to adding the 
assertion “armed( FA-18E_172396, AIM-120X )”.  Further once this assertion has 
been included in the KB, we can add the following assertions by inference:

MilitaryAcft( FA-18E_172396 )
Aircraft( FA-18E_172396 )
¬CivilianAcft( FA-18E_172396 )
Weapon( AIM-120X )

In this case, we have implicitly increased the KB by five assertions with a 
single explicit assertion.  Note, however, that this assertion does not provide a 
basis for concluding that “AIM-120X” is a member of either the “Missile” or 
“Bomb” class.  In fact, either of these interpretations would satisfy (model) the 
ontology (an interpretation wherein “AIM-120X” was a member of both 
subclasses would not satisfy the ontology because the “Missile” and “Bomb” 
classes are disjoint).



Subsumption and satisfiability are among the most basic reasoning problems for 
ontologies.  Extrapolating the definition from DLs to ontologies, subsumption can be 
defined as a relationship between two classes, A and B, where every individual of 
class A is also a member of class B (in this instance, B subsumes A).  Using the 
OWL term for this relationship, A is a subclass of B.  The DL definition of 
satisfiability can be applied to ontologies in similar fashion—a class is satisfiable if it 
is possible for an individual of the class to exist without violating the rules of the 
ontology.

A number of key reasoning tasks can be reduced to either subsumption and 
satisfiability as depicted in the slide (Baader, et al., 08), meaning that if either 
satisfiability or subsumption can be computationally solved, then all of the problems 
reduceable to that task are also solvable.  Stated differently, reasoning about 
equivalence, subsumption, satisfiability, and disjointness can all be accomplished by 
reasoning about either subsumption or satisfiability.  In addition, TBox classification 
is evidently determined through subsumption or satisfiability reasoning as well.

A few issues must be considered when assessing the suitability of a reasoning 
algorithm for a particular problem.  First, the problem must be decidable (i.e., does 
an algorithm exist that will solve the problem).  Although seemingly a trivial concern, 
subsumption and satisfiability are potentially undecidable with many expressive 
DLs.  In fact, decidability is an open question for many reasoning tasks with OWL 2 
(W3C, 12).



The second issue is complexity, that is, how many computational steps are required 
by the algorithm.  Early DL reasoning algorithms operated in polynomial time, 
however, these algorithms proved unsuitable for expressive DLs (Baader, et al., 07).  
The ability to reason in polynomial time was the primary motivation behind the OWL 2 
EL, RL, and QL profiles (Krötzch, 12).  Reasoning with OWL 2 Full ontologies 
typically requires algorithms with exponential complexity (W3C, 12).

Soundness and completeness have to do with the reasoning algorithm itself.  
An algorithm is sound if and only if every solution that it finds is correct, and an 
algorithm is complete if it is guaranteed to find a solution if one exists (Baader, 
et al., 07).

Given the requirements above, tableau algorithms have been the most 
frequently utilized tools for ontology reasoning for production and research 
systems (Baader and Sattler, 01 and Rudolph, 11).  



As the previous slide shows, satisfiability and subsumption are fundamental 
ontology-reasoning tasks that form the basis for more complex reasoning tasks 
such as equivalence, disjointness checking, and classification that are typically 
associated with DL TBoxes.  In practice, they also provide for reasoning with ABox 
axioms.

Consistency checking (i.e., testing the ABox and TBox together for contradictions) 
can be accomplished by testing the ABox as a whole for satisfiability—the ABox is 
consistent with the TBox if none of the ABox axioms introduce a contradiction.  
Notice that consistency does not require that all TBox concepts be satisfiable, so it 
is possible for a consistent knowledge base to contain TBox concepts that are 
unsatisfiable (a TBox of this sort would be considered incoherent but satisfiable).

Entailment, or instance checking, checks whether or not a particular assertion is 
true in every model interpretation (regardless of whether or not it is explicitly 
asserted with an ABox axiom).  Entailment of concept for a particular individual (i.e., 
A ⊨ C(x)) is easily checked by testing the satisfiability of ¬C(x).  If ¬C(x) is 
unsatisfiable, then the ABox entails C(X).

Retrieval of all named individuals entailed by a concept can be 
accomplished by testing for entailment of each named individual in KB.  For 
even moderately complex knowledge bases, computational complexity 



makes this approach impractical (Rudolph, 11).  Optimization can often be 
achieved, however, based on the structure of the ontology (e.g., subsumption 
preordering; disjoint, transitive, and reflexive relationships, etc.) (Ortiz, 10).  In 
addition, in many cases, the underlying data storage can facilitate the process 
by retrieving or eliminating multiple named entities at once (e.g., relational 
databases or XML documents to which XPath can be applied).

The worst-case scenario for reasoning about realization for an individual 
requires entailment testing of the individual for each concept in S followed by 
subsumption testing for each of the concepts entailing the individual.  If a TBox 
classification is available, however, realization testing only requires entailment 
tests of increasingly specialized concepts of S according to the preorder of the 
TBox.

Conjunctive queries (CQ) and Unions of Conjunctive Queries (UCQ) require 
retrieval-like reasoning for complex combinations of concepts and roles.  They 
can be comprised of multiple concepts and roles that contain multiple 
variables.  CQs and UCQs are commonly expressed as first-order logic or DL 
expressions or SPARQL queries.



CQ answering (and retrieval and UCQ answering) is an important reasoning task 
that bears further discussion.  A conjunctive query can be formally defined with the 
equation q = ∃v.φ(x, v) where v is a set of non-distinguished variables for 
which only existence is being queried, x is a set of answer variables for 
which the actual values are queried, and φ is a set of KB concepts and roles 
utilizing only elements of x and v.  The answer to the query, q, is the set of 
tuples corresponding to answer variable matches.  As an example, consider 
the following query expressed as a FOL expression:

q = ∃v2,v3.Contact(x1) ⋀ reportedBy(v1,v2) ⋀ mission(v2, “DCA”) ⋀
tasks(v3, v2) ⋀ AirTaskingOrder(v3)

This first-order logic expression is requesting all of those cases where for 
specific individuals, x1, v2, and v3, where Contact(x1), reportedBy(v1, v2), 
mission(v2, “DCA”), tasks(v3, v2) and AirTaskingOrder(v3) are all entailed.  In 
this example, x1 is the only answer variable, so the result of the query will be 
the set of all contacts that were reported by a unit that was tasked by an air 
tasking order to conduct a “DCA” mission.

Although typically specified using FOL, a DL, or a query language (e.g., 
SPARQL), it is possible to represent a CQ as a directed graph with nodes 



representing the query’s concepts and arcs representing the query’s roles.  
Viewed in this manner, answering a query amounts to finding a homomorphic 
mapping from the query graph to subgraphs of KB (Ortiz and Šimkus, 12).

Queries that contain no answer variables determine whether the query is 
entailed by KB for any specific (i.e., bound) non-distinguished variables.  
Queries that contain one or more answer variables return all specific bindings 
for the answer variables and are referred to as answer queries.

In the most straightforward implementation, CQ and UCQ reasoning can be 
implemented by repeated testing of bindings of variables to ABox individuals 
and testing for entailment.  This evidently requires nm entailment tests (n is the 
number of ABox individuals and m is the number of query variables), however, 
optimizations taking advantage of TBox-defined relationships and query 
structure can significantly reduce the number of required checks (Ortiz, 10).

The complexity and potential optimizations for CQ and UCQ reasoning are 
evidently comparable to those of concept retrieval.  Both problems have 
2EXPComplete complexity for many expressive DLs (Ortiz, 10).  However, 
computational requirements for concept retrieval grow linearly with the number 
of named individuals in the ABox while requirements for CQ and UCQ 
answering grows exponentially based on the number of named individuals in 
the ABox and the number of variables in the query.  Optimizations can 
eliminate large sections of the potential search space to make queries 
tractable, but CQ and UCQ remains an area of significant research interest.



The first example of a tableau algorithm was described in (Schmidt-Schaub and 
Smolka, 91) and has provided the basis for all subsequent tableau algorithms for 
expressive DLs.  The algorithm is useful for reasoning about satisfiability and 
consistency with ontologies of the ALC family of DLs.  The algorithm can be used to 
test the satisfiability of one or more concepts (or the consistency of the entire ABox) 
and works by attempting to construct an interpretation that satisfies all of the ABox 
concepts.  The basic tableau algorithm for ALC works as follows (the example 
determines satisfiability or unsatisfiability for a single concept; consistency can be 
determined by beginning the algorithm with A0 equal to the entire ABox being 
tested):

1.  Develop A0 in negation normal form (all named concepts are atomic and 
negations are applied only to atomic concepts).  This can be accomplished in linear 
time by re-expressing named complex concepts with their TBox definitions and 
applying de Morgan’s rules to negated complex concepts.

2.  Begin with a set of ABoxes being tested that contains A0 as the sole element.

3.  Perform the following three steps repeatedly until the algorithm is complete.

1.  Choose one element of S, Ai, for which a condition from the table applies
2.  Perform the action associated with the condition on Ai to generate A’ (and A” 

for the third condition of the table)



3.  Remove Ai from S.  Replace it with A’ (and A” as applicable) iff no 
contradictions are contained.

An ABox that contains a contradiction (i.e., { P(x), ¬P(x) } ⊆ Ai for some concept P 
and individual x) is said to be closed, while an ABox that contains no 
contradictions is said to be open.  An ABox for which no condition from the 
table applies is said to be complete.

The algorithm is complete when ALL elements of S are closed.  If A’ (or A”) is 
found to be closed when the action from the table is applied, it does not need 
to be added to S.  Thus, an empty S indicates that contradictions have been 
identified in all candidate ABoxes.  In this case, the concept(s) being tested 
are unsatisfiable (or the ABox is inconsistent if A0 contained the entire 
knowledge base).

Alternatively, the algorithm is also complete when ANY element of S is both 
open and complete.  Since the candidate ABox has been fully expanded 
without generating a contradiction, the original concept has been shown to be 
satisfiable (or the ABox has been shown to be consistent if A0 contained the 
entire knowledge base).

This basic algorithm highlights two important points concerning tableau 
algorithms in general.  First, the action associated with existential 
quantification generates two ABoxes.  The algorithm then, can be viewed as 
generating trees with each action being applied to a leaf node to generate one 
or two child nodes.  The depth of the tree is bounded by the size of A0 and the 
branching factor is bounded by the number of existential quantifications.  At 
any point in the algorithm’s execution, the tree’s leaves are represented by the 
ABoxes contained in S.  The second observation is that the action associated 
with value restriction condition instantiates a new hypothetical individual, which 
is allowed under the open-world semantics.

While the ALC DL with which this particular algorithm works is far less 
expressive than OWL, it can be extended in a relatively straightforward way to 
work with other expressive DLs, including OWL’s SROIQ.



The rules depicted in the slide extend the tableau algorithm of the previous slide to 
reason with more expressive DLs.

The first two rules provide for unqualified cardinality restrictions (the ALCN DL).  
The first rule accounts for greater-than rules by adding enough unique role 
instances to A meet the required minimum.  The second accounts for the less than 
relationship by combining role instances that have not been explicitly declared 
unequal (i.e., replace “r(x, y1)” and “r(x, y2)” with a single occurrence of “r(x, y1)” 
unless an assertion of “y1 ≠ y2” is contained in A).  The method of checking A 
for closure must be augmented to account for these new rules as well.

The third rule provides for qualified cardinality restrictions (the ALCQ DL) by 
adding “C(y)” to A’ and “¬C(y)” to A” for all y in the qualified role with x that 
are not already identified in A as either C or ¬C.

The fourth and fifth roles provide for role hierarchies (role/sub-role 
relationships) by modifying the existential quantification and value restriction 
rules of the original algorithm.

The sixth and seventh rules provide for transitivity and inverse roles.



In combination, these rules provide a basis for algorithmically reasoning with 
SHIQ ontologies and can be extended further to reason with SHOIQ
ontologies expressible with OWL.



Automata-based reasoning for DLs has been a topic of significant recent research.  
Automata-based approaches have limited implementation examples to date 
because of the requirement to generate an exponentially large automaton 
(Calvanese, et al., 11).  Nevertheless, they have characteristics that may provide for 
improved performance for reasoning tasks for which tableau algorithms are 
demonstrably inefficient such as retrieval and conjunctive query answering (Ortiz, 
10).

Automata-based techniques are similar to tableau algorithms in that they conduct 
queries by verifying (or refuting) the existence of modeling interpretations that 
satisfy the reasoning task requirements (Rudolph, 11).

Automata-based algorithms rely on KB forest interpretations, that are constructed in 
accordance with the rules depicted in the slide.  This type of interpretation serves 
two purposes:  1) it limits counter-example search area (which is the mechanism 
used by both tableau and automata-based algorithms), and 2) automata techniques 
have been utilized successfully with infinite tree structures on problems closely 
related to DL reasoning (Ortiz, 10).

The second component of automata-based reasoning systems is an alternating 
tree automata (ATA) that accepts or rejects KB trees (or more recently, a whole 
forest) (Ortiz and Šimkus, 12).  ATAs are nondeterministic finite automata that 
accept trees as input described as depicted in the slide.  Nondeterminism comes 



into play when the ATA attempts to resolve unions, intersections, cardinality 
restrictions, or other operations with potentially disjoint or parallel realizations.  In 
these instances, the algorithm branches to test all possible or necessary realizations 
(Glimm, et al., 08).

All automata-based algorithms follow the same general algorithm.  First an ATA, A1, is 
developed that will accept forest interpretations that model KB.  Second, a query-
specific automaton, A2, is developed that will accept trees containing query matches.  
The intersection of A1 and the complement of A2 provides an automaton that accepts 
counter-models to query entailment (i.e., it accepts trees that model KB for which the 
query is false).  Because query entailment requires that the query be true for every 
model of KB, the set of trees accepted by A1 ∩ ¬A2 will be empty if the query is 
entailed (Calvanese, et al., 09 and Calvanese, et al., 11).

Automata-based algorithms have been utilized for many expressive DLs approaching 
the expressiveness of OWL 2.  (Calvanese, et al., 09) and (Calvanese, et al., 11) 
propose automata-based algorithms for reasoning with the SRIQ, SROQ and SROI 
DLs.  Algorithms for CQ reasoning with DLs more expressive than these are not 
available at present, and the question of whether or not CQ reasoning with full 
SHOIQ DL of OWL 1 or SROIQ of OWL 2 is decidable is currently an open question 
(Rudolph, 11).



Tableau algorithms and automata algorithms both reason about satisfiability by 
attempting to develop a model for the expression being tested (i.e., if a model 
exists, then the expression must be satisfiable).  Methods of this sort utilize model-
theoretic reasoning (Rudolph, 11).

Resolution, on the other hand, uses a proof-theoretic approach where the axioms of 
KB are converted to Clause Normalized Form (CNF) FOL clauses to which 
resolution calculus rules are applied.

A CNF FOL description equivalent to KB can be defined as follows:
Replace axiom elements with the substitutions of the table (and others not 

depicted)
Move all negations to the atom level through application of FOL rules
Skolemize all of the existentially quantified variables

e.g., ∃armed.Sidewinder ⇒ armed(x, f(x)) ⋀ Sidewinder(f(x))
All other variables are implicitly universally quantified

Manipulate clauses to eliminate embedded conjunctions
Break conjunctive clauses into separate clauses     

Once the KB has been converted to CNF FOL clauses, the query is negated, 
converted to CNF clauses, and notionally added to KB.  Unification rules are 
then iteratively applied until an inconsistency is discovered or all possible 



unifications have been tried.  Unifications are conducted by finding two 
clauses with complimentary atoms, at least one of which contains an unbound 
variable.  For example, the following two clauses

¬A(x) ⋁ B(z) ⋁ s(x, z)
C(a) ⋁ r(b, c) ⋁ ¬s(b, 5)

can be unified because the first contains “s(x, z)” and the second contains 
“¬s(b, 5)”.  The unification rule relies on a unification pairs of { b/x, z/5 } as 
follows:

(¬A(b) ⋁ B(5) ⋁ s(b, 5)) ⋀ (C(a) ⋁ r(b, c) ⋁ ¬s(b, 5)) ⇒ ¬A(b) ⋁ B(5) ⋁ C(a) 
⋁ r(b, c)

If an inconsistency is uncovered (i.e., KB includes clauses for both A(x) and 
¬A(x)), then the original query is satisfiable (by showing that KB ∪ { ¬q } is 
unsatisfiable).

Resolution-based algorithms have been described for DLs up to SHOIQ with 
specific restrictions applied to ensure termination and decidability (Motik and 
Sattler, 06 and Kazakov and Motik, 08).



Inductive rules that extend a DL can allow for the expression of relationships that 
cannot be defined solely with DLs.  Trigger rules consisting of an antecedent and a 
consequent can be used to add new facts to the database—if the antecedent of the 
rule is satisfied, then the consequent of the rule can be added to KB.

Alternatively, rules can be viewed as augmenting satisfaction- and subsumption-
based reasoning.  If the KB’s TBox includes a set of trigger rules, then all ABox 
axioms that are entailed by the ontology are implied by the rules (as with other 
relationships that are not explicitly asserted).  Reasoning about specific goals, then, 
is a different form of entailment testing.

Reasoning with trigger rules is typically conducted in three steps, the execution of 
which can be modeled as a finite state machine (Singh and Karwayun, 10)

A rule matcher identifies all rules, referred to as the conflict set, whose 
antecedents are satisfied and whose consequents are not present in KB.  If the 
antecedent portion of a rule is entailed by KB, then that rule can potentially be used 
to add axioms.  Once the conflict set has been generated, a conflict resolver is used 
to determine which rules to actually “fire”.  Finally, a rule executor fires selected 
conflict set rules and adds their consequents to KB.

Two general methods are used for rule-based inferencing.  Forward chaining is a 
data driven approach.  Forward chaining algorithms begin by identifying all rule 



antecedents that are matched by existing KB axioms.  Selected rules from the conflict 
set are fired to assert new axioms, and the process repeats until a specified goal is 
achieved, the rule matcher returns an empty conflict set, or a predetermined number 
of algorithm iterations have been executed.  Forward chaining is most applicable 
when the intent is to build the knowledge base out as much as possible rather than to 
determine whether or not a specific goal is entailed by KB.

Backward chaining is a goal-driven approach to reasoning.  These algorithms begin 
with a specific goal and attempt to find an inference chain that will support the 
addition of the goal to KB.  The initial conflict set for a backward chaining algorithm, 
then, contains all rules for which the goal is the consequent.  A goal from the conflict 
set is selected and used as a sub-goal for a recursive call to the algorithm.  The 
recursive base case is reached when the goal is contained in KB (success) or is not 
the consequent of any rules (failure).  Backward chaining can be naïvely implemented 
with a simple depth-first or breadth-first strategy, but can be more efficiently 
implemented with directed search strategies such as A* search, means-ends 
analysis, or GraphPlan (Russell and Norvig, 10).  Not surprisingly, backward chaining 
algorithms are useful when the intent is to determine whether or not a specific goal is 
entailed by KB.  From this standpoint, backward chaining is analogous to entailment 
checks discussed previously.

A number of issues might be apparent:

First is the question of antecedent matching tractability.  Taken to the extreme, 
matching rule antecedents potentially requires conjunctive query answering for every 
rule KB.  In practice, this is unrealistic, so rule matches are usually based on axioms 
that are explicitly included in KB.  Additionally, the composition of rule antecedents 
can be restricted to improve matching performance and maintain decidability 
(Horrocks, et al., 04).

The second issue regards conflict resolution, of particular importance with forward 
chaining algorithms (but also relevant with backward chaining).  If KB is large, the 
conflict set is likely to be large as well, making the algorithm’s performance highly 
dependent upon the order in which new axioms are added to KB. The selection 
strategy can be hard-coded into the reasoner, or it can be included as part of the 
model.

Decidability is a function of the DL itself and also of language used to specify trigger 
rules.  Trigger rules are generally restricted Horn clauses with additional restrictions 
to the antecedent to make the rule matching process tractable.  Termination of both 
forward and backward chaining algorithms is guaranteed by the finite size of KB 
(Baader, et al., 07).

Finally, consistency of KB is potentially more problematic if trigger rules are included.  



The consistency check algorithms that have been discussed do not account for 
trigger rules.  Therefore, the possibility that a trigger rule will make an assertion that 
compromises the ontology’s consistency cannot be discounted.



Both commercial and open source reasoners are available for use with OWL 
ontologies.  A few of the more popular and more capable ones are included in this 
comparison.

Pellet (Sirin, et al., 07), a Java-based, open source reasoner for OWL ontologies, 
was the first reasoner to fully implement the full OWL 1 DL capability (the SHOIN 
DL) and has been extended to support OWL 2 features (SROIQ DL).  It uses an 
optimized tableau algorithm for most reasoning tasks and an optimized “rolling up” 
technique (which, like tableau and automata algorithms, takes advantage of an 
OWL ontology’s tree model property) for conjunctive queries with non-distinguished 
variables.  In addition, Pellet includes support for multi-ontology reasoning and non-
monotonic reasoning.

RacerPro (Haarslev, et al., 12) is a commercial product of Racer Systems GmbH & 
Co. KG for reasoning with the SHIQ subset of OWL 2.  It uses an optimized tableau 
algorithm for reasoning.  A robust proprietary language (nRQL) is used for 
specifying conjunctive queries and inductive rules (including facilities for defining 
when rules fire and under what circumstances they are active), and RacerPro also 
supports SPARQL queries and SWRL rules.  In addition, RacerPro provides a 
number of interesting additions such as TBox and ABox retractions (i.e., non-
monotonicity).

FaCT++ (Tsarkov and Horrocks, 06) is an open source reasoner providing full 



support for OWL 1 DL and partial support for OWL 2 (keys and typing are not fully 
supported).  FaCT++ uses an optimized tableau algorithm for reasoning, but does not 
support rules and only supports a restricted set of conjunctive queries.

The Scaleable Highly Expressive Reasoner (SHER) (Dolby, et al., 09) is a 
commercial product of IBM developerWorks® that is built upon the functionality of the 
open source Pellet reasoner.  SHER is specifically designed to work with very large 
knowledge bases.  Efficiency is gained by reasoning with an in-memory summary of 
the complete ABox, through the use of polynomial-time algorithms for subsets of the 
full SHIN DL (e.g., EL+), and applying fast and sound (but not necessarily complete) 
reasoners to find obvious solutions quickly.

Jena (Apache, 13) is an open source Semantic Web framework with a Java 
Application Programming Interface (API) for working with RDF graphs.  
Although intended for RDF, Jena does provide support for OWL.  It does not 
fully support any specific DLs, however, and as a result, provides only limited 
reasoning capabilities.  It does provide rule support, but utilizes its own format 
and does not allow rules to be specified with SWRL.

The KAON2 reasoner (Motik, 08) and its commercial counterpart, Semafora 
Systems’ OntoBroker, are unique among the reasoners discussed here in that it 
utilizes a resolution-based algorithm for reasoning.  KION2 uses a client-server 
system for maintaining ontologies and supports conjunctive queries specified in 
SPARQL and inductive rules specified in SWRL.  One interesting addition provided by 
KAON2 is the Java Application Programming Interface that makes it possible to 
programmatically manage, manipulate, and reason with ontologies.



With the exception of inductive rules, all of the reasoning tasks discussed thus far 
can be reduced to satisfaction checking.  These standard reasoning tasks are 
deductive in nature and draw logical conclusions from the KB itself.  Although 
inductive in nature, rule systems also provide a mechanism for drawing logical 
conclusions from the knowledge base.  In all of these cases, the reasoning 
conclusions are guaranteed to be entailed by KB.  On the other hand, it is 
sometimes desirable to make inferences from a knowledge base that are not fully 
entailed by the axioms contained in the KB.

Induction is a process of drawing generalized conclusions from a KB’s assertional 
data or drawing conclusions about individuals or groups represented in KB that are 
not fully entailed.  Induction relies heavily on concepts of machine learning and data 
mining that will be discussed shortly.  Induction is useful when decisions or 
conclusions need to be based on a preponderance of the evidence rather than on 
conclusive evidence.  Inductive Logic Programming (ILP) (Muggleton and Raedt, 
94) has proven particularly applicable in the area of induction reasoning with 
ontologies (Rudolph, 11).

Abduction, on the other hand, attempts to identify missing premises that if present 
would result in the entailment of desirable (or presumed) axioms.  Stated differently, 
if an axiom, α is not entailed by KB, what additional axioms, KB’, would result in α’s 
entailment were they added to KB.  Abductive reasoning services are useful when a 
desirable or  suspected outcome is not entailed, and one wants to identify the 



missing information.  Abduction is also an intuitive application of ILP (Muggleton and 
Raedt, 94).

It is important to note that, unlike standard reasoning tasks, induction and abduction 
algorithms are not truth preserving.  That is, assertions may be added to KB that turn 
out to be false as more information is gathered.





The most prominent areas of machine learning research relating to the Semantic 
Web concern the use of machine learning techniques to develop and maintain 
ontologies.  Machine learning was identified early on as a means of facilitating the 
growth and development of the Semantic Web, with an early W3C white paper 
proposing five specific applications (Maedche, 01).  These can be roughly divided 
into the use of machine learning to build Semantic Web content from existing web 
data and the use of machine learning to improve and maintain Semantic Web 
content.  Ontology extraction and Metadata extraction fall into the first category, 
while ontology merging, ontology maintenance, and application management fall 
into the second.

Ontology extraction from existing web data requires the analysis of existing 
structured and unstructured data to identify relationships and concepts.  Data can 
range from completely unstructured material such as written documents, images, 
and steaming data to highly structured data stores such as relational databases, 
taxonomies, and dictionaries.

Extraction of relational metadata from existing web data involves the identification of 
characteristics of individuals and relationships between individuals.  Metadata 
extraction might be viewed as a preliminary step in automated ontology 
development in that characteristics and relationships identified in this stage can be 
leveraged later.



Merging and mapping ontologies involves identifying common concepts, roles, and 
individuals.  Although ontology matching might be viewed as simpler than developing 
an ontology from scratch, it is complicated by the fact that similar terms may be 
defined differently and common concepts and relationships can have overlapping but 
not identical meanings.  As pointed out previously, current automated ontology 
merging approaches provide recommendations, but do not typically merge concepts, 
roles, or individuals without the concurrence of a human supervisor.

Maintaining ontologies by analyzing instance data involves the development of new 
TBox axioms from instance data contained in the ABox.  Commonly referred to as 
ABox mining, this operation typically involves analyzing RDF statements to derive 
taxonomical classes and their relationships.  Metadata extraction and ABox mining 
together can be used as sequential steps in the larger ontology extraction process.

Finally, the use of machine learning for application maintenance has been proposed 
as a means of improving Semantic Web services through analysis of user activity.

Despite its importance to the evolution of the Semantic Web, automated generation 
of Semantic Web content through machine learning is not as important to data fusion 
and correlation.  These tasks might, however, benefit from the application of machine 
learning techniques.  In particular, the inductive reasoning task is the assertion of new 
ABox axioms to capture presumed or predicted information.  The process amounts to 
drawing the most likely conclusions based on the available data, and is clearly 
analogous to traditional machine learning.

When compared to the use of machine learning to build the Semantic Web, the use 
of existing Semantic Web data to support machine learning is less ubiquitous.  This is 
in part due to the fact that most of the web is still not yet semantically described.  
Nevertheless, Semantic Web content has characteristics that are well-suited to its 
use in machine learning, and mining Semantic Web content is an active area of 
research (Tresp, et al., 08).  Specifically, semantic description of web data removes 
ambiguity, imposes structure, and captures background information.  All of these can 
be used by machine learning techniques that rely on interpretations of web content 
and organization of individual entities.

Semantic Web content can be effectively applied to most machine learning 
techniques, however, there are a few techniques that have proven particularly 
relevant.



Inductive Logic Programming (ILP) combines aspects of propositional logic, 
inductive learning, and logic programming to derive inference rules (Tresp, et al., 
08).  The idea is to apply propositional calculus to KB in such a way as to derive 
new inductive rules from existing rules (the TBox) and evidence (the ABox) that fully 
explains the evidence.

The general premise of all inductive inference can be stated as follows:  given 
background knowledge, B, and evidence, E, where E does not contradict B (prior 
satisfiability) but B does not fully explain E (prior necessity), inductive inference 
attempts to find a hypothesis, H, such that adding the hypothesis to the background 
knowledge fully explains the evidence (posterior sufficiency) and maintains 
satisfiability of the knowledge base (posterior satisfiability) (Muggleton and 
Raedt, 94) .  This can be expressed in terms of KB with the following 
expressions:

Given KB = < T, A > and E ∈ A
T ∪ E ⊭ ٣ (prior satisfiability)

T ⊭ E (prior necessity)
T ∪ E ∪ H ⊭ ٣ (posterior satisfiability)
T ∪ H ⊨ E

The ILP algorithm works by iteratively applying transformation rules to conjunctions 



of clauses to make them more generalized or specialized.  A conjunction of clauses, 
G, is said to be more general than a conjunction of clauses, S, if and only if G entails 
S.  Conversely, G is said to be more specialized than S if and only if S entails G.  
Rules are considered either deductive or inductive based on whether they perform a 
specialization or generalization role respectively (Muggleton and Raedt, 94).  As an 
example, consider the following rule for absorption (A and B are unbound variables 
for clauses, and p and q are unbound variables for atoms).

p ← A ⋀ B      q ← A 
Absorption: -------------------------

p ← q ⋀ B      q ← A 

This is an inductive rule that can be applied to any pair of clauses of the form p 
← q ⋀ B and q ← A to yield two new clauses with forms p ← A ⋀ B and q ← A.  
The reverse of the rule can applied inductively, to clauses of the form p ← A ⋀
B and q ← A to generate new clauses of the form p ← q ⋀ B and q ← A (this is 
essentially resolution).

It must be noted that inductive rules are not logically sound meaning that they 
are a mechanism through which the truthfulness of KB can be compromised.  
Consider the preceding example.  If KB contains a clause of the form q ← C in 
addition to q ← A (for the same q), the antecedent of the new clause, p ← q ⋀
B, can be satisfied in cases where the antecedent of original clause, p ← A ⋀
B, is not (e.g., ¬A ⋀ C is entailed).



The basic ILP algorithm as depicted in the slide (Muggleton and Raedt, 94) works 
by maintaining a queue of candidate hypotheses, QH.  At each iteration of the 
algorithm, a single hypothesis is removed from QH and a set of applicable rules are 
chosen from R.  The rules are applied (either exhaustively or by some other 
criterion) to H to produce a new set of hypotheses, H1 through Hn.  Promising are 
then added to QH and the process is repeated until a specified completion criterion 
is reached.  The ILP algorithm equates, therefore, to an extension of standard DL 
reasoning algorithms that leverage the tree-model property of ontologies to derive 
models for KB.

The algorithm contains a number of generic procedures (denoted with italics) that 
must be defined for the particular application. 

The initial QH may contain a single hypothesis containing the ground truth TBox and 
ABox (or subsets), or it may contain one or more hypotheses that include desirable 
or suspected axioms (i.e., abductive reasoning as previously defined).

The set of inference rules, R, consists of an arbitrary set of inductive and deductive 
rules as described.  R can contain both domain-independent rules such as the 
absorption example and domain-specific rules containing information directly 
applicable to KB.

Rules are chosen based on applicability to the hypothesis being expanded and 



according to application-specific criteria.  It is not the case that all applicable rules will 
be selected.  As an example, it is permissible to apply rules either deductively or 
inductively, but in most cases inductive application is preferred (deduction can be 
accomplished through standard DL reasoning techniques).  Additionally, exhaustive 
rule application will evidently lead to exponential growth of QH, so the rule-selection 
heuristics must prioritize rules based on whether or not they make progress towards 
the desired end state and select rules for inclusion in RH accordingly. 

The makeup of QH requires consideration of similar issues.  The depicted algorithm 
uses the standard “enqueue” and “dequeue” terminology from the computer science 
field to represent the operations for adding and removing hypotheses from QH.  In 
practice one or both of these operations must account for the likelihood that particular 
hypotheses will lead to the best solution.  Even with highly selective rule selection 
heuristics, traditional queue operations will result in an inefficient breadth-first search 
of hypotheses.   Efficiency can be improved by implementing QH as a priority queue 
ordered according to an evaluation metric.  The evaluation metric provides an 
assessment of each hypothesis based on its proximity to a solution and effectively 
implements the algorithm as a best-first search.

The “prune” operation of the algorithm allows the removal of impossible hypotheses 
without further evaluation.  This step is required because rules from R are applied 
irrespective of the evidence—there is no requirement that the consequent of a rule 
maintain consistency.  Because any final solution must be satisfiable, hypotheses that 
are inconsistent with KB can be eliminated without further evaluation.

In addition to eliminating inconsistent hypotheses, the pruning function can be used to 
eliminate highly unlikely hypotheses.  As discussed earlier, the application of inductive 
rules introduces uncertainty—the likelihood of a new hypothesis is a function of the 
likelihood of its parent hypothesis and the uncertainty introduced by the inductive rule.  
Each hypothesis, therefore, can be assessed according to its likelihood, and the 
unlikely ones can be eliminated without further evaluation (Muggleton and Raedt, 94).  
Bayesian approaches that probabilistically evaluate hypothesis likelihood based on 
the empirical probabilities contained in KB and inductively deduced additions can be 
intuitively applied for this purpose.  It might also be the case that an oracle (i.e., a 
user or other arbitor) can be invoked to eliminate unsuitable hypotheses.

Evidently, the stop-criterion function can be satisfied in one of two cases.  Either a 
hypothesis has been derived that meets both the posterior satisfiability and posterior 
sufficiency requirements, or QH contains no more hypotheses for evaluation.  In the 
first case, the inductively derived rules of the satisfying hypothesis can be added to 
KB to “explain” the tested subset of the ABox (or they formulate the missing 
information in the case of abductive reasoning).  An empty QH, on the other hand, 
indicates that KB does not contain enough information to explain the initial 
hypotheses.  It is important to recognize that this does not equate to a refutation of 



the initial hypotheses.  Additionally, computational exigencies might necessitate the 
imposition of other stop criteria.  In most cases this will amount to restricting the 
algorithm to a predetermined number of iterations.

ILP is a well-researched learning mechanism that is well suited to reasoning with 
DLs.  The most significant limiting factor is computational complexity that does not 
scale well and will limit its usefulness with large ontologies (Rettinger, et al., 12).



Feature-based statistical learning treats relationships in KB as random variables 
where RDF triples are associated with probabilities that equate to confidence levels 
(Trest, et al., 13).  Probabilities are computed based on statistical measurements on 
a representative population.  The population that is the subject of the algorithm is 
typically comprised of a set of tuples equating to a query response.  For instance, a 
particular learning algorithm population from a command and control system might 
contain tuples of the form “< contactID, contactType, contactSource >”.  Individual 
members of the population set are called statistical units.

Features of interest for each for the population include both independent (or 
explanatory) variables and dependent (or predicted) variables.  Independent 
variables are those that the learning algorithm will use to derive predictions.  
Independent variables can include feature values that are used to define the 
population and any additional features.  Dependent variables are those whose 
values the algorithm will attempt to predict. (Trest, et al., 08)

The basic statistical learning algorithm is depicted in the slide.

In the first two steps, KB is queried to retrieve tuples of the target population, P, and 
the set of all population members is sampled to yield a training set, S.  The query-
sample sequence of steps one and two presume a distributed ontology of linked 
data where query retrieval takes the form of a web search.  With distributed source 
retrieval, identification of all population instances is unrealistic, but a representative 



sample can be obtained.  It is important, however, to minimize the effects of search 
engine bias.

In step three, a feature matrix, M, is constructed where each row corresponds to a 
statistical unit of the sample set and each column corresponds to a feature.  Matrix 
entries, therefore, correspond to feature values for specific statistical units.  It is often 
the case that statistical units do not have values for every feature.  In these cases a 
value of “N/A” or “0” can be entered into the matrix to signify a non-value.

Following generation of matrix, M, analysis is conducted to derive a statistical model.  
Strictly speaking, there are numerous machine learning paradigms that can be 
applied to this purpose including case-based reasoning, neural networks, genetic 
algorithms, and many others.  It is usually the case, however, that the learning 
algorithm is used to generate a probabilistic Bayesian model for M.  Commonly 
utilized models include naïve Bayes models, hierarchical Bayesian models, and 
Bayesian networks (Trest, 08).

When developing the statistical model of M, it is important to properly account for 
missing data.  Feature-based statistical learning sometimes imposes closed-world 
semantics on M in which missing values are assumed to be false.  However, M is 
frequently a sparse matrix, and treating missing values as false can unacceptably 
skew the results.  For this reason, missing values are often ignored during statistical 
analysis or assigned values that minimize their impact on the model.



Relational matrices and tensors can be viewed as an extension of the feature-based 
statistical learning paradigm in that they represent characteristics of individuals as a 
matrix of truth values.  The use of relational matrices as a machine learning 
mechanism is well-documented, and they have proven applicable to a large class of 
relational learning problems (Singh, 09).  Their applicability to learning with 
semantic graphs and ontologies is fairly obvious.

The general idea is that a matrix is used to represent a single ontological 
relationship and all potential participants.  The rows and columns of the matrix 
represent individual entities that may participate in the relationship.  Matrix cells are 
assigned a value of “1” if the relationship exists (in row-column order) between the 
entities in the row and column and “0” otherwise.

Each entity in a matrix is described by a small set of parameters that play the role of 
independent variables.  As a rule, if an entity is present in more than one matrix, the 
same parameters will be used for every matrix.  The matrices themselves contain 
the dependent variables.

Learning is conducted by decomposing the matrix using factorization functions to 
generate an approximation of the original matrix.  After matrix reconstruction, the 
contained values can be interpreted as confidence values that the relationship holds 
between the represented values (Rettinger, et al., 12).  (Singh, 09) provides an 
overview of factorization techniques that can be utilized with relational matrices with 



emphasis on scalability.

Until recently, most applications of relational matrices to learning Semantic Web 
relationships focused on individual matrices (Trest, et al., 08).  More recently, work 
has expanded to the use of 3-dimensional tensors that are comprised of layered 
relationship matrices (Huang, et al., 13 and Rettinger, et al., 12).  These approaches 
have a number of potential advantages.  First, the tensor can be sliced in various 
ways to process the contents from different perspectives.  For instance, a frontal slice 
contains a matrix for a single relationship as previously described, while a horizontal 
slice describes all relationships as they relate to a single subject individual and lateral 
slices describe the relationships as they relate to a single predicate individual.  These 
multiple perspectives enable the consideration of all relationships simultaneously so 
that their interelationships can be captured (Huang, et al., 13).

Relational matrices are among the most promising  learning mechanisms for 
Semantic Web applications because of their scalability, which is a byproduct of the 
sparse nature of most tensors (Rettinger, 12).



ILP and feature-based learning (which includes relational matrices and tensors) are 
among the most important approaches to machine learning with Semantic Web 
content.  There are other approaches, however, that have shown promise and bear 
mentioning.

Instance-based learning utilizes a feature vector to identify concepts applying to 
individuals.  The algorithm works by comparing the feature vector of an individual 
being tested to feature vectors associated with a particular class or concept 
(determined through a training process).  If the comparison meets specified criteria, 
then the test individual is presumed to be a member of that class.  The most 
common comparison mechanisms use distance functions that take in numerical 
feature vectors for two individuals and a weight vector and compute a disimilarity 
measure between 0 and 1 (d’Amato, et al., 08).  The individuals characterized by 
the input feature vectors are determined to be members of the same class if the 
disimilarity measure is below a predetermined threshold.  

Instance-based learning is well-suited to testing whether or not a concept can be 
applied to an individual.  Not surprisingly, it is most widely used for instance 
checking and retrieval.  Although the application scope is limited, instance-based 
learning is more efficient than standard reasoning algorithms, so it remains popular 
for these tasks (Rettinger, et al., 12).

Kernel functions are functional mappings from an input domain (individuals) to a 



feature space.  The function effectively partitions the feature space into regions such 
that application to an individual will map it to the region most appropriate for its 
classification.  Support Vector Machines are the most well-known kernel functions, 
however kernel functions can be developed to support many well-known learning 
algorithms (Rettinger, et al., 12).

The first kernel functions applied to Semantic Web content assessed the logical 
structure of the individual being tested and the semantics of the primitive concepts 
(Fanizzi and d’Amato, 07) and these methods remain popular.  Logical structure 
kernel functions are often resemble the similarity functions used with instance-based 
reasoning.  Kernels that work with a portion of the semantic network graph 
associated with the individual being tested are also popular.  These methods have the 
advantages of not requiring manual feature definition and not being based on a priori
assumptions on the data structure (Rettinger, et al., 12).

Relational Graphical Models (RGM) represent ontological statements with random 
variables and can be thought of as extensions of earlier models including Bayesian 
networks, Markov networks, dependency networks (Trest, et al., 08).  RGMs 
represent all possible links in an RDF graph as nodes (vertices), where the actual 
existence of the link is probabilistically expressed as a binary random variable.  
Connections (edges) in the graph are represent interdependencies between the 
nodes.

Probabilistic Relational Models (PRM) are a form of RGM where nodes capture the 
probability distribution of object attributes and links represent relationships between 
objects.  Early PRMs required that the relationships between objects be known, but 
extensions have made it possible to utilize PRMs to consider cases where 
relationships are unknown (Getoor, et al., 07).

Markov Logic Networks (MLNs) follow the pattern described above for defining nodes 
and links.  Probabilities are formulaically assigned based on the number of grounded 
inputs to the nodes (i.e., the confidence in the values upon which the relationships 
rely) and weights assigned to each formula (Trest, et al., 08).  MLN learning involves 
estimating the appropriate weights for each formula.

Latent-Class RGMs attempt to incorporate hidden variables that may be present in an 
ontology.  These hidden variables are incorporated into a Bayesian network 
comprised of relationships specified by KB.  Presumed latent variables are introduced 
for each entity as a parent of all nodes with which the entity is involved.  Because the 
links in the underlying Bayesian network are completely specified by the KB, training 
with Latent-Class RGMs amounts to determining weights for nodes corresponding to 
latent variables (Trest, et al., 08).

The most significant drawback to RGMs is that they are not factorable into individual 



data points, meaning that the whole data set essentially comprises a single data point 
and complicating inferencing and learning (Rettinger, et al., 12).





The difference between information and knowledge is an important factor when 
considering solutions to the data fusion problem.  The amount of data available to 
operators and decision-makers has exploded in recent years, but increased data 
availability has not necessarily translated into more efficient operations or better 
decision-making.  The term “information overload” has become a cliché, but it 
accurately reflects the current state of affairs.

What is required are means of automatically converting the abundance of 
information into an abundance of knowledge.  This includes mechanisms for 
computationally interpreting, categorizing, and correlating information to develop a 
knowledge base and using that knowledge base to draw conclusions, make 
predictions, and aid the decision-making process.  This is an area to which the 
Semantic Web technologies described in this report can be directly applicable.

Description Logics (DL) provide the mathematical foundation for the Semantic Web.  
A subset of First-Order Logic, DLs use concepts and roles to describe individuals 
and their relationships.  DLs provide operators for defining complex concept and 
role definitions that provide powerful expressive capabilities.  Additionally, because 
of their foundation in First-Order Logic, DLs provide a basis for making logical 
inferences on the knowledge bases that they define.

Semantic Web technologies apply the mathematical rigor of DLs to the web.  The 
Semantic Web provides a framework that brings structure to web content, provides 



for unified access to data, and ultimately improves the efficiency of human/computer 
interactions.  It does this through a set of standards (or proposed standards) for 
defining and using ontologies.  The most significant of these are the Resource 
Description Framework (RDF) and the Web Ontology Language (OWL).  Taken 
together, RDF and OWL fully capture the semantics of the expressive DL, SROIQ, 
and can be used to describe web content in a semantically rich way.

Among the most significant advantages of the Semantic Web is the ability to 
computationally reason about ontologies.  The most common ontological reasoning 
tasks are satisfiability, subsumption, equivalence, disjointness, classification, 
consistency, instance checking, retrieval, and conjunctive query answering.  All of 
these can ultimately be reduced to a single task—satisfaction.  Tableau algorithms 
are among the most common algorithms for reasoning and are utilized by most of the 
well-developed production and research systems.  Automata-based algorithms, and 
resolution-based algorithms are also utilized, and other methods based in First-Order 
Logic have also been used in applications that are isomorphic to decidable First-
Order Logic problems.

Standard reasoning with ontologies (i.e., those tasks that can be reduced to 
satisfaction) are useful for identifying knowledge that is implicitly contained in the 
knowledge base.  They are not, applicable to the tasks of induction and abduction, 
however, because these reasoning tasks infer things that might be true from the 
ground truth of the knowledge base.  Machine learning is appropriate for this type of 
reasoning, and it is not surprising that a number of techniques from this field have 
been applied to the Semantic Web.  Among the most important of these are Inductive 
Logic Programming and relational matrices (with relational tensors providing a 
promising area for future research).  Instance-Based Learning, kernel functions, and 
relational graphs have also shown promise in Semantic Web applications.



Effective utilization of Semantic Web technologies to support situational awareness 
and decision-making will be facilitated by efforts in a few specific areas.  Vocabulary 
definition is among the most important.  The practical difficulty of ontology definition 
has been mentioned, but the process can be aided by agreement concerning 
terminology and definitions.  Implementation of Semantic Web technologies in the 
civilian sector has been hampered by a lack of coordination, parallel development, 
competing interests, and many more factors.  Semantic Web implementation for 
government use, on the other hand, is still in its infancy.  A number of efforts are 
already underway to define domain-specific vocabularies that can be leveraged for 
Semantic Web applications, and aligning these efforts will facilitate the development 
of a common vocabulary.

Ontology-development is the next logical step following vocabulary definition.  As 
discussed previously, it is unlikely that a single ontology can be developed that will 
meet all requirements.  Rather, a more reasonable approach is to define ontologies 
that capture the semantics of specific data sources.  This will enable the 
development of reasonable ontologies that can be incorporated into distributed 
applications later.  The availability of a well-defined common vocabulary will 
facilitate future incorporation of disparate data sources into applications using the 
hybrid approach described earlier.

Once Semantic Web content is made available through the development of 
compatible ontologies for various data sources, application development will be a 



straightforward proposition.  Each application can access and utilize appropriate data 
sources and maintain their own interpretations of the distributed knowledge base.

Finally, formal product evaluation should be conducted.  Ontology development 
products are available that will meet envisioned ontology development and 
maintenance requirements.  Further, these products include well-vetted, state-of-the-
art reasoning algorithms that are regularly updated as technology evolves.  Thus, 
funded research in the area of tool development or improvement of standard ontology 
reasoning technologies is unlikely to yield tangible results.

On the other hand, there is significant potential in exploiting machine learning efforts 
focused on the Semantic Web.  Technologies that leverage Semantic Web content in 
abductive and inductive reasoning are not available in commercial systems, but will 
be critical components of future Semantic Web support for decision-aid systems.  
Although many machine learning techniques can be applied to Semantic Web 
content, primary consideration must be given to scalability.  Of the techniques that 
have been the subject of significant research, relational matrices and tensors are the 
most likely to yield results in the near term.  Additionally, Instance-Based Reasoning 
should be explored for the applications to which it is well-suited.  Other approaches 
from (Rettinger, et al., 12) might prove useful at some point, but are less likely to 
provide significant benefit in the near term.




























