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ABSTRACT 

There is currently a very strong interest among researchers in the fields of artificial 

intelligence and robotics in finding more effective means of linking high level symbolic 

computations relating to mission planning and control for autonomous vehicles to low level vehicle 

control software. The diversity exhibited by the many processes involved in such control has 

resulted in a number of proposals for a general suffware architecture intended to provide an 

efficient yet flexible framework for the organization and interaction of relevant software 

components. The Rational Behavior Model (RBM) has been developed with these requirements in 

mind and consists of three levels, called the Strategic, the Tactical, and the Execution levels, 

respectively. Each level reflects computations supporting the solution to the global control problem 

based on different abstraction mechanisms. The unique contribution of the RBM architecture is the 

idea of specifying different programming paradigms to realize each software level. Specifically, 

RBM uses rule-based programming for the Strategic level, thereby permitting field reconfiguration 

of missions by a mission specialist without reprogramming at lower levels. The Tactical level 

realizes vehicle behaviors as the methods of software objects programmed in an object-based 

language such as Ada. These behaviors are initiated by rule satisfaction at the Strategic level, 

thereby rationalizing their interaction. The Execution level is programmed in any imperative 

language capable of supporting efficient execution of real-time control of the underlying vehicle 

hardware. The viability of this architecture has been established through computer simulation 

studies of control of an autonomous submarine, the NPS Autonomous Underwater Vehicle. These 

experiments have confumed that the RBM architecture provides important advantages in terms of 

program conciseness, maintainability, reliability, and modifiability. In addition, by constraining 

the interfaces between the levels and limiting the accessibility of state variables, the team 

development of autonomous vehicle control software is significantly enhanced. 
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L INTRODUCTION 

I 

A. BACKGROUND 

1 There is no question that advances in VLSI circuitry design, processor speed and ca- 

pabilities, and hardware miniaturization have revolutionized the field of autonomous mo- 

bile robots [Ref. ll. These breakthroughs have led naturally to increasingly sophisticated 

and complex requirements by the end users of robotic systems, and these same users have 

grown to expect finished products which satisfy these requirements. It follows that users 

are identifying applications where fully autonomous robots would be advantageous, either 

by removing the human element from a dangerous or undesirable work environment or by 

extending the capability of humans into a new domain. Scenarios in which autonomous ro- 

bots perform these duties have existed only in the realm of science fiction up to now; how- 

ever, the technological advances of the past decade have placed us in a position where re- 

alization of such robots are not only possible but inevitable [Ref. 21. 

However, there are many issues yet to be addressed. It is one thing to design and build 

the physical robot, and quite another to imbue the robot with the desired degree of intelli- 

gence. Experience and expertise in these areas have been accumulating for many decades 

and is now generally associated with the scientific field of robotics. Control of the hard- 

ware, including motors, arms, and actuators, is relatively well understood and is usually 

discussed in the context of feedback control theory [Ref. 31. This theory is, after all, found- 

ed upon the fundamental tenets of mathematics, physics, and engineering. Feedback (or 

servo) cone01 is ideal when applied to systems, robotic or otherwise, that perform either 

regulation (disturbance rejection) or command tracking tasks. Examples include position 

control of manipulator arms associated with industrial robots employed for the assembly of 

components. In most cases, the “problem” being solved has been subjected to extensive 

study. Every detail has been identified, analyzed, and programmed from a formal, mathe- 
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matical perspective. The robot’s work cell [Ref. 41, or environment, is also rigorously mod- 

eled. The goal of these efforts is to minimize uncertainty and risk by expressing the robot’s 

world and its interaction with that world in unambiguous terms. 

Research in the field of robotics goes well beyond servo control, however. Concepts 

from artificial intelligence, computer vision, vehicle navigation, and graph theory are uti- 

lized to implement compiled human knowledge as applied to the problems of motion, path 

planning, and object identification and avoidance [Ref. 51. Even so, there are many appli- 

cations where fully autonomous robots would be desirable but which cannot be described 

mathematically, or circumstances where all possible situations cannot be anticipated. The 

related tasks will, as a result, be complex and wrought with uncertainty. In these circum- 

stances, the static nature of the assumptions pertaining to the environment of the robot will 

no longer hold, and systems based on these assumptions can no longer be relied upon to 

perform as expected. Attempting to represent an uncertain world mathematically is very 

difficult; therefore, a typical solution is to place a human “in the loop” to provide the nec- 

essary expertise and to guide the robot through these uncertain situations. It is apparent that 

truly autonomous solutions to this class of problems will require a different approach. This 

requirement has given rise to the development of software architectures as a means of ex- 

tending the domain of robotics research into applications involving uncertain, dynamic en- 

vironments [Ref. 61. 

Designing a software architecture for the control of an autonomous vehicle can pro- 

vide a framework upon which a complete software control systemcan be built. Despite the 

relaxing of the requirement to represent the uncertain environment mathematically, the 

software architecture must still deal with the daunting problem of how best to represent and 

respond to the world. Another related issue is the management of the software complexity 

associated with the underlying subsystems, both software and hardware. Experience has 

shown that large software systems require the integration and coordination of the work of 

many individuals [Ref. 71. Without extensive planning, coordination, and organization, re- 

sulting programs may be riddled with errors, the identification and correction of which will 
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prove costly in terms of human and monetary resources [Ref. 81. Even then, there is no 

guarantee of perfect software. Undetected errors or interactions between individually cor- 

rect modules may cause unexpected behavior in the overall system. Just as problematic, the 

* system may not behave as the end user expected, the result of misunderstood or incomplete 

requirements. 

B. SCOPE OF DISSERTATION 

This dissertation presents a software architecture for the control of autonomous 

vehicles operating in a dynamic environment. The problem domain addressed by this work 

has three major aspects: the control of autonomous vehicles in unstructured environments, 

the reconfiguration of the missions anticipated by this class of autonomous vehicles, and 

the reusability of software associated with this control. Each of these issues has, to differing 

degrees, driven researchers to provide better ways to design and develop control software 

for autonomous agents. Until now, however, no approach has successfully integrated all 

three requirements into a single architecture. The Rational Behavior Model (RBM), 

through the use of appropriate abstractions and the selection of different programming 

paradigms according to their particular applicability to the problem, has been defined 

specifically with these problems in mind. 

Management of software complexity is the primary purpose of any software architec- 

ture. The architecture must define operational and logical domains into which are placed 

the software systems that accomplish the tasks at hand. Automated reasoning is an essential 

component of the architecture if the vehicle is to effectively execute a mission while con- 

tending with the uncertainty of dynamically changing environments. Other issues, includ- 

ing mission replanning, fault identification and isolation, intervention, and the reaction to 

unanticipated events which would, under other circumstances, be handled through human 

intervention, must be taken into account within the architectural framework. This require- 

ment for organization and coordination would almost certainly overwhelm a design using 

a "traditional" approach, even one involving the functional hierarchies of structured pro- 
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gramming. Again, the RBM provides a means to overcome this problem through the appli- 

cation of a rich set of abstractions and multiple programming paradigms. 

C. ORGANIZATION OF DISSERTATION 

Chapter I1 begins with a survey of previous research work on control software for au- 

tonomous vehicles. Following this is a discussion of the requirements associated with au- 

tonomous vehicle control and the problem domain relevant to autonomous vehicle opera- 

tion. Next, a description of the various approaches to control software architectures current- 

ly in use is provided. Current, significant autonomous vehicles are then recounted along 

with a description of the associated software architecture of each. The Naval Postgraduate 

School Autonomous Underwater Vehicle and its associated simulation facilities are then 

presented. 

Various programming paradigms and languages available to the designer of a software 

architecture for control of an autonomous vehicle is the focus of Chapter m. The strengths 

and weaknesses of each, as they relate to this problem, are examined. 

In Chapter IV, the topics of computational logic, automated reasoning, and the imple- 

mentation issues of each are discussed. Two specific approaches to the implementation of 

reasoning, backward and forward chaining, are described, and graphical representations of 

each introduced. 

The Rational Behavior Model, a tri-level, domain specific software architecture for the 

overall control of autonomous vehicles is formally defined in Chapter V. Related software 

control architectures for autonomous vehicle control and the shortcomings of each are pre- 

sented. Next, the characteristics, requirements, and constraints associated with each level 

of RBM are described. 

Chapter VI describes the results of a simulation study of an instantiation of RBM ap- 

plied to areal-world scenario. Specific implementation considerations are detailed and the 

solutions to each are provided. The implementations of RBM developed for this disserta- 

tion are explained, followed by discussion, analysis, and evaluation of experimental results. 
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Finally, Chapter VII summarizes the contributions of the Rational Behavior Model to 

the field of vehicle control software architectures and provides suggestions for future re- 

search. Appendices at the end of the dissertation contain the source code listing for the pro- 

. grams used in the experiments of Chapter VI. A Glossary immediately follows which con- 

tains definitions of the many terms and concepts used throughout this dissertation and in 

common usage in the current literature on autonomous vehicle control software architec- 

tures. 

. 
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II. AUTONOMOUS VEHICLES 

This chapter is designed to provide the reader with the background necessary to fully 

understand the research that follows. To this end, it begins by providing a brief historical 

survey of the evolution of autonomous mobile robots from a control software perspective. 

Of particular interest is the evolution of the software organization and logic representation 

aspects of autonomous vehicle control. Requirements and capabilities to be expected of au- 

tonomous vehicles are then described. The next section of this chapter discusses various 

widely recognized approaches to control software architecture development. Although 

quite diverse in nature, it is possible to categorize these approaches based on shared char- 

acteristics. A brief overview of significant autonomous vehicle research is given. Finally, a 

section describing the Naval Postgraduate School (NPS) Autonomous Underwater Vehicle 

(AUV) and associated simulation facilities is presented, followed by a summary. 

Due to the relative immaturity and uncoordinated nature of the research in this field, 

little has been done to standardize terminology describing control software architectures. 

This has resulted in unnecessary confusion. Therefore, a glossary devoted to the precise 

definition of common terms and concepts encountered in this area is included at the end of 

this dissertation. Primarily compiled to support the research described herein, it is offered 

as a basis for further refinement to the control software community. 

A. INTRODUCTION 

The class of autonomous vehicles is a specialization of the larger class of mobile ro- 

bots, which itself is a specialization of the general class of robots. The term robot, a term 

derived from the Czech robotu (“forced labor”) [Ref. 91, refers loosely to a mechanical en- 

tity that performs in a seemingly human way. It follows that a mobile robot, besides per- 

forming its robotic duties, is capable of moving from one location to another by means of 

wheels, tracks, legs, thrusters, propellers, etc. Furthermore, the emulation of human behav- 
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ior implies some degree of autonomy, the ability to perform independently of human, or SU- 

pervisory, control. Hence, an autonomous mobile vehicle, or more simply autonomous ve- 

hicle, is a robot capable of motion and of responding in an intelligent way to a changing 

environment without human involvement. The distinction between an autonomous mobile 

robot and an autonomous vehicle is merely one of semantics. The term vehicle implies a . - 
platform capable of carrying or conveying an object. All autonomous mobile robots carry 

something, even if the “cargo” consists only of its own sensory and computational devices. 

DEFINITION: An Autonomous Vehicle is a self-contained mobile robot with the ca- 

pacity to sense a dynamic and unstructured environment, plan an intelligent response to that 

input, and act in a way that is compatible with the accomplishment of a mission without 

human intervention. 

All robots are controlled by the basic cycle of sense, decide, and act [Ref. lo]. The 

sensing portion of the cycle occurs when readings are taken by the robot of its environment. 

Although much research is currently ongoing in the areas of computer vision, modeling, 

sensor interpretation, and sensor integration [Ref. 111, the problem of sensing is generally 

well understood. However, given the speed and resolution of current sensors, the sheer 

quantity of data can, in fact, overwhelm the robot’s decision making process. The action 

portion of the cycle, manifested in the robot’s motion, is likewise well understood [Ref. 121. 

The decision phase is the least understood and, hence, has the widest variety of solutions 

associated with it. This diversity is what differentiates the various approaches to the control 

software of robots [Ref. 61. 

The decision phase of the basic robot control cycle is difficult to realize because the 

encoding of basic human knowledge is hard. For this reason, a great deal of effort has been 

invested in vehicles which provide the sensing and action phases of the control cycle but 

rely on a human operator for the decision-making. This occurs when the robot is teleoper- 

ated, either through a radio or cable link’. This class of vehicles is called Remotely Oper- 

1. Obviously, this also occurs when a human driver is integrated into the overall design of the system. 
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ated Vehicles (ROV) for underwater and land operations and Remotely Piloted Vehicles 

(RPV) for airborne operations. Prominent examples of these classes are the Monterey Bay 

Aquarium Research Institute’s ROV [Ref. 131, the JASON ROV of Woods Hole Oceano- 

graphic Institute [Ref. 141, the Navy’s Remotely Operated Vehicle for Emplacement and 

Reconnaissance (ROVER) and Mine Neutralization System (MNS) [Ref. 151, and the 

Lockheed Aquila [Ref. 151. It may be argued that because they rely on a human to provide 

decision making, ROVs are not robots at all but rather a sophisticated extension of the hu- 

man’s sense and reach. On the other hand, the introduction of the new generation of cruise 

missiles and “smart” bombs blurs boundaries between remotely operated and autonomous 

vehicles. In any case, ROVs cannot be thought of as autonomous, and informationconcern- 

ing missiles which emulate human reasoning is generally classified; therefore, neither are 

further discussed in this dissertation. 

B. 

VEHICLES 

THE DEVELOPMENT OF CONTROL SOITWARE FOR AUTONOMOUS 

The investigation into machine intelligence applied to mobile devices began soon after 

World War II. However, not until the development of “Shakey” [Ref. 161 in the 1960’s was 

autonomy in a robot demonstrated. Although connected to an external computer through a 

radio link, and only able to solve simple control problems in a structured environment, 

Shakey was able to navigate, explore, and learn about its environment without human in- 

volvement. The software written to control Shakey was assembled into several levels using 

the principle of hierarchy, a type of software architecture described more fully later in this 

chapter. 

Another significant autonomous vehicle was the Stanford Cart, a TV-equipped mobile 

robot that also was linked to a remote computer. This system underwent further develop- 

ment, eventually evolving into what became known as the Carnegie-Mellon University 

(CMU) Rover. During this evolution, the software underwent restructuring as well, result- 

8 



ing in a concept of control based on a three level hierarchy communicating via a black- 

board2 data structure.[Ref. 171 

The control hierarchy established by Shakey and the CMU rover was probably as 

much a result of the need for distributed decision making as it was a reaction to software 

complexity. Limits on computational resources required that different functions, such as 

perception, navigation, and planning, execute cooperatively on separate processors. This 

distribution tends to support the top-down approach to many control problems, where high- 

level planning is followed by navigation and finally path execution [Ref. 181. 

1 

Despite the promise of early experiments, research into control of autonomous vehi- 

cles began to wane in the 1970’s, primarily as a result of the complexity associated with 

sensory processing. It was not until the advent of the microprocessor that interest was re- 

vived. This breakthrough, combined with advances in robotic and sensing technology, ush- 

ered in a new era in which autonomous agents were not only endowed with increasing in- 

telligence but could be made to operate in complex, dynamic environments. [Ref. 191 

It had been clear for many years that legged devices demonstrated advantages in im- 

proved mobility, isolation, and stability over wheeled and tracked vehicles in difficult ter- 

rain or soil conditions [Ref. 201. Theoretical analysis, supported by experimental evidence, 

has revealed that six-legged (hexapod) designs are superior to those with two or four legs, 

both in terms of adaptability and stability. As the number of legs increases, however, so do 

the attendant control and coordination problems. Work at Ohio State University, which led 

to the development of the Adaptive Suspension Vehicle (ASV), gained recognition as the 

first operative multi-legged system to fully solve this problem by means of computer, rather 

than human, control [Ref. 211. Hence, although designed to carry a human, the ASV was 

mechanically autonomous, requiring only high-level steering and velocity commands from 

the operator. Kwak [Ref. 221 demonstrated the effectiveness of several algorithms for the 

2. A blackboard, in this context, is a globally-accessible data store where problem-solving state vari- 
ables are maintained. Independent software entities acting upon the blackboard produce changes to the prob- 
lem state, incrementally leading to a solution. 
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on-line optimization of stepping patterns, and later introduced the concept of rule-based 

control of the ASV [Ref. 231. However, despite the successful demonstration of new con- 

cepts by the ASV, it proved to be too slow, too bulky, and too expensive to be useful as a 

production vehicle [Ref. 201. 

Work on the control of legged vehicles in unstructured terrain only underscored the 

challenges faced by researchers when moving their autonomous vehicles from the static, 

benign environment of the laboratory into the hostile, dynamic world. The nature and ex- 

tent of a continuously changing environment and the determination of what must be sensed, 

the selection by the planning agent of an action chosen from an enormous repertoire of pos- 

sibilities, and the accounting of incomplete data and unforeseen circumstances had to be 

dealt with by a truly intelligent control system. Such systems must do more than mimic hu- 

man action. They are required to reason about their world. 

One approach to this problem, grounded in traditional artificial intelligence, is the sit- 

uational culcullcs of McCarthy [Ref. 241. Within this system, logical terms are used to de- 

note situations (states), events, andfluents of the problem domain3. In this approach, pred- 

icates in the situational calculus are used primarily to describe the context of fluent values 

in particular states, as well as to specify state transitions associated with an event in the 

problem domain. The situation calculus also contains the usual logical connectives and 

quantifiers of first order predicate calculus. Used together, general assertions about the ef- 

fects of events applied in particular situations can be expressed. 

Another logical formalism developed to represent and reason about dynamic domains 

is modal logic. In avoiding the explicit use of terms representing the world state, modal log- 

ic ameliorates the need to specify every property of the domain left unaffected by an event. 

This characteristic of situational calculus is known as theframe problem [Ref. 251. Various 

3. The sfate of a system is a collection of atmbutes uniquely describing the system at a specific instance 
in time. An event is used to record and describe the behavior of a system, where a behavior is a sequence of 
world states. Ajluent is a function corresponding to a shared property between world states and whose value 
in a given state. is the value of that property in the state..Ref. 241 
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types of modal logic have been developed, including temporal logic [Ref. 261 and process 

logic [Ref. 271. 

The use of situational and modal calculi for the expression of reasoning introduces 
1 computational difficulties, however. In response, the STRIPS representation of actions was 

proposed [Ref. 281. In STRIPS, a given state is represented by a conjunction of logical for- 

mulas. Events are represented by operators, each of which is composed of aprecondition, 

and add list, and a delete list. This scheme for determining the ordering of successive states 

are embodied in a STRIPS rule. 

, 

Situational and modal calculi and STRIPS provided the foundation for what was to be- 

come the hierarchical approach to goal-based planning [Ref. 291. Both are forms of logic, 

and both utilize rules to represent the inference process. The primary difference lies in the 

control of rule activation, also known as chaining. Chapter IV of this dissertation explains 

this concept further. 

Real-time constraints presented a further challenge for these traditionally-structured 

systems. The deliberation required by the planners in these systems proved to be very time- 

intensive [Ref. 291. In a hostile, dynamic world, replanning is frequently necessary and the 

welfare of the system often depends on the vehicle’s readiness to act. Furthermore, such ac- 

tions are often required in immediate response to the situation, leaving no time for deliber- 

ation. A number of systems were subsequently developed with these issues in mind [Ref. 

301. All were characterized by a departure from goal-based planning in favor of a high de- 

gree of reactivity. The extreme position was advocated by Brooks [Ref. 311, who proposed 

a bottom-up solution to the control problem involving a layering of task-achieving behav- 

iors without regard to an internal world model. These control architectures stressed viability 

and robustness but at a cost of general problem-solving and reasoning [Ref. 291. Demon- 

stration of so-called “emergent” intelligence was provided by Brook‘s own robots [Ref. 321 

and the Robart series of senq vehicles [Ref. 331. This approach formed the basis for the 
c subsumptionist, or behaviorist, approach to autonomous vehicle control. 
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The value of reaction was not lost on the research community, however. Systems 

which had previously relied solely on hierarchical planning strategies began utilizing reac- 

tive procedures [Ref. 341. This merging of hierarchical and behaviorist concepts has result- 

ed in many instances of the class of hybrid control architectures. Each of these major ap- 

proaches-hierarchical, behaviorist, and hybrid-are explored in more detail in this chap- 

ter. It is appropriate, however, to l irst discuss the capabilities of autonomous vehicles and 

the requirements expected of their associated control system. 

C. AUTONOMOUS VEHICLE CONTROL REQUIREMENTS 

Owing to the relative immaturity of the field and the complexity of the problem of con- 

trol, research into mobile robots has had to address many issues in a multitude of areas. Ro- 

botics, computer vision, real-world modeling, sensor interpretation and integration, actua- 

tor and sensor control, path planning, navigation, plan execution, and system monitoring 

comprise an incomplete but representative list. The melding of this research to a physical 

vehicle has resulted in a remarkable test bed for new concepts, approaches, and technolo- 

gies. The diverse disciplines involved have focused on the fundamental requirement of all 

autonomous vehicles: that they satisfactorily perform the mission given them while coping 

with a dynamically changing and unpredictable environment without human assistance. To 

meet this requirement, individual component technologies must exhibit levels of perfor- 

mance far exceeding the competence displayed by robotic systems operating in toy or high- 

ly specialized domains [Ref. 191. 

Generally speaking, autonomous vehicles must acquire and maintain, through various 

sensors, a sufficiently detailed model of the operational environment to provide a basis for 

intelligent planning. Due to the intrinsic limitations and specialized characteristics of each 

sensor system, multiple sensor systems must be employed. This leads to a further require- 

ment that the vehicle possess the capability of integrating these qualitatively diverse 

streams of data into a uniform and coherent form useful to the planning portion of the con- 

troller. Sensor error and noise, along with incomplete data due to insufficient sampling, 
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contribute to uncertainty. In addition, position errors are caused by vehicular motion and as 

a result of external forces. The deliberation process must be capable of accounting for these 

as well. 

Obviously, the autonomous vehicle must have a means of accepting preplanned mis- 

sions and precompiled maps as part of a pre-mission sequence. Relying only on information 

stored internally, the vehicle must be able to identify and classify objects observed by its 

sensors. An autonomous vehicle must also deal competently with problems of navigation 

and planning involving spatial reasoning, fault tolerance, obstacle avoidance, and replan- 

ning [Ref. 351. Finally, the vehicle must provide for its own ultimate safety and, in circum- 

stances where its warranted, the safety of humans and equipment relying on it. 

Control software architects must wrestle with the efficient organization and integration 

of the systems designed to satisfy these many vital requirements. Initial designs approached 

this problem from one of two extremes: top-down with emphasis on deliberation, or bot- 

tom-up, where the emphasis was on sensing. Recently, researchers have seen the value of 

borrowing characteristics of both, resulting in improved performance. These approaches, 

along with a discussion of inherent strengths and weaknesses, are the subject of the next 

section. 

D. 

CONTROL 

SOFTWARE ARCHITECTURES FOR AUTONOMOUS VEHICLE 

Control software of autonomous vehicles is a field of study that is still in its infancy 

[Ref. 361. As the underlying hardware and computational capabilities improve, and as cost 

and size constraints are lowered, the sophistication and complexity of the control systems 

for autonomous vehicles rises. Typically, the robotic vehicle and its associated control soft- 

ware have been developed in tandem. When a new autonomous vehicle is built, the control 

software system is likewise built from scratch. Design, implementation, and testing meth- 

odologies are, at this time, introduced in an adhoc manner. In addition, the issue of mission 

reconfigurability is often totally ignored. These circumstances have resulted in a “low-lev- 
. 
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el” view of software construction, accompanied by a lack of formal software engineering 

techniques. This situation has prompted research into better ways of organizing software in 

an attempt to address these difficulties. The result has been the emergence of the field of 

software architecture for the control of autonomous vehicles. 

This research has resulted in a broad spectrum of software architectures. Some of these 

approaches are of a general purpose nature [Ref. 37][Ref. 381, while others are application- 

specific [Ref. 32][Ref. 391. Only recently have the various approaches been categorized 

into four groups [Ref. 61, based primarily on the degree of deliberation utilized during sys- 

tem operation. These classes are hierarchical, behavioral, hybrid, and tool-based. Each has 

distinct strengths and weaknesses. Proponents of each approach point to specific instances 

in support of their chosen architecture, Ignoring the ill-defined tool-based category for the 

moment, all remaining approaches to control software for autonomous vehicles may be 

placed along the “architectural continuum”, shown in Figure 1. At one end are the hierar- 

chical control software architectures. At the other extreme lies the layered, or behaviorist, 

approach to control software. Hybrid architectures, which combine characteristics of the 

two “polar” camps, reside somewhere in between. This section describes these three main 

approaches in some detail and identifies current examples of each. 

rn 
Hierarchical Hybrids Behaviorist 

Figure 1. Architectures for Intelligent Control Software 

1. Hierarchical Control Software Architecture 

Systems of this type have a hierarchical structure [Ref. 4O][Ref. 41][Ref. 421. The 

problem of complexity is solved in a traditional manner whereby the task of autonomous 
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vehicle control is partitioned into successively less complex functional levels with high- 

level planning on top and low-level servo control at the bottom. Each level is subsequently 

implemented and then brought together to form the completed system. These systems are 

designed under the assumption that mission planning and mission execution algorithms 

should be abstracted to the top levels, leaving vehicle-specific functionality in the low lev- 

els. In support of sensory processing, a symbolic model of the autonomous vehicle’s envi- 

ronment is maintained internally. This world model representation contains, at a minimum, 

the vehicle’s current state as well as the current state of the environment. Some control sys- 

tems, such as the NASA/NBS Standard Reference Model for Telerobot Control System Ar- 

chitecture (NASREM) [Ref. 431 and the Adaptive Suspension Vehicle (ASV) [Ref. 441, 

feature the use of hypotheses in task planning [Ref. 451. A planning module can therefore 

simulate the outcome of some action before it has been executed. Thus, safety and optimi- 

zation of planning is supported. 

I 

Each level in the hierarchy receives commands from the level directly above and 

sensory information from the level directly below it. This relationship can be referred to as 

a command hierarchy. Data elements at the lowest level are atomic. These atoms are 

“fused” with additional data into increasingly abstract data objects as they are passed to 

successively higher levels. 

Another characteristic of this class of architectures is the increase in the update 

frequency as one moves from the top to the bottom of the hierarchy. At higher levels, this 

frequency is low, since problems are complex and the nature of data to be processed is typ- 

ically symbolic. At lower levels, the problems to be solved are comparatively less complex 

and, while the amount of data available is significant, the formats used are conducive to 

rapid computation. At the lowest level, many of the primitive tasks can be partially or to- 

tally realized in hardware. Closely linked to this temporal hierarchy are the planning hori- 

zons of each level. Low update frequencies result in long planning horizons, and fast update 
s frequencies require short planning horizons. The exact magnitude of these periods must of- 

ten depend on experimentation, designer experience, and trial-and-error. 

I 15 



The control philosophy of the class of hierarchical architectures is naturally suited 

to an implementation of deductive reasoning called backward chaining. Backward chain- 

ing is a search strategy used by computers to solve problems of logic [Ref. 461. In the con- 

text of autonomous vehicle control, the hierarchical control architecture executes its mis- 

sion by determining if its ultimate goal has been satisfied. To do this, the goal must be di- 

vided into a sequence of simpler subgoals, each of which must be satisfied before the parent 

goal can succeed. Should a subgoal fail, an alternative reasoning path is tried. This process 

continues until either all the subgoals of the parent goal can be solved or all viable altema- 

tives have been attempted without success. If these parent goals can be solved, then their 

parent goals can be solved in turn. This process continues until the initial (root) goal is sat- 

isfied, signifying mission completion. Automated reasoning as it relates to autonomous ve- 

hicle control software is discussed in detail in Chapter IY of this dissertation. 

These systems suffer from a number of disadvantages. The rationale behind task 

decomposition is based on “best guess” rather than scientific formalisms. In practice, inter- 

actions between components of a control system are not identified until after prototyping 

and incremental development have occurred. In any case, a poor functional specification 

may not manifest itself until far into the development cycle. Change at this point may re- 

quire extensive revisions and will certainly consume scarce resources, particularly if the 

logic of control is combined with other functional aspects of the software [Ref. 471. Also, 

all modules within the hierarchy must be realized to some extent before the robot is capable 

of even the simplest of tasks. Furthermore, the existence of multiple hierarchies (command, 

temporal), viewed by different people at different stages of the project, may generate in- 

compatibilities. To support the system requirement for robustness and fault tolerance, pro- 

grammers must attempt to anticipate all possible scenarios in which the vehicle may find 

itself. These efforts often lack methodology and cannot be guaranteed to be complete. Fi- 

nally, such systems are difficult to explain to the customers. Mission logic is often spread 

throughout the control hierarchy, making these systems difficult to reconfigure. 
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2. Behavior-based architectures 

In contrast to the multilevel architectures, the task of autonomous vehicle control 

in behavior-based (or layered) architectures [Ref. 311 is viewed from a perspective of action . rather than of deliberation. The overall behavior of the robot is developed incrementally. 

First, the desired task-achieving behaviors are identified. Next, they are grouped and or- 

dered into levels of competence. Each level represents an informal specification of a class 

of behaviors exhibited by the robot regardless of the situation in which it finds itself. The 

classes of behavior at the lowest levels incorporate the simplest behaviors; successively 

higher levels of competence imply more complex specificity of behavior. Since it is impor- 

tant for the control system to be responsive to high priority goals while continuously ser- 

vicing necessary low-level goals, each level of competence includes as a subset all under- 

lying levels of competence. 

* 

With respect to the behavior-based control of an autonomous vehicle, levels of 

competence correspond to layers of the control system executing in parallel. New layers are 

added to an existing set to incrementally obtain a more competent robot. Each new layer is 

able to examine and, if required, alter data used by the next lower layer. The upper layer is 

said to subsume the lower layer, and together the layers achieve the level of competence 

associated with the top layer.[Ref. 311 

A distinguishing feature of the behavior-based architectures is the absence of a 

central intelligent source of control and an internal representation of the external world 

[Ref. 481. Instead, data is distributed among all levels, and each level performs its own sen- 

sory processing. Additionally, commands and data are not passed from level to level as in 

the hierarchical architectures. By wiring together multiple layers of control, arobot has the 

potential to exhibit an intelligent global behavior. In effect, the intelligence emerges from 

the global interaction of multiple, unintelligent agents [Ref. 321. 

Many of the functional requirements of autonomous vehicle control are satisfied 

by the behaviorist approach. Pursuit of multiple concurrent goals may be achieved with dif- 

ferent layers working on different goals. The complexity and time requirements inherent 

I 
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with data fusion are to a large extent avoided with each layer having access to pertinent sen- 

sors. The control system is robust in that. should the higher layers of control fail to produce 

results, lower layers continue to function in an expected manner. Finally, due to the incre- 

mental nature of the layering scheme, in theory at least, the subsumption architecture is 

readily extended by adding a new level of competence which provides the desired change 

in behavior. 

i 

Reasoning in behaviorist architectures, as it relates to mission control, is data 

driven; that is, computation starts with the existing facts and derives new facts (conclu- 

sions) from them. These systems chain forward from conditions known to be true towards 

states which those conditions imply. The process ends when either no additional facts are 

derivable from current facts or an accepting condition (goal state) is reached. This scheme 

suits the layered control entities which rely upon sensor-based data to determine their be- 

havior. Data-driven reasoning and its forward chaining implementation is described in 

Chapter IV of this dissertation. 

Unfortunately, the integration strategy upon which the subsumption architecture 

is founded is validated only by a process of trial and error. Also, it is impossible to verify 

the correctness and stability of the resulting control system. These drawbacks have serious 

implications for control of autonomous vehicles. From the user's perspective, an autono- 

mous vehicle must behave predictably and reliably, especially given the sensitivity and 

danger of potential missions. With pure subsumption, these assurances cannot be given at 

this time. 

Another issue not specifically addressed by Brooksian subsumption is the low- 

level control of the AV, namely the autopilot. With the laboratory robots Attila and Genghis 

[Ref. 491, both instantiations of pure subsumption control, the underlying stability of the 

system was assumed. That is, the subsuming behavior did not explicitly ensure that the ro- 

bot would stay upright. If the robot flipped over trying to scale an obstacle, the experiment 

was terminated. Given the nature of the missions autonomous vehicles are called upon to 

complete, and the hostile environments they operate in, it is imperative that basic vehicle 

f 

18 



stability is guaranteed. Therefore, control architectures for autonomous vehicles based on 

the behaviorist philosophy generally decouple low-level control from the layered behavior- 

al control [Ref. 501. The result is a two-level hierarchy, the lowest level of which is con- . ventional feedback control. 

A variation of behavior-based control has been advanced by Payton, et al., and is 

described in [Ref. 51][Ref. 52][Ref. 531. This architecture, while still very much behavior- 

ist, differs from the pure subsumption philosophy in the area of command conflict resolu- 

tion. In subsumption, two commands from two related behaviors that are in direct conflict 

with one another are resolved by the highest priority behavior’s commands completely 

ovemding the other’s. Compromise may be appropriate; unfortunately, subsumption does 

not allow compromise. By decomposing each behavior into small decision-making units, 

more flexibility is afforded the arbiter of conflicts. Additionally, by allowing behaviors to 

express preferences for a range of commands, allowance is made for the selection of com- 

mands that can simultaneously satisfy multiple goals (command fusion). 

1 

A further refinement of “pure” subsumption is presented by Mataric [Ref. 541. 

This architecture incorporates a distributed world map representation into a homogenous 

reactive system. Although centralized world models are thought of as being incompatible 

with subsumption architectures [Ref. 481, any application requiring a solution superior to 

random walk must base its planning on a world model [Ref. 541. The resulting conaol sys- 

tem remains fully reactive, however, due to the integration of representation with the lay- 

ered behaviors. This is in contrast to hybrid systems which separate the control system into 

reactive and deliberative components. 

3. Hybrid architectures 

Because these two approaches are so fundamentally different, it initially appeared 

that little commonality could be abstracted in support of unifying the field. Instead, driven 

by the realities of implementation, projects which started out from purely hierarchical or 

behaviorist control perspectives have migrated away from thek dogmatic roots. In their 
. 
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place have emerged hybrid architectures borrowing features from both [Ref. 61. Specifical- 

ly, the hierarchical models failed to account for the long decision cycle times required by 

their planners. In many cases, this type of computation necessitated the use of platforms too 

large to be carried by the mobile robot. The behavior-based models, on the other hand, suf- 5 

fered from their lack of explicit intelligence. Reliance on emergent global behavior did not 4 

instill sufficient confidence to entrust expensive vehicles to their control [Ref. 551. 

Hence, the field has experienced a move from the extremes to the center of the 

architectural continuum. Examples of behavior-based hybrids include State Configured 

Layered Control [Ref. 561, ISE Research’s Layered Control [Ref. 501, and the Autonomous 

Land Vehicle Controller [Ref. 571. Hierarchical-based hybrids include the Experimental 

Autonomous Vehicle (EAVE) controller [Ref. 391, the Remotely Operated Autonomous 

Robot Control System [Ref. 381, the Open Robot Controller [Ref. 581, and the Rational Be- 

havior Model defined in this dissertation. 

The goal of many hybrid models is to have task decomposition and explicit world 

representation at the higher levels and to employ behaviorist schemes at the lower levels. 

The middle level(s) are given the responsibility of providing the translation and coordina- 

tion of commands and actions to and from the outlying levels. Hybrids have also striven to 

address the issues of mission reconfigurability [Ref. 551, implementation of automated rea- 

soning [Ref. 591, real-time planning [Ref. 601, and module interfacing [Ref. 611. 

The development of hybrid approaches, like those of their predecessors, have 

lacked a formal, mathematical basis upon which to build. This is aresult of the complexity 

of the software and systems involved [Ref. 621. While isolated algorithms can be analyzed 

using traditional methods [Ref. 631, and perhaps even individual levels can be described 

formally, complete systems simply do not lend themselves to theoretical examination. In- 

stead, an iterative design and development approach is preferred, augmented by simulation 

studies, prior to full-scale experimentation [Ref. 641. 
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4. Tool-based architectures 

This approach is favored by researchers that believe that no architectural principle 

can be stated at the present time. Experience alone is the driving force behind control soft- 

ware development in this approach. Unfortunately, in the field of autonomous mobile ro- 

bots, there has not been sufficient time to construct a useful pool of experience. Vehicle 

technology, software complexity, and mission formulation are current research issues pro- 

ceeding in parallel. Therefore, these architectures are much less applicable than those de- 

scribed above with respect to the current state of autonomous vehicle control software and, 

hence, will not be covered further. 

. 

5. Blackboard-based Control Architectures 

Architectures employing blackboard data structures do not constitute a distinct 

group as defined by accepted taxonomies [Ref. 61. However, many systems, both hierarchi- 

cal and behavior-based, employ them as a means of inter-level or inter-process communi- 

cations and data transfer [Ref. 17][Ref. 38][Ref. 43][Ref. 651. Originally, blackboards were 

developed to provide communications between distinct rule bases of an expert system [Ref. 

661. Since then, however, the term blackboard has been applied to any globally-accessible 

data structure to which multiple processes may communicate by posting messages Ref. 

181. 

As the size of the blackboard and the number of processes using it increases, how- 

ever, so does the probability of undesired side effects caused by unexpected changes to 

variables. Concurrent access from independent, actively competing processes only exacer- 

bates the problem. To avoid this possibility and therefore improve confidence in the behav- 

ior of the controlled vehicle, communications between the different levels of the software 

may be constrained in various ways. This usually results in an increase in lines of code and 

a more regimented programming style. However, this price is small compared to the re- 

sources needed to locate the subtle bugs which can result when unrestricted interaction be- 

tween software modules is accomplished using global data structures. 
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E. TYPICAL AUTONOMOUS VEHICLES AND THEIR MISSIONS 

A number of significant autonomous vehicle systems have been developed in recent 

years, primarily due to advances in processor capacity and miniaturization. Several of these 

systems, along with their philosophy of software control and system integration, are de- 

scribed next. This list is not meant to be all inclusive, and there are certainly additional pro- 

grams which warrant discussion. Instead, the intent here is to highlight the current capabil- 

ities of these vehicles as a measure of “where the field stands” at this point in time. 

1. DARPNUUV 

The joint DARPA/Navy Unmanned Undersea Vehicle (UUV) Program was initi- 

ated with the goal of demonstrating that UUVs could meet specific Navy mission require- 

ments [Ref. 671. To this end, DARPA developed a test bed UUV for new and existing tech- 

nologies, including high energy density power sources, high data rate acoustic communi- 

cations, and precision UUV navigation. The missions selected for these demonstrations 

were the Tactical Acoustic System, the Mine Search System, and the Remote Surveillance 

System. 

Two UUVs were designed and built by the Charles Stack Draper Laboratory of 

Cambridge, Massachusetts. The vehicles are 36 feet in length with a 44 inch diameter hull 

and a weight, without payload, of 15,000 pounds. They are propelled by a 12 horsepower 

electric motor that can achieve a top speed of approximately 10 knots and a maximum op- 

erating depth of 1500 feet. A three-channel redundant computer system, running identical 

software, detects faults through a majority voting scheme. A full range of sensors supports 

guidance and navigation functions. Communication to the vehicle is possible over a RF link 

when surfaced and over acoustic telemetry when submerged. 

Lockheed Missiles and Space Company has been awarded the contract to provide 

mission-level control software for the DARPA UUVs with a focus on fault-tolerant behav- 

ior. This architecture, called Autonomous Control Logic (ACL), is purely hierarchical and 

consists of three major components: the Data Manager, the ACL Controller, and the Model- 
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Based Reasoner (MBR). The Data Manager receives, processes, and analyzes sensor and 

status data for use by the MBR and ACL Controller. The ACL Controller communicates 

commands to an underlying vehicle control system under the direction of the MBR in sup- 
* port of plan execution, while providing for the safety and viability of vehicle and mission. 

Finally, the MBR comprises the “assessment” functions of evaluating the impact on the ve- 

hicle’s capabilities due to unanticipated events and the generation of appropriate responses 

to those events. Servo and sensor control, guidance and navigation, and vehicle health and 

fault recovery are the responsibility of arelated, but distinct, software system called the Ve- 

hicle Controller. ACL is being developed iteratively, and four prototype cycles are pro- 

grammed. Formal acceptance of the system is to occur toward the end of 1994.[Ref. 681 

b 

2. EAVE 

The Marine Systems Engineering Lab at the University of Hew Hampshire has fo- 

cused much of its research efforts on intelligent underwater systems. This effort is mani- 

fested in the Experimental Autonomous Vehicle System [Ref. 391, an A W  test bed. The 

current vehicle, EAVE III, consists of two buoyancy tubes, two battery tubes, and six DC 

thrusters capable of maneuvering the vehicle in four degrees of freedom. The EAVE Illve- 

hicle is 51 inches long, 41 inches wide, and 51 inches deep, and its overall weight is 1000 

pounds. Its thrusters can provide a maximum speed of 1.5 knots and the vehicle has a depth 

rating of 500 feet. 

A conceptual control software architecture has been proposed for EAVE and con- 

sists of four levels organized into in a hierarchical fashion. These levels are labeled, from 

highest to lowest forms of abstcaction, mission, environment, system, and real-time, respec- 

tively. The abstraction mechanism used in this architecture is based upon process execution 

h e .  That is, determination of the placement of software functionality is determined by 

matching the time domain of the level which best corresponds to the execution time of the 

module implementing the function. Thus, the real-time level is responsible for sensory 

management and effector control; the sensor level deals with issues of vehicle integrity and 
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provides guidance functions; the environment level builds and maintains the world model 

and performs duties pertaining to vehicle navigation; and the top mission level handles mis- 

sion-specific issues, replanning, and mission assessment. At this time, this architecture has 

yet to be fully implemented and tested either through simulation or on the EAVE vehicle. 

3. ALV 

The Autonomous Land Vehicle (ALV) was designed and developed by Martin 

Marietta Aerospace and is intended to be a test bed for research in autonomous mobility 

systems [Ref. 691. Its dimensions are 2.7 meters wide, 4.2 meters long, and 3.1 meters high, 

providing the capacity to carry all power, sensors, and computer systems necessary to sup- 

port autonomous operations. The ALV weighs approximately 16,000 pounds fully loaded 

yet is capable of traveling both on and off road, The vehicle has an eight-wheel drive, is 

diesel powered, and driven by hydrostatic transmission. A wide range of sensors is em- 

ployed, including a video camera, a laser range finder, and wheel-mounted odometers. 

A control software architecture was developed for the ALV by Hughes Artificial 

Intelligence Center [Ref. 571. This hybrid architecture is organized into four levels, each 

containing planning and perception functions. At the highest level, the mission planner is 

used to define mission goals and constraints. These are passed to the next level, which 

maintains the world model and develops plans based on maps contained therein. The result- 

ing route plan is then passed to the third level containing the local planner. The local plan- 

ning module selects and monitors reflexive behaviors at the lowest level. It is at this level 

that reflexive behaviors are used as real-time operating primitives [Ref. 511. Reflexive be- 

haviors are independent of each other and execute concurrently; however, it is the respon- 

sibility of the local planner to partition the appropriate behaviors depending on the current 

environment. The ALV architecture has been field tested and was the fnst system to dem- 

onstrate obstacle avoidance in natural terrain [Ref. 701. 
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4. Ambler 

The active exploration of other planets by mobile robots demands that they be ful- 

ly autonomous. A manned mission, even to Mars, is highly unlikely in the foreseeable fu- 

ture. In addition, conventional teleoperation of robots is not practical due to the long time 

delays in signal transmission due to the extreme distances involved. An alternative solution 

would involve an autonomous mobile robot capable of safely navigating extremely rugged 

terrain while intelligently gathering materials and telemetry readings and returning them to 

earth for analysis. 

Researchers at Carnegie Melon University have conducted a program to address 

the central problems of designing such a robot [Ref. 651. The resulting prototype is called 

the Ambler, a vehicle consisting of a cylindrical body one meter in diameter and six legs 

mounted at different elevations above and around the body’s central axis. Each leg is com- 

posed of shoulder and elbow joints and a vertical actuator to extend or retract the foot. The 

average overall height and width of the Ambler is 3.5 and 3.0 meters, respectively. 

The proposed control architecture for the Ambler consists of a number of distrib- 

uted modules with a centralized controller. Planning, sensing, and actuation are handled by 

the outlying modules. Identifying and prioritizing goals is centrally managed, however. 

Modules communicate with each other by posting messages to a message-routing table 

within the central control. 

F. THE NAVAL POSTGRADUATE SCHOOL AUV 

1. Capabilities and Characteristics 

The Naval Postgraduate School Autonomous Underwater Vehicle is an un- 

manned, untethered, free-swimming robotic submarine. Its primary purpose is to support 

graduate student and faculty research in the areas of control technology, artificial intelli- 

gence, computer visualization, software architectures, and systems integration [Ref. 711. 

The current iteration of the vehicle, shown in Figure 2, is 84 inches long and displaces 380 

pounds. A maximum speed of two knots is attained by twin counter-rotating propellers 
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driven by DC electric motors. Eight control surfaces and four cross-body thrusters provide 

a high degree of maneuverability and motion control. The battery-based power system has 

an endurance of two to three hours. A dual-processor Gespac computational platform sup- 

ports concurrent execution and separates high-level planning and navigation functions 

from low-level stability and actuator control functions. Miniaturized, low-power ultrasonic 

sonar, inertial navigation, and global positioning systems are also available. The small size 

and low cost of the NPS AUV are ideal for the support of research on a wide range of shal- 

low water missions, including search, mapping, surveillance, and intervention activities 

[Ref. 721. 

Software control of the NPS AUV is provided by an instantiation of the Rational 

Behavior Model (RBM). RBM is defined in Chapter V of this dissertation; the NPS AUV 

instantiation and results from laboratory simulation studies are presented in Chapter VI. 

2. Simulation Facilities 

Due to the high expenditure of resources involved in preparing the N P S  AUV for 

in-water experiments, and as a means of verifying and validating software prior to integra- 

tion with the vehicle, extensive simulation testing is done. This process allows the system 

developers to observe the impact of a new or modified module on the total system. To this 

end, a detailed graphics simulation of the vehicle and its swimming pool environment has 

been developed. The simulation, besides rendering a visually accurate reproduction of the 

physical vehicle, includes hydrodynamic coefficients, vehicle mass characteristics, and 

variables for vehicle dynamics in depicting the AUV’s motion. By measuring the elapsed 

time between frame updates, the calculations simulate real-time motion. 

The graphical simulator acts as both the physical vehicle and its servo level con- 

trol system. Higher level control systems reside on separate computers and communicate 

heading, speed, depth, and mode commands to the simulation over an ethemet connection. 

For the purpose of this dissertation, the higher levels of control were hosted on Sun 

SPARCstations. 
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An extension of the simulation facilities for the NPS AUV is currently under de- 

velopment. Specifically, the integrated simulator effectively networks a three-dimensional 

graphical simulator with an exact replica of the NPS AUV computer, software development 

workstations, and assorted support resources [Ref. 731. Once completed, this system will 

supercede the current simulator, since the lowest level control software will be that which 

actually controls the vehicle actuators and sensors. This allows for the testing of hardware 

as well as software components. The graphics workstation provides accurate representation 

of vehicle dynamics while permitting experimental evaluation of developmental software 

and post-mission reenactment from recorded telemetry. 

G.  SUMMARY 

This chapter has provided an overview of the field of autonomous vehicles and their 

control. From rather humble beginnings, autonomous vehicle technology has advanced to 

the point where increasingly difficult and complex applications are deemed achievable. To 

attain the level of expectation now associated with autonomous vehicles, the requirements 

placed on the design of such a system are so numerous as to be nearly overwhelming. From 

a computer science perspective, what is most urgently needed is a comprehensive software 

architecture that provides the necessary organization and effectively manages the complex- 

ity of these various systems. Initially, two general approaches were taken toward the solu- 

tion of this problem: the deliberation-based, hierarchically-structured architecture and the 

reflexive-based, behaviorally-layered approach. Experience has shown that neither pro- 

vides the proper combination of intelligence, response time, and robustness required for the 

successful operation of mobile robots in uncertain, hostile environments. This has resulted 

in the emergence of a hybrid class of architectures characterized by higher-level planners 

utilizing internal world models interfacing with lower-level, reactive control systems. 

Most, if not all, software architectures for the control of autonomous vehicles reported 

in the literature remain in a conceptual state or only partially realized. Many admit to the 

uncertainty of how to proceed in the development of the “intelligent” portion of their re- 
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spective architectures [Ref. 39][Ref. 561. This is partially due to the emphasis of research 

placed on these projects and to the technical backgrounds of the personnel involved. Instan- 

tiation of software systems involves careful consideration of the computational domains in- 

7 volved. This directly influences the choice of the programming paradigms and languages 

used in the development of the system. The next chapter of this dissertation provides the 

reader with a review of the alternative paradigms, the strengths and weaknesses of each, 

and the applicability of each with respect to software architectures for the control of auton- 

omous vehicles. 

. 
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III. PROGRAMMING PARADIGMS AND LANGUAGES 

A. INTRODUCTION 

Once the desired capabilities of an autonomous vehicle have been identified, efforts 

must be turned to the design and, ultimately, the implementation of the system. With re- 

spect to software, these phases in the development cycle can proceed smoothly for systems 

of small complexity and size. Generally, applications consisting solely or primarily of nu- 

merical computation are ideally suited for an imperative programming approach using a 

commonly available imperative language. Engineers, mathematicians, and scientists deal 

with problems of this type and are, therefore, most comfortable with this paradigm. How- 

ever, intelligent control of autonomous vehicles introduces a wider range of problems to be 

solved. Some, like navigation and servo control, lend themselves well to imperative solu- 

tions. Automatic reasoning, on the other hand, involves the encoding of human knowledge. 

This information is decidedly non-numeric; therefore, a different programming paradigm 

is called for, one better suited to the representation and manipulation of symbolic struc- 

tures. 

Software organization and data management are also considerations that must be part 

of the overall design process. The method by which modules communicate, how data is 

passed and stored, constraints on time and space, concurrency, and distributed processing 

are all issues which should influence the choice of programming language(s) used in an im- 

plementation. Additionally, practical issues, such as the availability of resources and the 

experience of personnel, will certainly come into play. 

Theoretically, the expressive power of most computer languages are the same. Any 

problem that can be expressed in one can be expressed in another [Ref. 741. From a practi- 

cal standpoint, however, languages differ dramatically with respect to the class of problems 

for which they were designed. Each has a domain of problems in which it excels while, in 
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other contexts, the same language may prove to be unacceptably inefficient or unwieldy. 

For this reason, there is probably no “best” single language for applications involving a mix 

of problem domains. The following discussion is meant to aid the designer of autonomous 

vehicle systems in the informed selection from the wide range of candidate languages. 

B. IMPERATIVE PROGRAMMING 

The class of imperative languages have their origins in the earliest computing ma- 

chines. These computers had little storage and were very slow. Programmers were required 

to focus much of their energies on code optimization. Since memory typically was provided 

in the form of a rotating drum, this process entailed the calculation of insauction location 

based on the distance traveled by the drum during the execution of the previous instruction. 

Also, there existed no facilities for indexing or address modification, important features of 

the von Neumann architecture upon which most modem computers are built [Ref. 751. 

The complexity of programming these machines led to the development offlow dia- 

grams and later to the now well-establishedflow chart. These design tools assisted the pro- 

grammer by describing explicitly the flow of control through the program: that is, the points 

where branching, looping, and sequencing occurred were represented by appropriate sym- 

bols. Program development was made even simpler as a result of the introduction of low- 

level language interpreters. By writing programs in a form other than machine code, the 

programmer could concentrate on the application at hand and leave the more tedious and 

error-prone activities to the interpreter. [Ref. 741 

A drawback of the new interpreters was that they ran slowly. Each instruction was 

translated into an intermdiate form which could then be executed by the computer. How- 

ever, decoding each instruction added a great deal of overhead to program execution. With 

the introduction of floating-point hardware by IBM in 1953, the overhead required by the 

interpreter began to dominate the total execution time of the program. For this reason, in- 

terpreters fell from favor and were steadily replaced by compilers. The process of compi- 

lation involves selecting pre-written and tested subroutines from libraries and assembling 
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them under the direction of the user’s code into an executable program. Translation and de- 

coding was performed only once, at compilation time, resulting in programs that executed 

much more quickly than interpreted programs. 

At this time, John Backus of IBM recognized that it was becoming more expensive to 

design and debug programs than it was to run them. He concluded that programming costs 

could be decreased only through the use of a system that could recognize conventional 

mathematical notation and generate code equivalent in efficiency to that produced by a 

good programmer. This effort led to the development of the Formula Translating System, 

FORTRAN [Ref. 761. 

The original FORTRAN, l i e  its various dialects developed through the years, was 

characterized by the distinction made within its programs of a declarative part, describing 

data areas and their initial values, and an imperative part, containing the commands to be 

executed during the running of the program. Declaratives state facts about the program 

which are used at compile-time. Imperatives, on the other hand, describe actions which the 

program obeys at run-time, such as algebraic computation, assignment, comparison, and 

branching. This distinction is characteristic of the class of imperative programming Inn- 

guages, a class that includes, besides FORTRAN, PL/I, BASIC, Pascal, C, and Ada. 

Development of these other languages was driven by three primary factors. First, 

FORTRAN’s lack of character manipulation facilities limited its effectiveness in applica- 

tions that were not strictly numeric. Second, FORTRAN was, for the most part, based on 

the hardware architecture of a particular family of machines and, therefore, lacked syntactic 

regularity and consistency. Third, FORTRAN programs relied heavily on the GOT0 state- 

ment as a control-flow mechanism. As FORTRAN programs increased in size and com- 

plexity, they often suffered from “spaghetti-like” structuring that was difficult to under- 

stand, debug, and maintain. This phenomenon caused a reaction within the field of comput- 

er science that resulted in the introduction of structured programming, a body of 

programming methods intended to foster easier and more reliable programming [Ref. 771. 
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C. FUNCTIONAL PROGRAMMING 

Imperative programming depends heavily on the assignment statement and a change- 

able memory for program accomplishment. Most imperative languages can be viewed as 

consisting of a variety of mechanisms for routing control from one assignment to another. 

In applicative programming languages, however, it is the applying of functions that is cen- 

tral. Hence, these languages are also referred to asfunctional languages. The functional ap- 

proach is characterized by its lack of a destructive assignment. In other words, a pure func- 

tion does not produce side effects; rather, itreturns a value based solely on the values of its 

input parameters. Repeated calls to a pure function with the same arguments will always 

produce the same results. This phenomenon is called referential transparency [Ref. 781. 

1 

. 

Functional programming is also characterized by its lack of control structures. By the 

judicious construction and application of functions, a GOT0 statement is not required. This 

is made possible because arguments to functions may themselves be functions. For exam- 

ple, the IF-THEN-ELSE conditional control structure available in conventional languages 

is written functionally as the application of a “condition” function (cond in LISP) to a num- 

ber of parameters representing the various alternative branches. Even function definition is 

accomplished by invoking a function (defun in LISP) with arguments representing the 

name of the function, a formal argument list, and the function’s body’. One advantage of 

programming this way is its simplicity in that all components of the program are represent- 

ed and evaluated in the same manner [Ref. 791. 

LISP grew out of the need within the field of artificial intelligence to represent com- 

plex interrelationships among primarily symbolic data [Ref. 801. This computation is ac- 

complished by allowing the manipulation of lists in ways comparable to the ways impera- 

tive languages manipulate numbers. Lists can be compared, passed as parameters, con- 

structed, and taken apart. In fact, LISP data, functions, and, by extension, its programs are 

all written as lists (known as symbolic expressions or S-expressions). 

1. To be precise, this involves binding the function name to a value; hence, &fun is not a pure function. 
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Viewed as an applicative language, there are only two control structures in LISP: the 

aforementioned conditional expression and recursion. The conditional is used to define log- 

ical connectives such as AND and OR. As a result, the operands of a logical relation are 

evaluated sequentially as they are encountered, from left to right. As soon as one of its ar- 

guments evaluates to FALSE, the and function immediately returns FALSE. Similarly, the 

or function sequentially evaluates its arguments until a TRUE is returned. Remaining ar- 

guments are ignored. This interpretation of the logical connectives is known as lazy evalu- 

ation and is opposed to the strict evaluation of Pascal which first evaluates all logical sub- 

expressions before evaluating the full expression. Strict evaluation can lead to errors if one 

of the sub-expressions is undefined [Ref. 811. 

The other control structure provided by purely functional LISP is recursion. .411 forms 

of iteration including the imperative WHILE, REPEAT-UNTIL, and FOR loop control 

mechanisms are performed using recursion. This is possible because recursion relies on re- 

ducing the unsolved cases of a problem to a form for which an answer exists. Usually this 

involves a function calling itself with successively shorter lists as parameters. Recursion 

can also be used to “map” or apply a function to every element of a list and to filter, or ex- 

tract, certain elements from a list. This is accomplished without the need for indices, control 

variables, or explicit bound declaration. So as to not violate the functional tenet of side ef- 

fect avoidance, these functions manipulate copies of their inputs rather than the inputs 

themselves. 

There are other practical benefits of functional programming. Data structures, in the 

form of lists, are treated as units, thus isolating the programmer from the mundane and er- 

ror-prone details of explicitly manipulating these structures and managing their storage. In- 

stead, these responsibilities are left to the interpreter and host machine. LISP thus supports 

programming at a higher level of abstraction than does the imperative approach [Ref. 741. 

Another advantage of LISP is that it can be interpreted. Interactive programming at a ter- 

minal with rapid response is invaluable in the step-wise development of software. Debug- 

ging and program modification are not only possible “on the fly” but are greatly simplified 
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compared to the effort and resources typically required by compiled languages. Since LISP 

programs are themselves lists, it is convenient to manipulate LISP programs using other 

LISP programs. As a result, a broad spectrum of software tools have been written in LISP, 

. including program translators, compilers, interpreters, and text editors. 

Although LISP is the closest thing to an applicative language available for general use, 

it is not purely functional because it allows for the definition and manipulation of data. 

Functions that alter the state of the computer while computing a result are called pseudo- 

functions or procedures. Many of these “destructive” functions evolved from attempts to 

increase the performance of LISP. Although these functions remain part of the language 

definition, the current state of computer performance has made performance considerations 

moot. Therefore, the use of destructive functions is discouraged so as to avoid undesirable 

side effects that may result. 

In addition to providing structured programming control forms, LISP has adopted the 

features of object-oriented programming as a result of the ANSI standardization of Com- 

mon Lisp. The Common Lisp Object System (CLOS) provides to the software system de- 

signer the benefits of objects and classes (which are described in detail in section E of this 

chapter) while retaining the procedural abstraction and encapsulation of “traditional” LISP 

[Ref. 821. 

D. LOGIC PROGRAMMING 

One advantage of LISP is that it hides much of the lower-level manipulation and man- 

agement of data from the user. This is important because the less detail the programmer is 

faced with the less chance there is for error. Another way of saying this is that a language 

that handles concepts at a higher level than another is also “less procedural”. The user of a 

high level language can devote more effort to what is to be done and less on how to accom- 

plish it. In the extreme, a non-procedural language would represent only the desired goal of 

the computation; the computer would then be. left to determine how the goal was to be 

achieved [Ref. 741. 
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In many respects, this approach to problem solving is similar to automated problem 

solving in the field of artificial intelligence. Theorems involve the statement of a hypothesis 

followed by a proof linking what is known to be hue to what is to be proved. The proof 

relies on the axioms and tenets of formal logic and the formulation of exact deductive rea- 

soning about them [Ref. 831. Logic programming makes use of the observation that apply- 

ing standard deduction methods often has the same effects as executing a program [Ref. 

841. Thus, programs express propositions that assert the existence of the desired conclu- 

sion. It is the job of the theorem prover to construct from the set of premises this result and, 

hence, prove its existence. 

The programming language Prolog (Programming in Logic) attempts to automate this 

process. Prolog programs consist of clauses, of which there are three types: facts, rules, and 

queries. Rules define the problem domain and facts make assertions about the domain that 

are known, or assumed, to be true. The rules and facts comprise a Prolog database. A query 

is a statement used to extract information from the program. Taken together, the three parts 

of a logic program resemble the statement of a mathematical theorem. 

The general form of a clause is <head> :- <body>. If the head is omitted, the clause is 

a query; if the body is omitted, the clause is a fact. A clause with both head and body is a 

rule. The head and body are composed of relationships, each of which is either an applica- 

tion of a predicate to one or more terms, or an atom. Prolog allows at most one relationship 

in the head, a form referred to as a Horn clause. An explanation of why this is so is deferred 

to Chapter IV of this dissertation. 

In pure logic programming, because control and logic are separated, the ordering of 

the clauses is irrelevant to the execution and results of the inference process. The program’s 

logic is based solely on logical relationships between clauses instead of their physical rela- 

tionship. Prolog, in the interest of efficiency and determinism, includes control mecha- 

nisms that greatly influence how programs are written and organized. First, Prolog uses 

backtracking as a way to explore alternative paths to a goal. If a dead end is encountered, 

the search simply continues from the last decision point. Second, by its def i t ion Prolog 
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uses a depth-first strategy when searching through a database. It becomes the responsibility 

of the programmer to arrange the clauses and subgoals of the program so as to avoid the 

pitfalls of depth-first search. Third, as a consequence of these two characteristics, Prolog 

includes the cut (!) mechanism designed to preempt backtracking and halt the search for 

additional solutions. 

Determining if the query is a logical consequence of the program (that is, it can be 

“proved” by the rules and facts available) is the responsibility of the Prolog inference en- 

gine. This is itself a program, separate from the user’s program, that performs the task of 

deriving inferences from the given set of clauses. If the response to a query is yes (or 

TRUE), the goal is provable from the available assertions. If, however, the system returns 

no (or FALSE), the query has not been proven false; rather, it could not be deduced from 

the existing premises. This inference based on lack of knowledge is otherwise known as the 

closed-world assumption. It is possible to ask existential queries in an attempt to find spe- 

cific solutions. These queries involve one or more variables which are bound, through a 

process called unification, to appropriate values. The system will continue to search the set 

of clauses, if commanded, until all possible solutions are generated. 

Prolog has very few built-in data types and essentially no data structure constructors. 

Instead, data structures are defined implicitly by the clauses in the program and manipulat- 

ed by matching the data against existing expressions. As in functional programming, recur- 

sion is used in place of the procedural control structures of imperative languages. Unfortu- 

nately, attempting to apply Prolog in a purely logical way, say for integer arithmetic, is in- 

tolerably inefficient, particularly since the computer can implement this directly [Ref. 741. 

By including “procedural” predicates and functions to improve performance, however, log- 

ical properties are compromised [Ref. 851. 

E. OBJECT-ORIENTED PROGRAMMING 

Partly as a reaction to the “software crisis” of the 1970s, when the costs of producing 

software were increasing apparently without bound, languages characterized by their em- 
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phasis on data abstraction were developed*. Specifically, these languages, of which Ada is 

a significant example3, provided an encapsulation facility supporting the separation of 

specification and implementation. information hiding, and strictly controlled access to 

function and data declarations. In addition, the concept of the class (generic type in Ada) 

was included in these languages, from which multiple instances of a data structure could be 

created. The purpose of this feature was to support software reuse, which in turn can be ex- 

pected to enhance program efficiency, readability, and maintainability while reducing as- 

sociated cost. 

. 

These same motivations lie behind the development of object-oriented programming 

languages. These languages allow the definition of classes from which abstract data smc- 

tures called objects may be instantiated. Objects typically contain a set of variables that 

may be manipulated only by specified operators defined for that purpose. These operators 

are called methods and are invoked upon receipt of a message. By restricting access to the 

methods and variables of an object, the object's internal structure is said to be encapsulated, 

and any modifications made to this structure will not affect programs using that object Pef. 

861. 

One of the features that distinguishes object-oriented programming languages is the 

code-sharing mechanism called inheritance [Ref. 861. With inheritance, a new class can be 

designed from an existing one by specifying only those variables and methods that differ- 

entiate the two, The newer subclass is said to inherit all the features of the parent superclass. 

Of course, this includes those items the parent class may have inherited from its superclass. 

The subclass relationship between classes defines a class hierarchy with inheritance oper- 

ating over "a-kind-of" or "is-a" links joining subclasses and superclasses. 

2. Data abstraction manifests itself in the A b m t  Data Type (ADT), a set of data values and operations 
on those values. The representation of the data is hidden within the module. Access and manipulation of the 
data is accomplished only through the procedures provided by the module to the user. 

3. As will be emphasized shortly, Ada is object-based rather than object-oriented due to its lack of pro- 
vision for class inheritance. However, Ada's support of ADTs and encapsulation is still pertinent to this dis- 
cussion. 
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Objects may contain variables that represent other objects. In this case, the containing 

object is a composite object. The variable object may be implemented in one of two ways: 

as a dependent object or as a subobject. A dependent object cannot be created unless the 

composite object is fiist created. Similarly, the dependent objects are destroyed when the 

composite object is destroyed. These objects share a “part-of” or “has-a” relationship. Su- 

bobjects, on the other hand, are created independently of the composite and are subsequent- 

ly linked through a pointer stored in the corresponding variable. Subobjects are not auto- 

matically destroyed upon termination of its composite object. In addition, subobjects may 

be shared between any number of composite objects [Ref. 871. Such objects exhibit a uses 

relationship [Ref. 881. The relationship between composite, dependent, and subobjects 

forms the basis for object (or composition) hierarchies. 

Based on the definition for object-oriented programming proposed by Wegner, a lan- 

guage is object-oriented if it supports objects, classes, and inheritance [Ref. 891. Languages 

which feature the first two characteristics but lack inheritance are called object-based. Ada, 

because it has no provision for inheritance, falls into this category. 

Object-oriented features, when added to an existing language, results in a bolted-on 

language; languages designed with object-oriented principles in mind are called built-in 

[Ref. 871. Examples of bolted-on languages are C++ [Ref. 901, CLOS [Ref. 911, and Clas- 

sic-Ada [Ref. 921. Built-in languages include Smalltalk-80 [Ref. 931 and EIFFEL [Ref. 941. 

Part of the confusion associated with the object-oriented programming paradigm re- 

sults from a lack of generally accepted terminology [Ref. 951. The most significant differ- 

ences lie in how certain mechanisms are implemented within the language, such as the as- 

signment and persistence of class variables and the realization of multiple inheritance. As 

the field matures, a more precisely defined object-oriented paradigm should evolve, recon- 

ciling current language differences to a greater degree than at present. 
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F. CONCURRENCY AND REAL-TIME ISSUES 

For the most part, the problem domains for which the above classes of programming 

languages were developed excluded applications where multiple processors were available 

or where execution times were constrained by fixed deadlines. With the advent of fourth 

generation programming languages4, language features taking advantage of potential par- 

allelism have been included. The ability to specify concurrent tasks alone is not sufficient, 

however, to meet the requirements of real-time systems. Additional considerations must be 

accounted for by those who design and implement such systems. The purpose of this sec- 

tion is to delineate these issues and discuss various approaches to the solution of each. 

1. Concurrent Programming 

Although research into concurrency is ongoing for all classes of languages, those 

discussed thus far are usually executed on a single processor. That is, programs written in 

these languages typically have a single active thread of control, in which one program seg- 

ment is executed at a time. In many cases, the performance of these programs could be im- 

proved if independent computations, also known as processes, were run in parallel. The 

identification of notations and techniques for expressing potential parallelism and for the 

solving of the resulting synchronization and communication problems is called concurrent 

programming mef. 961. 

In general, concurrency within a program can be achieved either by specifying a 

standard interface to a multitasking operating system or by expressing it in the language it- 

self. Operating systems like UNIX support many executing processes in concurrent fashion 

by allocating to each use of the processor in rapid succession. The effect of this “time slic- 

ing” is to emulate true parallelism. 

The focus of this discussion is on the second implementation. Whereas earlier 

generation programming languages like FORTRAN and C are purely sequential, and appli- 

4. The reference here is made to fourth-generation programming languages as defined by MacLennan 
in Ref. 741. Thii category includes those. languages which provide the dataabsuaction facility of encapsula- 
tion and control consuucts supporting concurrency. 
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cative languages like LISP contain no provision for explicitly directed concurrency, the SO- 

called fourth generation programming languages, including Ada, include distinctive con- 

trol structures for the expression of parallelism within their definition [Ref. 741. Ada, for 

example, identifies separate threads of control as tasks within the main program. Signifi- 

cantly, concurrent programming languages provide abstraction mechanisms to isolate the 

programmer from the details of how the parallelism is actually implemented. Thus, an Ada 

program requires no modification should the underlying computer change from a single to 

a multiple processor architecture [Ref. 961. If a single processor is available, task execution 

will be interleaved. If, however, a processor is available for each task, they will execute in 

parallel; that is, the concurrent tasks will be simultaneously active. 

. -  

Concurrent tasks must communicate with each other in order to synchronize their 

activities or exchange data. One way to accomplish this is to employ a shared (global) area 

of memory accessible by the relevant tasks. In a distributed system, however, a centrally 

accessible memory may not exist. In this case, processes must communicate through mes- 

sage passing. Using Ada again as an example, a task wishing to communicate with another 

invokes an entry call recognized by the target task. Synchronization is accomplished via the 

Ada accept statement. Once the called task acknowledges receipt of the message, the two 

tasks proceed to execute concurrently. Note that this is unlike a procedure call, where the 

calling program is suspended until the called program completes its processing, returns the 

results, and is deactivated. Should a task reach an accept statement before the correspond- 

ing message is sent, the task suspends itself until the message arrives. Likewise, if a task 

attempts to transmit a message before the receiver is ready, it will be suspended. In Ada, 

this coordination mechanism is called a rendezvous. Ada also provides for the conditional 

acceptance of alternative rendezvous through the use of the select statement. Other concur- 

rent languages, such as OCCAM, Modula, and Mesa, provide similar functionality but em- 

ploy widely varying mechanisms for its attainment [Ref. 971. 

The problems associated with the sharing of data between concurrent objects is of 

significant interest within the object-oriented programming community. Class variables are 
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typically shared between all instances of the class, and few object-oriented languages pro- 

vide for the mutual exclusion of concurrent objects vying for access to these variables. At 

the individual object level, instance variables may also experience mutual exclusion prob- 

lems if concurrently executing methods accessing the same variables are present. Addition- 

ally, the consistency of class variables may be violated if a class definition is replicated on 

multiple nodes of a distributed system. Modification of one such variable at one site re- 

quires that every copy be similarly modified.[Ref. 981 

When writing a concurrent programming a concurrent programming language, it 

is the responsibility of the programmer to identify the activities which may done in parallel. 

This is difficult for several reasons. Most “tried and true” design and program methods 

available were created for sequential programs. Parallel systems must be approached from 

a totally different perspective. Partitioning problems into independent threads of control is 

a skill developed through experience. Insuring the correctness of concurrent programs is 

also more difficult than for sequential programs. A mature body of proof theory has been 

built around traditional algorithms [Ref. 631, and the field of software testing has developed 

a wide assortment of methodologies whose purpose is to instill confidence in systems im- 

plementing these algorithms [Ref. 991. For the most part, however, these techniques do not 

apply to concurrent programs because simultaneously executing processes can interfere 

with each other in subtle and apparently random ways. These problems occur when re- 

sources are shared and fall into one of two general areas: mutual exclusion and deadlock 

[Ref. 1001. Although the issues of program correctness for both sequential and concurrent 

programs are important and relate to the work presented in this dissertation, they are be- 

yond its scope. Additional information may be found in [Ref. I011 and [Ref. 1021. 

2. Real-Time Support 

Improved performance is the prime motivation for concurrent programming [Ref. 

1031. Certain systems, particularly those providing critical monitoring and control func- 

tions for a larger system, require the level of performance only true parallelism can yield. 

. 
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In addition to managing concurrent threads of control, some systems must insure that each 

task meets specified deadlines [Ref. 1041. These systems are known as embedded or reaf- 

time systems, because they must respond to real-world requests in a timely fashion. Real- 

time, as implied in this context, simply refers to the timing constraints imposed on the sys- 

tem by the application. 

Real-time systems are categorized as either hard or soft. In a hard real-time sys- 

tem, the output of the system must not only be computationally correct but temporally cur- 

rent pef .  1051. Systems which operate under time-based constraints but for which a late 

result is acceptable are called soft real-time systems. Given that their safety depends on 

timely responses to dynamically changing circumstances, the lower, vehicle-control level 

of the software architecture of autonomous vehicles typically falls into the hard real-time 

category. 

A common trait of real-time control is the substantial amount of data that must be 

sampled and processed for use by the embedded system. As a result, the language chosen 

to implement real-time control must have the ability to manipulate floating point numbers 

quickly and with a high degree of precision [Ref. 1061. System response time is dictated by 

the timing constraints placed on the controller as well as the overall efficiency required of 

the system. Three approaches are taken to meet the required level of performance: increas- 

ing processor speed and memory, optimizing code, and concurrent computation using mul- 

tiprocessors. In the future, gains of the magnitude required by ever more complex systems 

will be realized only through concurrent processing [Ref. 1071. 

Because of their numeric orientation and the availability of optimizing compilers, 

general purpose imperative programming languages are often used to in real-time applica- 

tions. This is something of a contradiction, as these languages do not pemit explicit expres- 

sion of timing requirements. Nevertheless, performance specifications can often be met 

through a combination of code “tuning”, load balancing, memory management, and sched- 

uling policy [Ref. 1081. The major disadvantage to this approach is that it results in a rigid 

and delicate system not amenable to modification. 
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Due to the sheer complexity of real-time systems and the consequences of system 

failure, this process must be replaced with design methods encompassing system flexibili- 

ty, robustness, and verification. Reliance on the operating system to generate schedules that 

guarantee performance is one potential solution [Ref. 1091. From the programming per- 

spective, several specialized languages have been developed that provide constructs defin- 

ing temporal concepts such as absolute time stamping, during, period, and priority of pro- 

cesses. Examples include Flex [Ref. 1101, ESTEREL [Ref. 1111, and Ada 9X [Ref. 1121. 

Object-oriented languages and operating systems designed specifically for use in real-time 

applications have recently appeared; an overview of these systems is found in [Ref. 1131. 

Another promising approach under investigation is the use of computer-aided software 

tools for the design and development of real-time systems [Ref. 1141. Interested readers are 

directed to [Ref. 1051 and [Ref. 1091 for excellent overviews of the issues involved. 

G. SUMMARY 

The system designer of a complex software architecture is faced with many program- 

ming paradigms and languages from which to choose. An implementation should, however, 

be driven primarily by the nature of the problem to be solved. If a varied spectrum of prob- 

lems exists, it may be appropriate to select a mix of languages, each suited to a particular 

application. Autonomous vehicle control serves as a prime example for this approach. 

One problem to be faced in such a project is the representation of knowledge within 

the intelligent controller. LISP was mentioned as a good language for symbolic manipula- 

tion. Prolog is based on predicate calculus and deduction. Although neither is ideal for the 

construction of automatic reasoners [Ref. 1151, both offer viable approaches. In addition, 

another group of languages has been developed: rule-based. These topics will be covered 

extensively in the next chapter. 
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IV. LOGIC AND REASONING 

. -  
Autonomous vehicles, by definition, are designed to operate without human interven- 

tion. This is in contrast to Remotely Operated Vehicles which contain a “man in the loop”. 

Since a human is not available to make decisions on the spot, the autonomous vehicle must 

have the capacity to reason. Much research done in the field of Artificial Intelligence has 

striven to attribute this ability to machines [Ref. 1161. To impart knowledge to an autono- 

mous vehicle, facts and rules describing the problem domain in which the vehicle will op- 

erate must be placed into a form easily manipulated by a computer. This manipulation is 

accomplished in an orderly fashion by a reasoning mechanism using a particular control 

structure. The mechanism is an inference engine, and the control structure is the type of 

chaining employed by the inference engine. This chapter begins with a review of compu- 

tational logic, upon which aLl forms of automated reasoning are built. Next, the concepts of 

goal-directed and data-driven reasoning are discussed, as well as the implementation strat- 

egies of backward and forward chaining. Chaining is used by an automated reasoner called 

a rule-based system, and the next section describes them. Lastly, representations of the 

search space associated with rule-based systems, namely AND/OR goal trees and State- 

Transition Diagrams, are discussed. 

A. INTRODUCTION 

Intelligent software systems are also known as knowledge-bused system [Ref. 461 and 

are made up of two parts: (1) a knowledge base consisting of facts, rules, concepts, and the- 

ories, and (2) an inference mechanism, which examines (searches) the knowledge base in 

an orderly manner and answers questions, reasons, and draws conclusions. Automated rea- 

soning describes the behavior of such an intelligent system. If the knowledge encoded with- 

in the knowledge-based system represents the expertise of a human expert in a particular 

domain, the system is termed an expert system [Ref. 1151. The bowledge representation 
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used by all these systems is generally expressed in symbolic, as opposed to numeric, form. 

Various knowledge representation formalisms exist, although practical realizations typical- 

ly rely on some combination of predicate logic [Ref. 1171, production rules [Ref. 1181, and 

structured objects [Ref. 1191. Figure 3 depicts the three most common knowledge represen- 

tation schemes, the inference mechanism employed by each, and their relationship to expert 

systems. As can be seen in the figure, expert systems typically display characteristics of 

more than one approach. 

Rule-based expert systems that are capable of solving mission-specific problems are 

used in the construction of the Rational Behavior Model; thus, this chapter will focus on 

them. However, rule-based systems are founded upon the precepts of mathematical logic, 

and it is therefore necessary to introduce this topic fmt. 

B. COMPUTATIONAL LOGIC 

A discussion of the topic of automated reasoning must begin with an overview of the 

basics of formal logic, the science of correct thinking. What is presented here is intended 

to be an overview only, with a purpose to provide the context for what follows. For more 

thorough coverage, readers are directed to [Ref. 1201. 

Formal logic is a language consisting of expressions and a set of grammatical rules 

which, when applied, can determine the truth or falsity of expressions. Logic is formal be- 

cause the meaning of an expression is defmed strictly by its form. In addition, logic is pre- 

cise about the conditions under which expressions evaluate to true or false. The body of 

study surrounding logic is often called a calculus because all results drawn from the appli- 

cation of a rule depend solely on the expressions themselves and not upon extraneous ideas 

or intuition, Of interest here is the simplest logic formalism,propositional calculus, and the 

more general logic system called first order predicate calculus. 
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47 



1. Propositional Calculus 

The propositional calculus, also known as Boolean algebra [Ref. 1211, is a lan- 

guage consisting of a symbolic notation and rules for the manipulation of these symbols. 

Taken together, this language can perform sequences of inferences designed to suppon the 

validity of a theorem or hypothesis. A proposition is a symbolic representation of an ex- 

pression or concept that evaluates to truth or falsity. A theorem is composed of propositions 

called premises whose intended purpose is to prove another proposition called the conclu- 

sion. Premises are facts known (or assumed) to be true. 

Propositional calculus describes relationships between propositions using the log- 

ical operators AND, OR, NOT, IMPLICATION, and IF AND ONLY IF'. There are ten ba- 

sic inference rules in propositional calculus, one introduction rule and one elimination rule 

for each logical operator [Ref. 1221. This simple set of rules is quite powerful and is suffi- 

cient for a system that deals with statements consisting only of propositional constants. For 

this reason, the ability of propositional calculus to represent the real world is limited to 

knowledge of a specific nature [Ref. 1151. A logical system supporting the concepts of vari- 

ables (instances), predicates, functions, and quantification is needed for more general ap- 

plications. This more general, and hence more powerful, system is called the predicate cal- 

culus. 

2. Predicate Calculus 

Predicate. calculus uses the concepts and rules of propositional logic while giving 

added ability to represent knowledge in finer detail. This is accomplished through the in- 

troduction of predicates, objects, and quantifiers. In addition, predicate logic allows vari- 

ables and functions of variables within a symbolic logic statement. Additional syntactic and 

semantic rules are also defined for the analysis of propositions, the interpretation of the re- 

sulting expressions, and the proving of valid deductions. 

1. A variety of symbols and Labels are associated with each logical operator. In this work, if reference to 
these operators is required, the capitalized label is used. Associated symbols in common use are A for AND, 
v for OR, 7 for NOT, + for IMPLICATION, and C )  for IF AND ONLY IF. 
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In predicate calculus, an expression is divided into two parts: the predicate and its 

arguments. Predicates represent what is known about the world and can assert some condi- 

tion about or relating to the arguments2. Predicates may be used to indicate an argument’s 

type or to denote a particular relationship between two or more objects. An example of a 

type predicate expression is boy(afex), indicating that Alex is an instance of the type “boy”. 

The expression isfather(ron, afex) contains a relationship predicate and represents the fact 

that Ron is Alex’s father. 

Arguments may be variables, in which case one of two special quantification op- 

erators are used to bind and delimit the scope of the variables. The standard quantifiers used 

in predicate calculus are the universal (v), meaning “for all”, and the existentiai(3), mean- 

ing “for some”. Rules relating to the addition and elimination of the two quantifiers, added 

to the ten inference rules of propositional calculus, constitute the complete set of rules for 

predicate logic. A thorough discussion of each rule is presented in [Ref. 1221. 

3. Reasoning 

Logic is more than simply a system for expressing facts and knowledge in sym- 

bolic form. Rules of inference are used to derive new knowledge from old, or to prove the 

validity of some goal. The process of drawing inferences, either in the form of new facts or 

proofs, from premises is the basis for reasoning. Before discussing the automation of this 

process, it will be beneficial to explain the two types of reasoning: deductive, where general 

premises are used to verify a specific conclusion: and inductive, where established facts are 

used to draw a general conclusion. It is more common, at least within the field of computer 

science, to use the terms goal-directed and data-driven reasoning for deduction and induc- 

tion, respectively [Ref. 461. The terms forward and backward reasoning are also in general 

use; however, they are too easily confused with the rule-search control structures of for- 

2. Because predicates and their arguments are merely used as a symbolic representation of an abstract 
concept, one cannot speak of “incorrect” predicate or argument names. However, some predicate names are 
certainly more descriptive than others. The selection of these names is a matterof good programming style. 
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ward and backward chaining found in production systems. Therefore, in this dissertation, 

explicit directionality will be applied only to chaining. 

a. Data-driven Reasoning 

Tnis type of reasoning begins with a set of premises known to be true and ap- 

plies the rules of logic to generate new facts. Specifically, reliance is on the inference rule 

modusponens [Ref. 1231, the elimination rule for the IMPLICATION operator. This rule 

states that given an implication and its antecedent, its consequent can be inferred; that is, if 

R -+ S is given and R is known to be true, S logically follows. This new fact may in turn 

be used in subsequent inference steps to produce yet more new facts, and so on. Typically, 

this type of reasoning attempts to generate data in support of some goal or theorem [Ref. 

1241. Of course, data-driven reasoning may also be used simply to generate new knowledge 

without regard to a goal, perhaps as a method of learning. In any event, this inference mech- 

anism relies on the existence of facts and works toward the satisfaction of the theorem. 

Hence, this process is also known by the terms botfom-up, event-driven, and forward rea- 

soning. 

Data-driven reasoning must contend with two problems. The fist  is the po- 

tential for the creation of inferences having no relation to the goal. The other drawback in- 

volves the difficulty identifying the shortest path of inference to the goal. Often, reliance is 

placed on a heuristic to guide the selection of premises from among those available. These 

problems are exacerbated if the number of available facts becomes large. 

b. Goal-directed Reasoning 

Another approach to reasoning is to start from a goal to be proved and to rea- 

son backward toward the factual evidence needed to validate the goal. This approach to rea- 

soning is called goal-directed, also known as t o p - h n ,  goal-driven, or backward reason- 

ing. The goal is f i s t  decomposed into simpler, constituent subgoals. Each subgoal is then 

itself decomposed. The process continues until subgoals are attained that are a direct con- 

sequence of the premises. This process is characteristic of a reliance on the derived infer- 
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ence rule modus tollens [Ref. 1231. Modus tollens states that given the axioms R + S and 

i s ,  then 7 R  logically follows. This rule is derived in that it cannot prove anything not prov- 

able by the ten basic rules alone; however, it can help to simplify proofs by providing “short 

cuts” to the solution. 
. -  

Most applications requiring the use of autonomous vehicles will be solved us- 

ing goal-directed reasoning. The “divide and conquer” approach to problem solving seems 

best suited for human understanding in this domain [Ref. 181. In addition, the act of decom- 

posing the goal into simpler and simpler subgoals sheds light on which intermediate results 

must be attained and the sequence in which they must be attained. Supplied with this 

knowledge, a human user of an autonomous vehicle will possess a higher degree of confi- 

dence in its reasoning abilities because of this greater understanding of the problem. 
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C. AUTOMATED REASONING AND RESOLUTION 

Despite the concise and unambiguous nature of predicate logic, its syntactic variety is 

not conducive to execution on a computer. As will be seen, automatic reasoners, for the 

sake of efficiency and in order to sirnpliiy the inference procedure, rely on a single rule of 

inference called the resolution principle [Ref. 1251. The specifics of resolution and its 

computer implementation are presented in this section. 

1. Resolution 

Resolution is an inference technique that solves logic problems by resolving (de- 

riving) new knowledge, called resolvents, from known premises. The power of resolution, 

and its importance for the automation of problem solvers, lies with the fact that it subsumes 

the fundamental inference rules of modus ponens, modus tollens, chaining, merge, and re- 

ductio. Use of this principle requires that logical expressions be placed in the Conjunctive 

Normal Form (CNF). An expression in CNF uses only the OR and NOT logical operators. 

The purpose of this transformation is to provide for maximum uniformity and standardiza- 

tion in the representation of premises while eliminating the need for many of the connec- 

tives and quantifiers used in the propositional and predicate calcufi. 



There are six basic steps to converting predicate calculus expressions to CNF 

[Ref. 1261. First, the operators IMPLIES and IF AND ONLY IF are eliminated by replacing 

them with their logical equivalent. Second, the scope of negation is reduced to the atomic 

term level using DeMorgan’s laws. Third, repeated variables are standardized based on the 

scope of their quantifiers. Fourth, existential quantifiers are eliminated by introducing con- 

stants and Skolem functions. Fifth, intermediate forms are converted to prenex form, in 

which universal quantifiers are eliminated. Sixth, conjunctives (AND operators) are re- 

moved along with extraneous parentheses. The premises in the final form consist of atomic 

formulas called literals. It is upon these literals that resolution operates. 

Resolution works as follows. If x and y are two premises transformed into CNF, 

and i and j are literals of the premises x and y, respectively, and i = Tj, then a new premise 

z can be derived by forming the union of x and y minus the literals i and j. The premises x 

and y are said to “clash” on the pair of complementary literals i and j. Expressed another 

way, the clause z is the resolvent of the parent clauses x and y. When dealing with comple- 

mentary literals containing variables, an additional step is required prior to the application 

of resolution. During this step, the variables are matched and bound using the unification 

algorithm [Ref. 126][Ref. 1271. 

Other representative forms, such as Clausal form and Horn clause form, are even 

more restrictive but can improve the simplicity and efficiency of automatic reasoners. 

Clausal form is similar to CNF, except that the negated literals and non-negated literals of 

each disjunction are grouped together. If the negated group are placed on the right of an 

implication arrow, and the non-negated group on the left, the negation symbols can be 

dropped. The resulting clausal form is equivalent to but easier to interpret than CNF, at least 

for humans. So, for example, the CNF statement 

l p  v r v s v -q 

becomes, in clausal form, 

r, s t P, q 

with the interpretation “r or s is true if p and q are true”. If one and only one literal is allowed 

on the left side of the arrow, the expression is said to be in Horn clause form. This is sig- 
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nificant because the syntax of Prolog rules is precisely that of Horn clauses. Hence, the 

Horn clause 

‘+P,Y 
. is written in Prolog as 

r :- p, q. 

and read “r is true if p and q are both true”. Sets of these rules can be built which, when 

operated upon by resolution, emulate reasoning. This emulation, or more precisely imple- 

mentation, of reasoning is known as chaining and is characteristic of rule-based systems. 

Specifics of these systems are given following a discussion of resolution and its relation- 

ship to the two types of reasoning. 

. 

2. Resolution and Reasoning 

The basic resolution mechanism allows the derivation of new premises from old. 

Beginning with a set of initial premises and a theorem to be proved, resolution produces a 

resolvent from two of the original premises. This new premise may be combined with an- 

other premise to create another resolvent which is also added to the set. The proof succeeds 

when a resolvent matching the conclusion emerges. This pattern of reasoning moves in a 

forward direction from initial premises to concluding goal and is thus data-driven. As such, 

resolution is susceptible to the creation of inferences which have nothing to do with the 

proof at hand but whose spurious value cannot be immediately detected. In addition, there 

may be several possible paths of reasoning to the goal depending on the order in which the 

premises are combined. Cicular reasoning is a trap that must be avoided as well. 

Another approach to theorem proving is to start from the conclusion to be proved 

and reason toward the evidence needed to support the theorem. T h i s  pattern of reasoning is 

referred to as goal-directed reasoning and, with respect to resolution, is equivalent to proof 

by contradiction. Fist, the theorem (or desired goal) is negated and added to the initial set 

of premises. Assuming the set was consistent (non-contradictory) to begin with, the new set 

is now inconsistent. Resolution is then applied in the usual way. There are three possible 

53 



scenarios at this juncture: no premise exists containing the (non-negated) goal, in which the 

proof fails; a premise consisting only of the goal exists, in which case the proof succeeds 

because the goal and the negated goal resolve to a contradiction; or a premise containing 

the goal along with other literals is resolved with the negated goal to produce a new premise 

upon which resolution must be reapplied. In the last case, the literals of the resolvent rep- 

resent subgoals that need to be resolved away if the theorem is to be proven. This method 

of theorem proving is called resolution refutation. One direct benefit of this approach is that 

irrelevant inferences are avoided, since only resolvents related to the negated goal are gen- 

erated. 

3. Resolution Strategies 

Regardless of the type of resolution used, the drawbacks associated with both 

data-driven and goal-directed reasoning must still be addressed. The problem of combina- 

torial explosion of resolvents can be partly ameliorated through the choice of a resolution 

strategy. Three common strategies are breadth-first, set-of-support, and linear input [Ref. 

461. Each strategy guides the resolution process based on some heuristic. Although each 

have distinct advantages and disadvantages, the linear input form is of particular interest in 

this discussion because it is the strategy used by Prolog. In effect, linear input requires that 

every resolvent have a parent in the base set, the original set of premises. This strategy is 

simple, efficient, and, if applied to premises in Horn clause form, complete3 [Ref. 1151. 

D. RULE-BASED SYSTEMS 

Despite the attraction of basing knowledge representation on the formalisms of prop- 

ositional and predicate logic, neither has provided significant insight into the machinations 

of intelligent behavior [Ref. 1151. It should be remembered, however, that these calculi 

were designed for other purposes. This shortcoming has led to the development of rule- 

based production systems for the emulation of intelligent behavior. Humans tend to asso- 

3. Completeness is the property whereby an inference mechani i  is capable of generating all valid con- 
clusions that can be drawn from a set of premises. 
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ciate intelligence with regularities in behavior [Ref. 1281, and the expression of these reg- 

ularities (at least as they are understood by the A1 community) lends itself well to rules 

[Ref. 1291. Thus, in expert systems, production rules generate behavior much the same way 

that functions in Lisp and relations in Prolog do. However, production systems (systems 

composed of production rules) are designed to be employed in a procedural fashion, the in- 

tent being to manipulate the current state of the problem towards a state closer to the solu- 

tion [Ref. 1241. To accomplish this, the system is said to drive production rules in a forward 

or backward direction. This process of control is called chaining. 

. 
* 

I. Production Rules and Systems 

Production rules were originally used in theorem provers called canonical sys- 

tems [Ref. 1301. A canonical system contains an alphabet for making strings, some axiom- 

atic strings, and a set of productions. Each production is of the form 

al& ... a,&,, + blx’l...bnx’n 

where each ai and bi is a fixed string; a1 and a, may be null; some or all of the aj and bi 

may be null; each & is a variable smng which can be null; each xi is replaced by a certain 

x’i; and the arrow signifies a rewrite function. The expression a&p.a,,,x, is called the 

antecedent of the rule and blC’l...bnx’n the consequent, just as in the conditional statement 

of propositional calculus. The arrow, however, does not correspond to the logical IMPLIES 

relationship. This simple system, with the ability to scan an input string of symbols and per- 

form addition or deletion of symbols, is all that is required to verify proofs in a formal sys- 

tem. 

In expert systems, the focus is on the solving of problems. Production rules in 

these systems differ little from the rewrite rules of canonical systems, except that with ex- 

pert systems the key is the transformation of some initial state to one which satisfies a cri- 

terion representing the solution of the problem, rather than the generation and recognition 

of symbolic structures. To this end, expert systems like MYCIN [Ref. 1311 and systems 

built with expert-system shell languages such as OPS5 and CLIPS have been developed. In 
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these systems, the alphabet and string-based axioms of the canonical system are replaced 

with structures built of objects, attributes, and values. Taken together, this database of 

structures makes up the working memory of the system and generally includes the premise 

facts, goal conditions, and intermediate results that comprise the state of the problem. To 

enhance the efficiency of a production system, the working memory is normally stored in 

a high-speed memory. The time of creation or the most recent use of each data is considered 

by the system when determining the placement of data in the high-speed memory. This 

strategy is called caching [Ref. 1231. 

A rule of a production system is a two-part statement that embodies knowledge. 

Each rule consists of an antecedent-consequent (or condition-action) pair. The antecedent 

of the rule, which consists of one or more premises, is matched with the various symbol 

structures known to the system using various search and pattern-matching techniques. In 

addition, the process of matching may involve the binding of variables. If a successful 

match is made (ie., the premise(s) of some rule are hue), then the rule is said to be active. 

Subsequently, the active rule is fired, and the actions (or conclusions) specified in the con- 

sequent of the rule are performed. Hence, production rules have the syntax 

Pi, .... P, + Q1, ..., Qn 
where each Pi is a premise, each Qi is an action, and if all the premises are matched to the 

contents of working memory and the rule is selected for firing, then all actions are per- 

formed. Another interpretation is possible, in which each Pi is a condition, each Qi is a con- 

clusion, and if all conditions are satisfied, the conclusions may be drawn. In this instance, 

rules are generally expressed with the antecedents on the right hand side, the conclusions 

on the left hand side, and the arrow pointing to the left. In either case, the set of production 

rules make up the knowledge buse of the rule-based system. 

A production system, besides consisting of a knowledge base and a working 

memory, must also have a mechanism for the selection of rules and the subsequent appli- 

cation of the rule consequent. This mechanism is known as the rule interpreter or inference 
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engine. The inference engine is itself a software system that manages the search and pat- 

tern-matching operations associated with the rule set. During an execution cycle, the infer- 

ence engine examines the working memory in an attempt to activate one or more rules in 

the knowledge base. A rule is then selected by the interpreter from the list of active rules 

and the appropriate actions carried out. Often, as a side effect of this process, the contents 

of working memory are manipulated, reflecting the new state of the problem. If more than 

one rule is placed on the activation list, the interpreter must decide which one to fire. This 

process is known as conflict resolution and is typically based on some simple heuristic. 

Such heuristics guide the interpreter and are usually based on recenmess of rule activation, 

recentness of rule firing, the specificity of the antecedents, or, more simply, priority. 

If all conflicts encountered by the system are resolved in a sequence specified by 

the designers of the system, the rule set is said to be deterministic. This characteristic of 

expert systems is very important when applied to the control of autonomous vehicles. A 

simple strategy for insuring determinism is the requirement that, for all working memory 

configurations, only one rule is ever eligible for activation. In some implementations, this 

constraint may prove to be too restrictive; therefore, the assignment of priorities to rules 

involved in potential conflicts will also ensure a deterministic ordering. 

The basic match-select-apply cycle constitutes the problem-solving process used 

by the inference engine of a rule-based system to reason and draw conclusions about a par- 

ticular problem. The cycle continues until either a fiied rule contains an explicit command 

to halt or an empty activation list is encountered. Generally, an explicit halt command will 

arise because a goal state has been achieved, even though the goal represents an anticipated 

state of failure. An example of this would be the “trap” state entered because the power 

available to the robot is insufficient to continue the mission. 

2. Chaining 

Separate from the issue of conflict resolution is the direction in which the various 

rules are employed by the inference mechanism. This direction of rule chaining may be for- 
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ward, from conditions known to be true towards problem states established by those con- 

ditions: or, the direction may be backward, from some goal state towards the conditions 

supporting its establishment. This is quite similar to the forward and backward strategies 

found in resolution problem solving discussed earlier. Because chaining is usually con- 

strained to one direction, forward and backward chaining are both considered to be special 

cases of resolution [Ref. 1231. 

In a forward chaining expert system, the production rule antecedents are found on 

the left hand side of the rule. This part of the rule is also called the conditional or the IF part 

of the rule. The forward chaining inference engine attempts to activate rules by matching 

the conditionals of the rules against working memory. Once the conditional part of a rule 

has been matched, it can be fired. In some cases, more than one rule conditional is satisfied 

by the contents of working memory. These rules are activated and one is fired according to 

some selection criteria applied by the inference engine. When a rule is fiied, the actions 

specified by the rule are carried out. These actions are listed in the rule’s right hand side, 

also called the consequent or the THEN part of the rule. If the executed consequent alters 

the contents of working memory, a new cycle of searching, matching, and rule firing may 

commence. 

A backward chaining inference engine starts the search for a solution with the 

conclusion (or goal). The data base is examined for the goal. If it is there, the search stops 

and the goal is proven. Otherwise, the inference engine turns its attention to the rule base. 

In the backward-chaining system, the antecedent is on the right hand side of the rule; thus, 

if the goal represented by the left hand side is to be established, the subgoals specified on 

the right hand side must first be satisfied. Subgoals of the antecedent may be related by one 

or more logical connectives. The subgoals are satisfied if they can be matched to facts in 

the database. or if a rule consisting of the subgoal on the left hand side can be satisfied. The 

corresponding left side of matched rules are used as intermediate hypotheses which are 

maintained by the inference engine. Each conclusion is immediately applied against the 

rule base, thereby building a search chain. Again, search continues until the original hy- 
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pothesis is proved or until all rule-matching possibilities have been exhausted. It is possible 

that no match between an intermediate hypothesis and rule right sides is possible. In this 

case, this search path is terminated, and the search process selects an untried search path. 

An attempt is then made to match this subgoal to the right side of some different rule. If no 

further matching can be done and all possible paths have been explored for the satisfaction 

of the goal, the search fails and the inference cycle stops. 

The distinction between how forward and backward chaining differ can best be 

shown through an example4. Given the following rule set, 

(Rl) X o a X a  

(R2) X o b X b  

(R3) X o c X c  

and a start symbolp, palindromes can be either generated using forward chaining, indicated 

by the right-pointing direction of the arrow, or recognized using backward chaining, indi- 

cated by the left-pointing direction of the arrow. If the forward-chaining rules are applied 

in the order R1, R2, R3 to the start symbol, the system will generate the strings upa, bupub, 

cbupubc, respectively. This is an example of forward chaining because the symbol p and 

all newly generated strings are matched against the antecedent (left-hand side) of arule and 

a conclusion detached from the instantiated right-hand side. 

The same rule set can be used to recognize (or “prove”) palindromes. If a target 

string cbupubc is given, the sequence of backward-chaining rule applications leading to the 

construction of this palindrome can be traced. Matching the right-hand side of R3 to the tar- 

get string results in bapub from the instantiated left-hand side of R3. The chain continues 

by matching the right-hand sides of R2 and R1 in order, yielding the start symbol p .  Be- 

cause this represents an acceptable condition for the existence of the original string, the pal- 

indrome is recognized. A target string such as ubcubc will not satisfy the right-hand side of 

any rule, and therefore cannot be recognized as a palindrome within the scope of this 

4. This example is derived from one used in m e .  1151. 
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knowledge base. Note that this system would not be capable of recognizing the string dpd 

even though it is a palindrome. Nevertheless, production systems are usually not intended 

to be complete in every aspect of knowledge in a specific problem domain [Ref. 1241. 

In the theorem-proving literature, forward chaining is usually associated with 

“bottom-up’’ reasoning while backward chaining is typically associated with “top-down’’ 

reasoning [Ref. 461. The type of reasoning and the direction of chaining are not the same, 

however, and the direction of reasoning does not necessarily imply the direction of the 

chaining used. The chaining implements the reasoning, and the reasoning controls the 

chaining. Newel1 has noted [Ref. 1321 that chaining is a phenomenon of the symbol level, 

where the emphasis is on right-hand sides and left-hand sides of rules, whereas reasoning 

occurs at the knowledge level, where the distinction can be made between facts and tasks. 

Hence, the choice between a forward and backward chaining expert system for the 

high-level control of autonomous vehicles depends primarily on the shape of the search 

space of the problem. The search space results from the reasoning process. If the problem 

contains substantially more facts than conclusions (goals), backward chaining will produce 

the shortest path in the least time. If, on the other hand, the problem consists of a few facts 

and potentially many (or unknown) goal states, forward chaining will typically yield the 

quickest solution [Ref. 1331. 

As the number of facts and rules grows, the forward chaining system faces the in- 

creasingly difficult and time consuming task of determining the applicability and order of 

rule fining. Unlike backward chaining systems, where the goal-directed nature of the infer- 

ence engine guides the execution of the rules, the forward chainer must continually com- 

pare every fact in the current working memory with the antecedent of every rule. Before 

long, the number of comparisons required to complete this becomes unmanageable, At this 

point, a heuristic-based search algorithm is typically introduced to improve efficiency [Ref. 

1241. 

Other considerations besides efficiency may require that a forward chaining sys- 

tem be applied to a problem well suited for solution by backward chaining. By placing an 
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explicit ordering on the goals to be achieved by the system, it is certainly possible for a for- 

ward-chaining expert system to implement goal-directed reasoning. The two systems, 

working on the same problem and operating under the same conditions, will formulate the 

same results [Ref. 1341. Besides differences in efficiency, however, the systems may also 

exhibit different sequences of intermediate results. This topic is addressed in the next sec- 

tion of this chapter. 

E. MISSION REPRESENTATION 

The purpose of the rule-based production systems discussed above is to solve prob- 

lems. It is beneficial at this point to focus the problem domain and to identify a particular 

kind of production system applicable to the control of autonomous vehicles. An autono- 

mous vehicle must have the capacity to act intelligently. In most cases, this intelligence will 

be supplied by a human intimately familiar with the goals and subgoals required of the ve- 

hicle. This knowledge will be codfied in the form of a rule-based expert system. Therefore, 

the purpose of the expert system is to provide the direction, experience, and insight in sup- 

port of mission accomplishment that would otherwise be forthcoming from a human oper- 

ator. The applicable problem domain, then, is the set of potential missions as defined by the 

user of a particular vehicle. 

To represent a mission is to describe, to the best ability of the mission specialist, what 

is required of the AV. Information such as the detailed specXication of goals, their decom- 

position, the sequencing of subgoal achievement, measures of success, and alternative ac- 

ceptable solutions may or may not be included. In any case, it is essential for the safety and 

security of the vehicle (and of personnel and property relying on the vehicle) that this de- 

scription of the mission be in an unambiguous and orderly form. Rule-based systems are 

available for the implementation of such problems on a computer. However, the relation- 

ship between the rules is not readily evident through inspection of the rule set. As an aid to 

the design, verification, and validation of these systems, graphical representations have 

been devised [Ref. 1351. Two possible approaches to representing rules and their relation- 
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ships are introduced here: the AND/OR goal tree and the State Transition Diagram (STD). 

These structures are not new and have been used to varying degrees in the fields of digital 

design, control systems, robotics, and software engineering [Ref. 121][Ref. 136][Ref. 1371. 

To meet the requirement for unambiguous execution of missions depicted by these struc- 

tures, additional information constraining their traversal is required. Nevertheless, both 

support the representation of a search space associated with a set of production rules, both 

explicitly account for the interconnections between the rules, and both are laid out in a style 

compatible to a particular direction of chaining. Hence, they are ideal for the purpose of 

mission representation. 

The topic of search, as it relates to rule-based systems, is discussed next, followed by 

a detailed description of the AND/OR goal tree and the State Transition Diagram. In appli- 

cations involving autonomous vehicle control, equivalent representations are achieved only 

if the sequence of side effects resulting from the search is the same. 

1. Search 

Given a representation of a problem in the form of a graph structure, the method 

of search must be considered. A road map is a simple example of such a graph. The goal 

of the search may be to identify the shortest route between two points assuming that travel 

must be constrained to the existing roads. Or, the search may involve the inclusion of a set 

of specified waypoints. In the domain of mission execution, the search will provide a time- 

ordered sequence of subgoals, tasks, or states which lead to the attainment of a specified 

goal state. To ensure that this sequence is the one that is expected, the search must adhere 

to a specific set of constraints. 

There are two basic categories of search blind and heuristic. Blind search is or- 

derly and methodical and will eventually solve the problem if a solution exists. This sim- 

plest form of search utilizes a trial-and-error approach for solving a problem by examining 

all  alternatives provided by the knowledge base. This process is called generate and test 
that is, a possible solution is generated and then tested to see if it satisfies the goal condi- 
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tions. As search spaces become large, the search mechanism faces the phenomenon of com- 

binatorial explosion, in which new nodes are added to the search structure exponentially. 

In these circumstance, blind search may consume an unacceptable quantity of computation- 

al or temporal resources. For this reason, heuristics can be added to blind search to provide 

guidance beyond the exhaustive nature of that approach.[Ref. 461 

a 

4 

A heuristic is formulated based on experience and empirical knowledge to guide 

the search by narrowing the search process. This is accomplished by eliminating infeasible 

or unpromising search paths from the set of potential solutions. The use of heuristics does 

not guarantee that a better solution will be found, or that a solution will be found any faster 

than that found by blind search. Often, a heuristic must be tailored to a particular problem; 

even then, it may be difficult to predict the impact on search speed and efficiency. 

Typically, a heuristic involves a mathematical function that results in a numeric 

value [Ref. 1331. This value can then be compared against other heuristic values or numbers 

representing constraints on the solution. Since the operation that takes the search from one 

node to the next has an associated cost, the mathematical functions are also called custfunc- 

tiom. Some heuristic techniques are popular due to their general applicability. Examples 

include hill climbing, best-first, and A* search [Ref. 1381. With respect to the inference cy- 

cle of an expert system, search techniques are employed during the pattern-matching phase, 

when rules are being identified for activation. The particular search strategy and the type 

of knowledge representation used in an expert system are not independent of each other; 

often, during the design of a system, the selection of each must be done in concert [Ref. 

1151. 

Blind search is still a viable approach, however, particularly when the problem 

has a small to medium sized search space. Moreover, as computer speed continues to in- 

crease, such brute-force search techniques become more viable. Two popular blind search 

methods are Breadth-First search (BFS) and Depth-First search (DFS). These differ prima- 
. 
-$ rily in the order in which the nodes of the search sfmcture are visited. In BFS, the root node 

is searched, followed by an examination of all the root node’s children. When this has been 
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completed, the nodes in the next level are searched, and so on until the goal node is reached 

or until all nodes have been searched (Figure 4a). A characteristic of BFS is that the shortest 

path between the root and the goal will always be found [Ref. 461. Typically, the search 

proceeds downward from top-to-bottom and left-to-right. Similarly, DFS begins at the root 5 

and proceeds through the tree from a top-to-bottom, left-to-right fashion; however, the 8 

search progresses along a branch as opposed to a level of the tree (Figure 4b). If a goal state 

is not reached on the current branch, the process returns to the last node from which an un- 

tried path is available. As in BFS, the search continues until the goal is reached or until all 

paths are traversed. A problem with DFS is that the search may spend much effort in a deep 

subtree, far from a goal which may exist in at much higher level. An advantage of DFS is 

that it is implemented simply and efficiently. 

The search spaces associated with the fundamental, high level control of autono- 

mous vehicle missions are typically not large enough to benefit from heuristic search. Fur- 

thermore, the necessity for determinism on the part of the inference mechanism supports 

the use of a predictable, exhaustive search technique like DFS or BFS. On the other hand, 

path-planning and replanning algorithms which may involve much larger search spaces and 

less restrictive timing requirements would be good candidates for heuristic search. 

2. AND/OR Graph 

State graphs, by definition, may contain cycles. This may properly represent the 

problem at hand; however, infinite loops are not computationally feasible. For this reason, 

state graphs are often converted to a cycleless simcture called asearch tree. The initial state 

node is called the root of the tree; the terminal nodes are the “leaves” of the tree, those nodes 

with no children; and all remaining nodes make up the intermediate nodes (subgoals) of the 

tree. Each intermediate node has exactly one parent and at least one child. The root node 

comprises level 0 of the tree; the children of the root comprise level 1; the set of children 

of level 1 nodes make up level 2; and so on. The nodes of the tree are connected to each 

other by arcs. 
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(a) Breadth-First Search 

(b) Depth-First Search 

Figure 4. Blind Search Strategies 
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A further refinement to the search tree is the AND/OR tree [Ref. 46][Ref. 1391. 

In this structure, the branches from a node to its successors may be related in one of two 

ways. Branches representing alternative paths have a logical OR relationship; that is, one 

branch of several may be the path to the goal. In other circumstances, the achievement or 

traversal of multiple subgoals may be required before the goal is satisfied. These subgoals 

are related through a logical AND operator. In this case, each subgoal must be satisfied or 

the problem cannot be solved. A combination of logical AND and OR relationships may be 

represented by the AND/OR tree as shown in Figure 5. In this figure, the arcs leading to the 

subgoals related by an AND share a single point on the lower edge of the parent node. This 

grouping of arcs is referred to as a hyperarc [Ref. 1371. Single arcs leading away from a 

node idenhfy a subgoal related to the parent’s other subgoals through an OR relationship. 

Separate hyperarcs associated with the same parent node are logical disjunctions. 

These smctures are static in that they only convey the logical relationships be- 

tween nodes but nothing about the sequence in which the branches are searched. However, 

this information is essential to the validation of goal specification and attainment by auton- 

omous vehicles. In the particular case of the Rational Behavior Model, goal sequencing is 

explicit and hence must be reflected in the graphical structure. For this reason, AND/OR 

goal trees are used to express goal decomposition as well as execution sequence. Specifi- 

cally, a depth-first (top-down, left-to-right) traversal, as used by Prolog, is assumed. 

3. State Transition Graph 

The conventional State Transition Diagram (STD) mef. 1361 is a modeling tool 

for describing the time-dependent behavior of a system. Each node of a state transition 

graph represents one of the possible states of the problem. A state is a set of attributes char- 

acterizing a system at a given time such that no knowledge of past inputs is needed to de- 

tennine the future behavior of the system. Generally, the number of states in the system’s 

set of possible states is finite. The directed arcs in an STD represent valid state transitions 

which occur when a specific condition is detected. A condition is an event in the environ- 
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Figure 5. Representation of a Rule Set as an AND/OR Tree 
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ment of the system, such as an interrupt or the arrival of a data packet, that typically leads 

to one or more actions taken by the system. The arc points to the state entered after the ac- 

tions have been applied. In a multilevel STD, any individual state of a higher-level diagram 

can encapsulate a lower-level diagram that further describes the higher-level state. The fi- 

nal state(s) in the lower-level diagram then corresponds to the exit conditions in the higher- 

level state. This decomposition, which may be recursively applied, gives order and under- 

standability to an otherwise complex diagram and represents a standard approach to the de- 

sign and analysis of complex, state-based systems [Ref. 1361. 

The notation used for conventional STDs requires that responses, in the form of 

state transitions, be identified for all possible conditions. This may lead to states which have 

two or more successor states. To avoid nondeterminism, the conditions for each transition 

path must be exhaustive and mutually exclusive. For example, if some condition X is need- 

ed to trigger a transition fiom state A to state B, and some other condition Y causes a tran- 

sition fiom state A to state C, then it must be me that X n Y = 0. 

A state transition diagram describing a mission based on the forward-chaining control 

approach may involve states which have multiple successor states but transition conditions 

which are not mutually exclusive. Following the example &om the previous paragraph, this 

would result when, for conditions X and Y, X n Y # 0. This gives rise to a conflict, the 

resolution of which must be accomplished to ensure the proper (i.e., expected) move is 

made. Since traditional STD notation does not make allowance for this, an extension called 

the state transition diagram with path priorities is now introduced. This graphical represen- 

tation is similar in purpose to the Logical Path Graphs of [Ref. 1351, except that nodes refer 

to individual search states, and explicit priorities are assigned to transitions which may be 

in conflict with each other. This would occur when the associated rules were activated at 

the same time [Ref. 1401. 

DEFINITION A State Transition Diagram with Path Priorities models the time-de- 

pendent behavior of a system containing state transition conditions which may not be mu- 
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tually exclusive. Conflicts in determining the next state are resolved through the use of pre- 

assigned, numerical path priorities. 

A state transition diagram with path priorities is shown in Figure 6. This diagram 

reflects essentially the same information as a standard STD. Again, each node represents a 

valid state of the system. An edge from node i to node j indicates that, as a result of rule i 

firing, rule j will be activated. Note that such an edge does not necessarily mean that rule j 

will fire immediately after rule i, only that rule j will be added to the agenda (the list of 

active rules). Conflicting state transitions, in the form of simultaneous activations caused 

by conditions coincident with each other, are represented by multiple arrows extending 

from one state and joined by a broken arc. This indicates that one, all, or some combination 

of the transition paths may be active depending on the current conditions in which the sys- 

tem finds itself. The child nodes pointed to by these arrows represent the possible successor 

states, and the path selected depends on the conflict resolution strategy employed by the 

inference engine. The strategy employed is determined a priori by the designers of the ex- 

pert system. In the example of Figure 6, numerical priorities and alphabetic conditions are 

associated with each conflicting transition path. If a conflict should arise, as in the case 

when conditions X, Y, and Z are all applicable, the arrow associated with the highest-pri- 

ority active transition is the path taken. The use of priorities is consistent with the depth res- 

olution strategy, as, for example, in the left-to-right order in which Prolog treats disjunctive 

clauses [Ref. 1411. It should be noted that the STD of Figure 6 may execute as part of a 

high-level, mission control loop. Therefore, the combination of active successor states to 

state A may change from iteration to iteration. 

2 

1 

Both AND/OR goal trees and State Transition Diagrams are useful for the visual- 

ization of the relationships between rules in a rule set. However, it should not be inferred 

that either is essential in the design or implementation of such systems. In practice, these 

structures are not commonly employed for any but the most concise problems, as they sim- 

ply become too unwieldy. Instead, software tools specifically designed to assist in expert 

system creation and maintenance should be utilized to manage complexity Fef.  1421. 
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F. SUMMARY 

This chapter introduces the concepts of automated reasoning pertinent to the Rational 

Behavior Model software architecture, a concept presented in the next chapter. The solution 

of problems, in the form of mission planning and control, must be achieved by the human 

expert prior to developing the expert system capable of controlling the autonomous vehicle 

in hostile environments. Missions are developed through the application of a reasoning pro- 

cess. Typically, in the domain of autonomous vehicle mission control, goal-driven reason- 

ing is required since the explicit sequencing of subgoals and their execution is involved. 

Next is the translation of the resulting logical steps into a form that can be readily manipu- 

lated by a computer. Rule-based languages have been developed for this very purpose. 

Rules are created which embody the logical relationships between what is known and what 

is to be achieved. The rules are then gathered together along with certain facts to form a 

knowledge base. An inference engine, by searching the knowledge base, can theninfer new 

knowledge from existing facts. If the knowledge base has been designed to emulate the rea- 

soning performed by the human operator of a vehicle under a variety of circumstances, the 

resulting expert system may reasonably be expected to successfully control a like vehicle 

autonomously. As will be developed further in the next chapter of this dissertation, the con- 

cept of using an expert system to exercise mission-level control over an unmanned vehicle 

is fundamental to the Strategic level of the Rational Behavior Model. 
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V. THE RATIONAL BEHAVIOR MODEL 

The Rational Behavior Model (RBM), a hi-level software architecture for the control 

of Autonomous Vehicles, is defined in this chapter. Each level is explained in terms of its 

functionality, abstraction mechanisms, implementation restrictions, and its interface with 

the entity to which it is joined. This discussion is preceded by an introduction to several 

related hi-level control software architectures and a discussion of fundamental concepts 

relevant to this work. 

A. INTRODUCTION 

Traditional approaches to the development of software for autonomous vehicle control 

systems have typically involved significant numbers of individuals working independently 

but communicating frequently so as to insure consistent interfaces between software com- 

ponents [Ref. 143][Ref. 1441. Typically, these systems are constructed from requirements 

provided by end users who have well conceived ideas for what the system is to accomplish 

and the sequence of tasks required to attain these goals. These requirements are passed to 

software systems analysts whose job it is to design and implement software that realizes the 

user’s requirements. If a physical system is involved, such as an autonomous vehicle, yet 

another group of specialists must be consulted to insure proper integration of the software 

with the hardware. Thus, construction of a software system for the overall control of an au- 

tonomous vehicle must involve the coordination of and the reliance upon individuals from 

varying backgrounds. In addition, software incorporating concepts at a high level of ab- 

straction (mission planning and control) must interface with software concerned with a 

much lower level of vehicle control (stability and hardware manipulation). One solution is 

for the software analysts to ask these experts for their requirements which are subsequently 

translated into a form understandable by computer scientists. This is a time consuming pro- 

cess fraught with the potential for error, misunderstanding, and ambiguity. Faulty require- 
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ments inevitably result in the alteration of the system’s design. Any partial realization of 

the original design will, of course, be affected. 

Once a complex software system is delivered, it may be subject to requests from the 

user for additional or modified functionality. Software systems which control autonomous 

vehicles are especially susceptible to these requests, since such vehicles will be expected 

to perform a wide range of missions. New missions may imply new capabilities, affecting 

hardware, software, or both. Changes of this nature are often very difficult to realize in soft- 

ware because the “high-level” competency of the system is typically composed of many 

simpler capabilities inextricably intertwined throughout the system [Ref. 56][Ref. 551 [Ref. 

231. 

. -  

These two problems, the effective linking of high-level symbolic computation with 

low-level vehicle control software and the modification of same, directly relate to the ar- 

chitecture of the software system. For a particular problem domain, a software architecture 

founded upon levels of abstraction will allow for expression of the problem in terms recog- 

nizable by the experts in the given problem domain (or subdomain) [Ref. 551. 

DEFINITION A software architecture of a system encompasses the conceptual de- 

sign and organization for the software. The architecture includes, but is not limited to, a de- 

scription of the abstraction mechanisms, division of responsibility, and specification of ex- 

ternal interfaces through which the software entities communicate with each other and the 

external world. Each software entity, also called a module, is an independent conceptual 

unit within a software system. 

The software architecture is an essential component in the design of a software system 

for the control of an autonomous vehicle, because therein lies the key to software mainte- 

nance, reuse, and modification. Most existing software architectures omit from their con- 

ceptual definition any reference to the programming paradigm best suited to implement that 

abstraction. This omission can only weaken the architecture, since selection of an inappro- 

priate language may introduce inefficiency and negatively affect understandability. 
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By selecting an appropriate programming paradigm, the inherent power of the lan- 

guage can be brought to bear on the problem. Additionally, the domain expert, given the 

proper training, may become directly involved in the implementation of the system. The 

obvious advantage to this approach is that the expert can apply knowledge directly without 

having to verbalize it to a software analyst. This is particularly useful during the acquiring 

of knowledge for the construction of an expert system at the higher symbolic level and dur- 

ing the integration of the lower numeric-level control software with the rest of the system. 

Of course, there must exist an intermediate level providing an interface between the two 

disparate outer levels. 

Abstraction mechanisms, in concert with the programming paradigm, can also accom- 

modate requests for system modification. Areas of the system effected by changes in re- 

quirements may be isolated within a single abstraction level. Architectures that can accom- 

modate change are characterized by constituent software modules which have well-de- 

signed external interfaces, strong cohesion, and minimal coupling [Ref. 1451. Cohesion 

defines how closely related the internal elements of a software module are to one another, 

and coupling is a measure of the strength of the interconnection among software modules. 

The RBM architecture has been conceived with these features in mind. To accomplish 

this, each level of RBM embodies a particular aspect of the overall control problem. In ad- 

dition, particular programming paradigms have been selected, based upon their expressive 

power, for the realization of these levels. Although dividing control software into multiple 

levels of abstraction is not a new concept [Ref. 37][Ref. 391, employing multiple program- 

ming paradigms in the implementation of those levels is much less common [Ref. 1461. The 

expression of global behavior through the use of a top-level, rule-based doctrine is unique 

to RBM and its antecedents [Ref. 231. Each level of RBM is characterized by a specific ap- 

proach to design and implementation which uniquely identifies this software architecture. 

The Rational Behavior Model was fiist introduced in [Ref. 1471. The informal concept 

of RBM has since been refined with the results presented here. Included is the addition of 

several important, defining consnaints placed on the original model. These constraints are 
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deemed necessary if the desired traits of software development and flexibility described 

above are to be implemented practically. In addition, this work provides definitions for 

many terms and concepts associated with the control software of autonomous mobile sys- 

tems in general and RBM in particular. 

B. TRI-LEVEL CONTROL SOFTWARE ARCHITECTURES 

Multi-level organization of complex systems has been utilized for millennia in the 

form of military, government, and business bureaucracies. The success of these hierarchies 

is founded on the general decision-making that occurs at the top level and the increasing 

specialization of functionality at the bottom levels. Resources can be applied most effi- 

ciently when the overall problem at hand has been decomposed into a finite number of sim- 

pler, more easily understood, tasks. The degree to which problems are decomposed, and the 

number of levels into which the hierarchy is divided, is usually resolved by experience 

based on one or more abstraction criteria. This concept applies equally well to the software 

solution to the problem of mission and vehicle control of autonomous agents. 

As the complexity and scope of real world applications involving autonomous agents 

increases, the single-level control architectures of the past have proven to be inadequate in 

dealing with the problem of software complexity [Ref. 371. Hence, software engineers have 

utilized mechanisms based on abstraction to deal with this problem [Ref. 1451. This has led 

naturally to multi-level software hierarchies which exhibit similarities to human bureau- 

cratic structures. The number of levels resulting from this process is somewhat arbitrag; 

however, a tri-level organization supports coherent abstraction while retaining simplicity 

of implementation and efficiency of communications. Some prominent examples of tri-lev- 

el control software architectures and the important characteristics of each are described 

next. 

1. CMU Mobile Robot 

This system, which evolved directly from the Stanford Cart, was developed 

during the time frame from 1981 to 1984 [Ref. 171. The concept of control used for this 
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robot was based on a three-level hierarchical structure. At the top was the “Planner” level, 

followed by an intermediate “Plan Execution” level, and a lower “Actuators and Sensors” 

level. The levels communicated with each other by posting messages to a blackboard Fief. 

661 data structure. 

2. Saridis 

An early proponent of “intelligent” control of robotic vehicles, Saridis recognized 

three basic levels of control called the organizational, coordination, and hardware control 

levels [Ref. 371. According to Saridis, these levels fall within the research areas of artificial 

intelligence, operations research, and control theory, respectively. Further work by Saridis 

has provided a basis for the design of the middle, coordination level through the use of Petri 

Nets [Ref. 1481. However, an architectural instantiation utilizing these ideas has yet to 

appear. This work is significant due to its proposed conceptual organization of intelligent 

robotic system control software. 

3. sss 
This architecture [Ref. 1491 consists of three levels characterized by their treat- 

ment of time and space. SSS is an acronym for Servo, Subsumption, Symbolic, levels which 

imply a progressive quantization of first space and then time. The lower, servo level oper- 

ates in a domain of continuous time and continuous space; that is, the state of the world is 

being constantly monitored by the servo system, and this state is typically represented in a 

numerical format. The middle subsumption level also continuously checks the state of the 

world, but generally responds only to certain specific situations. In this way, the state of the 

world is discretized into a small number of special task-dependent categories. Thus, this 

“subsumption” level is said to operate in continuous time and discrete space. The Symbolic 

level, while also operating as “situation recognizers”, reacts only on the basis of significant 

events. Thus, both space and time are discrete at this level. 

Each level of S S S  is seen to operate individually, with inter-level coordination oc- 

curring over carefully designed interfaces. Each interface consists-of a command link from 
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higher to lower and sensor link from lower to higher. Commands from the symbolic to the 

subsumption level act to parameterize certain modules. By turning behaviors on and off, 

the Symbolic level guides the system in its attainment of the goal by introducing coopera- 

tion amongst the possibly conflicting behaviors of the Subsumption level. The controllers 

of the Subsumption level adjust setpoints which are sent to the servo loops of the Servo lev- 

el over the command interface between these two levels. 

7 -  

The sensory interface from Servo to Subsumption level carries unprocessed “en- 

vironmental” data fed to a signal-processing front-end located in the Subsumption level. 

This device consists of various matched filters designed to equate certain classes of sensory 

states since they would all call for the same motor response by the robot. Other classes re- 

quiring a different response by the robot are discriminated by the matched filter recogniz- 

ers. If a specified group of recognizers are all valid, this leads to an event detection signal 

being passed from the Subsumption to the Symbolic level for processing. 

The S S S  architecture has been implemented to solve navigation problems for a 

wheeled laboratory robot, as described in [Ref. 1491. High-level, “strategic” control pro- 

vided by the Symbolic level is determined by refemng to a geometric map of the robot’s 

world. It is unknown whether this architecture could be adapted to handle a dynamic envi- 

ronment such as an autonomous vehicle might find itself. Nevertheless, the SSS architec- 

ture recognizes the importance not only of conceptual abstraction for the solution of the 

control problem, but also the requirement to design specialized interfaces between the lev- 

els. These important features are shared by the Rational Behavior Model. 

4. Open Robot Controller 

This workinvolves athree-level architecture for the control of robotic systems de- 

veloped by the Institut de Recherche en Inforrnatique et en Automatique (INRIA) of 

France. An application is created from an existing library of robot-tasks. Each robot-task 

associates a local behavior related to events recognized by sensory signals and a control 

scheme dedicated to some physical device pef.  1501. An object-oriented design approach 



is taken with respect to the robot-tasks. By doing this, coherence between the robot-tasks 

is ensured, understandability is improved, and realization of a man-machine interface is fa- 

cilitated. In addition, reasoning, expressible in terms of predicate logic, is available to the 

application designer through an as yet unnamed programming language [Ref. 581. Further- 

more, applications expressed in this language are subsequently translated into Esterel, a 

synchronous, parallel, imperative language especially well suited for the implementation of 

reactive systems [Ref. 11 11. In this context, the term “reactive” equates to “event-driven“ 

whereby the behaviors are initiated through the object-oriented message-passing mecha- 

nism. This architecture utilizes the abstraction mechanism of class hierarchies at the task 

(middle) level. 

5. Events and ActionslARCS 

This control software architecture [Ref. 551 has been designed specifically to sup- 

port the Autonomous Remotely Controlled Submersible (ARCS) built by International 

Submarine Engineering (ISE) of Canada. This system incorporates the concepts of object- 

oriented programming and techniques of event-driven, real-time software. Most important- 

ly, an emphasis on mission-reconfiguration improves the ease and rapid customizing of 

software for different applications. The architecture is constructed from software objects, 

or components, which respond to external inputs (events) by producing appropriate outputs 

(actions). These components are gathered and maintained in a library. Construction of a 

real-time control software system is then a matter of selecting the required components 

from the library, specifying their parameters, and defining the interconnections between 

them. In an effort to allow non-programmers to configure their own system directly, a sim- 

ple interface language is available. The language is declarative, meaning the statements 

may be rearranged in any order without altering the functioning of the system. Once writ- 

ten, the “script” file is interpreted to initialize the data structures for system execution. 
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6. State-Configured Layered Control 

In Chapter I1 of this dissertation, it was stated that a primary drawback of the 

“pure” subsumption (layered) control approach advocated by Brooks [Ref. 311 lay in the 

inability to explicitly configure the desired mission. State-Configured Layered Control 

[Ref. 561 was developed in an attempt to address this shortcoming. Tests with an autono- 

mous underwater survey vehicle [Ref. 1511 indicated that the complexity of the layered 

control architecture increases significantly as the number of required behaviors increases. 

Furthermore, it was found that the overall vehicle performance is sensitive to subtle inter- 

actions between the concurrently-executing behaviors. 

To overcome these unanticipated interactions, a higher level of control was added 

to guide the behaviors. This is accomplished by partitioning, or configuring, the layered 

control structure according to the current phase of the mission in an attempt to minimize 

the number of behaviors active at a given time. Determination of the current state is pro- 

vided by a state transition table, which accounts for all possible states and the transitions 

between them. Each state determines which behaviors are active, establishes the parameters 

required by each, and specifies the priorities necessary for conflict resolution. 

While State Configured Layered Control acknowledges the need for a higher lev- 

el coordinator of layered behaviors, the state transition table presents its own problems with 

respect to modification [Ref. 1521. At present, a change in mission requires a complete re- 

configuration of behaviors, involving the construction and validation of a new state transi- 

tion table. 

This architecture has led to the forward-chaining variant of RBM, henceforth la- 

beled RBM-F. The state transition table can be employed as a conceptual tool for the de- 

velopment of the top level control software, implemented in a forward-chaining, rule-based 

language. RBM-F is examined in detail in Section D of this chapter. 
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7. NASREM 

An elaboration of Saridis’ three level model, NASREM actually encompasses a 

precisely defined six level software hierarchy for telerobotic applications [Ref. 431. The 

NASREM architecture has since been generalized to permit application to a software sys- 

tem for the cooperative control of multiple AUVs [Ref. 1531. NASREM is an example of 

a purely hierarchical approach, in which behaviors contained at one level are initiated only 

when directed by the next higher level of the hierarchy. Together, these levels are said to 

form a command hierarchy. In addition, each level operates at a time scale longer than that 

of the level immediately below it in the hierarchy. The timing characteristics of each level 

thus form a temporal hierarchy. Each level consists of a set of closed-loop control systems 

containing sensory processing, world modeling, task decomposition, and performance 

evaluation unique to that level. Levels communicate with each other via global memory. 

The command and temporal hierarchies of NASREM are also to be found in RBM, al- 

though interlevel communication is much more restrictive in the latter. 

Even though all interfaces are well defied, the NASREM architecture is some- 

what inflexible, leading researchers to implement subsets and variants of the standard. This 

situation has caused the NASREM standard itself to evolve in an effort to become more ac- 

ceptable to the research community. [Ref. 551 

Figure 7 pictorially shows the relationship between several of these software 

control architectures and RBM. An architecture connected to another on the left by a solid 

line is a subclass of the more general architecture. Much significant research involving 

control software designed around levels of conceptual abstraction has evolved from 

Saridis’ original work [Ref. 371, The subclass of architectures labeled S S S  took Saridis’ 

model a step further by specifying the time and space domains in which each level operates. 

The Rational Behavior Model refines SSS by associating a particular programming 

paradigm to each of the three levels while slightly refining the time and space domains at 

each level. The two subclasses of RBM, RBM-B and RBM-F, defined later in this chapter, 
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are distinguishable by the approach taken to the implementation of their respective top 

levels. 

/ sss RBM 

Open Robot 

Controller 

Control 
Software 

Architectures \ 
RBM-F \ 

Figure 7. Tri-level Software Control Architectures 

C. FUNDAMENTAL CONCEPTS 

Before a formal discussion of any software system begins, a clear, concise definition 

should be given for all terms and concepts which might introduce confusion or ambiguity. 

Too often in the field of control software for autonomous vehicles this requirement has not 

been adequately addressed, resulting in a general lack of consistency of terminology among 

researchers. In this section, definitions for the concepts needed for the subsequent formal 

specification of RBM are given. Additional definitions will be introduced throughout the 

remainder of this dissertation as the need arises. 

Complex systems are often organized into hierarchies to enhance efficiency and to fo- 

cus the control of the problem-solving process. Given such an organization, complex prob- 

lems can be solved most efficiently by successively decomposing the problem into increas- 

ingly simpler subproblems. More than one level of the hierarchy may join together to ac- 

complish this, with the higher level forwarding its results to the lower level. At some point, 

the resulting components of the decomposition may be readily represented algorithmically. 

Such algorithms, if properly constructed, can produce clear, correct, and unambiguous in- 
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structions which, when carried out by the lowest levels of the hierarchy, will collectively 

result in the solution (accomplishment) of the initial problem (root goal). 

DEFINITION: A level of control is characterized by a conceptual abstraction, of 

which temporal, spatial, and command hierarchies are the most common. 

In a manner similar to that used by organizational hierarchies, a complex control prob- 

lem may be best solved by decomposing it into smaller, simpler parts. Initially, the parts 

into which the problem is broken are themselves abstract problems; that is, little thought is 

given to the detailed functionality characterizing these abstractions. Instead, the concern is 

to successively decompose the problem into a finite set of simple subproblems which lend 

themselves to easy implementation. Each component subproblem created in this way iden- 

tifies a goal to be attained on the way to solving the overall problem. 

DEFINITION As Problem decomposition of the root goal proceeds, the intermediate 

and primitive goals may be placed in a tree structure to assist in the orderly search for a 

problem solution. 

DEFINITION A goal tree is a graphical representation of AND/OR goal decomposi- 

tion, with the root node representing the root goal, the leaf nodes representing the primitive 

goals, all other nodes representing intermediate goals subject to further decomposition, and 

the connecting arcs representing the logical relationship between subgoals and the goal 

from which they were decomposed. 

After the problem has been decomposed into its constituent primitive goals, efforts can 

be directed to the satisfaction of these goals. These efforts, initiated by aprimitive goal, typ- 

ically involve the coordination of one or more behaviors. 

DEFINITION: A behavior is an algorithm designed specifically to generate the nu- 

meric input required by a feedback control system which will, in turn, produce a change in 

the underlying physical plant consistent with the desired primitive goal which activated the 

behavior. The term task is a frequently used synonym mef. 18][Ref. 581. 

The satisfaction of a primitive goal may entail the execution of a set of related behav- 

iors. Xn some cases, behaviors may execute concurrently. In any case, the output generated 
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by these behaviors is numeric data in the form of setpoinrs and modes. These data collec- 

tively form the parameters required by servo loops to produce electrical signals that drive 

the associated servo controllers and actuators of the underlying physical system. 

Another approach to autonomous vehicle control involves problem decomposition 

based on a set of task-achieving behaviors. Conceptual levels are discarded in favor of lay- 

ers of control. Solutions are formulated through a subtle interaction of these layers. 

DEFINITION A layer of control represents the realization of a single behavior or 

competence of the underlying system. 

A complete control software architecture may be built which comprises one or more 

of these layers. More complex levels of competence are achieved as additional layers of 

control are added. A layer, once activated, subsumes the role of the simpler layers lying at 

logically lower competence levels than the activated layer. 

D. SPECIFICATION OF THE RBM SOFTWARE ARCHITECTURE 

Like the examples of hi-level software control architectures described above, RBM 

utilizes the principle of abstraction to simplify the problem of mission control for an auton- 

omous vehicle. In fact, RBM utilizes several complementary abstraction mechanisms in 

each of its levels. The three levels of RBM, from highest to lowest degree of abstraction, 

are called Shategic, Tactical, and Execution levels, respectively [Ref. 1471. Although these 

terms are not unique to this work [Ref. 18][Ref. 148][Ref. 1541, they emphasize the con- 

ceptual abstraction of the levels when viewed as a whole. Defining characteristics of each 

level are listed in Table 1 for ready reference and are described in greater detail in the fol- 

lowing sections. 

The autonomous vehicles on which RBM is likely to be implemented will be required 

to accomplish missions that are best solved from a top down, goal-driven perspective. In 

recognition of this, the process of goal decomposition is handled naturally within the RBM 

hierarchy. The root goal, typically in the form of an overall mission objective, is decom- 

posed within the Strategic level. The resultant primitive goals of the Strategic level then ac- 
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Table 1: CHARACTERI, -7CS OF RBM 

Strategic Level 

Symbolic computation only; contains mission doctrine/specification 
No storage of internal vehicle or external world state variables 
Rule-based implementation, incorporating rule set, inference engine, and working 

Non-interruptible, not event-driven 
Directs the Tactical level through asynchronous message passing 
Messages may be either commands or queries requiring YESNO responses 
Operates in discrete (Boolean) domain independently of time 
Building block the goal 
Abstraction mechanisms: goal decomposition (RBM-B) and rule partitioning (RBM- 

memory (if required) 

F); both based on goal-driven reasoning 

Tactical Level 

Provides asynchronous interface between Strategic and Execution levels 
Behaviors (tasks) reside here and may execute concurrently 
Behaviors are implemented as methods of objects 
Primitive goals activate one or more behaviors 
External interface of the model consists of two parts: the behavior activations from 
the Strategic level and the commandtelemetry paths to/from the Execution level 
World and Mission models maintained here 
Responds to Strategic level with logical TRUEFALSE 
Setpoints, modes, active sensor commands, and non-routine data requests are output 

Not interruptible except for data transfers; hard deadlines cannot be guaranteed 
Operates in discrete eventkontinuous time domains 
Building block objects with behaviors 
Abstraction mechanisms: class and composition hierarchies 

to the Execution level 

Execution Level 

Numeric processing only 
Responsible for software to hardware interface, underlying vehicle stability 
All synchronous (hard real-time) processes reside at this level 
Sensor data processed to specification of Tactical level 
Servo loops run continuously and concurrently, synchronized by timed interrupts 
Operates in continuous space/time domains 
Building block servo loops and signal processing algorithms 
Abstraction mechanisms: loop composition, sampling frequency, and data smoothing 
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tivate behaviors contained within the Tactical level. These behaviors are designed to pro- 

duce the actions required by the primitive goals, in part by generating the commands nec- 

essary for the proper operation of the servo loops' located in the Execution level, and in 

part by manipulating the state of the tactical level and comparing it with predetermined mis- 

sion subgoals and decision points. Finally, at the Execution level, the servo controllers are 

directed by the servo loops to manipulate actuators which cause changes in the relationship 

between the physical vehicle and its external environment. Various sensors then collect 

data to be ultimately used by the deliberative process contained in the Strategic level to 

guide future actions. 

1. Strategic Level 

It is apparent that the user of an autonomous vehicle must have an effective means 

of expressing a mission to the vehicle and, to some extent, the desired steps for carrying out 

the mission [Ref. 23][Ref. 55][Ref. 561. The strategic level of the RBM architecture 

addresses this need directly by containing the explicit, high-level logic required to control 

an underlying robotic platform and the mission it is to perform. A customer who employs 

robots also requires that they behave predictably and efficiently; that is, the robot is 

expected to behave rationally. Seen computationally, global rational behavior is the 

realization of a deterministic sequence of simple actions resulting in some (possibly 

unobservable) side effects. Much recent research into so-called behavior-based 

autonomous control [Ref. 5O][Ref. 52][Ref. 561 has achieved the desired global behavior 

by prioritizing primitive behaviors designed to compete with each other for the control of 

resources. A particular global behavior may be seen to emerge from these interactions, 

although typically at the expense of efficient operation and software modifiability. This 

latter weakness is a consequence of the global distribution of mission logic throughout the 

various behavioral layers comprising the architecture. 

1. Servo loops typically include both hardware and software. The term Execution level is reserved in 
this work for the software component of such loops only. 
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The hierarchical approach to autonomous vehicle control emphasizes a more 

procedural approach to system behavior sequencing [Ref. 431 [Ref. 1551. However, these 

systems also tend to suffer from the distribution of behavior-initiating logic throughout the 

architecture. Furthermore, the use of global blackboard-based data structures for interlevel 

communications is susceptible to undesired side effects linked to the execution history of 

the system [Ref. 991. 

The primary strength of RBM, and one of its main contributions to the field of 

autonomous vehicle control, is the containment of behavior-sequencing logic at the upper, 

strategic level. The behaviors required for mission accomplishment are identified through 

the process of goal-driven decomposition. If the initiation of behaviors is expressed within 

a set of rules written in a rule-based programming language, the sequence of behavior 

activations can be controlled in a deterministic way through the use of a rule interpreter. In 

this approach, the function of insuring proper sequencing falls on the mission implementor. 

Because of the diverse educational and technical backgrounds which will likely 

characterize mission designers employing RBM, it is deemed essential that the mission 

expressed at the Strategic level be easily read, understood, and modified in response to new 

mission requirements. Reordering of behavior activations, introduction of new vehicle 

capabilities, and need for a finer degree of top-level control are all issues directly affecting 

mission logic. In support of these requirements, and with an eye on involving the 

nonprogammer in application development [Ref. 1.561, the implementation of the Strategic 

level of RBM must follow some specific guidelines and res~ctions. These important 

characteristics are listed here, along with the rationale supporting them. 

The basis for Strategic level design is the top-down decomposition of the mission 

based on goal-directed reasoning. As discussed in Chapter IV, this process involves the 

successive refinement of a root goal into constituent subgoals, continuing until simple, 

primitive goals are identified. These goals are not amenable to further simplification; 

instead, direct implementation is possible at this point. In this way, reasoning is restricted 

to the Strategic level with implementation relegated to the Tactical level. Because the 
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reasoning applied to the problem solution begins with the final goal and moves backwards 

to the circumstances supporting the solution, this process is called goal-directed reasoning 

[Ref. 1151. This approach to problem solving is best suited for autonomous vehicle control 

because all tasks and the sequence of their execution are explicitly identified. This is 

essential if the user of such a vehicle is to have confidence in the system and its abilities. 

Since the reasoning process typically results in a series of logical steps leading to 

problem solution, it is natural that the specification of the Strategic level be expressed in a 

manner suited to represent concepts of logic. Rule-based programming languages are 

ideally suited to this need and thus are to be utilized at this level of RBM. An obvious 

advantage is that the language is executable, averting the need for a separate translation of 

the mission specification into another language. A translation of this type would also forfeit 

the conciseness of the rule-based language while introducing complexity. 

During this phase of mission development, the use of state variables other than 

those necessary to support the reasoning process are to be avoided. This restriction has the 

primary purpose of insuring the simplicity and understandability of the mission logic and 

to enforce separation of the goals and their implementation. The Strategic level is 

responsible for determining the sequence of actions the vehicle should take, whereas the 

Tactical level is responsible for the implementation of those actions. As a consequence, 

computation at this level is purely symbolic. This is in contrast to the numerical processing 

which occurs at the lower levels of the architecture. 

ultimate control of the vehicle resides with the Strategic level. The search of the 

rule set results in a call to the Tactical level for an initiation of a behavior. Each call is an 

instance of one of two types: a query or a command. A query is a request for information; 

however, because of the reshction on the use of state variables at the Strategic level, replies 

to these queries must be. in binary form (i.e., TRUWALSE). Commands, on the other 

hand, are directives which expect no response other than an acknowledgment that the 

command either has been accepted or carried out to completion. Any feedback which may 

be subsequently required for decision-making is obtained through a process of polling 
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using queries. Again, simplicity and the isolation of reasoning from implementation are 

factors supporting this restriction. 

This emphasis on simplicity, at the expense of a greater degree of control, also 

requires that the Strategic level be free of semantic parallelism. Humans generally are better 

able to express concepts sequentially rather than in parallel. By placing this restriction on 

the Strategic level, the overall understandability of the implemented mission is assured, 

confidence in the rational global behavior of the system remains high, and subtle, 

undesirable effects caused by parallel interactions within the program are avoided. The 

benefits of parallel execution are not precluded, however, given that the parallelism is 

provided by the compiler/interpreter of the rule-based system. 

The rule interpreter operates independently of time. Therefore, the sequence of 

rule firings is driven solely by the search of the inference engine. When a primitive goal is 

encountered, the Strategic level waits for acknowledgment from the Tactical level before 

proceeding. Also, because the flow of control at the Strategic level depends on the logical 

truth or falsity of queries, operation at this level is in the discrete Boolean space domain. 

With the addition of the search mechanism imposed by the inference engine, the Strategic 

level acts as a sequential circuit, with the memory representing the state of the search. Put 

in this perspective, the expression of the mission becomes an exercise in propositional 

calculus (albeit with lazy evaluation), and the complexity of unification is avoided. 

A further characteristic of the Strategic level is that it be non-intemptible from 

within the RBM architecture. A thread of reasoning, realized through rule chaining, must 

be allowed to proceed to completion (i.e. to terminate at a primitive goal). Hence, the 

Tactical level cannot send commands to the Strategic level. Changes in mission state and 

vehicle environment are to be reported only when requested by the Strategic level. 

Given the above constraints, it is incumbent upon the mission specialist to strive 

for an accounting of all  non-time critical situations in which the vehicle may find itself. 

This is done using a common approach whereby categories of anomalies are identified 

which require similar responses. A one-to-many mapping is done between the members of 



the finite set of responses and the anomalies contained in a category [Ref. 143][Ref. 1441. 

To ensure full coverage, a primitive goal initiating a default behavior (surface, stop in 

place, etc.) should be included as a “last resort” alternative for each mission phase. 

Certain circumstances warrant immediate attention, however. Avoidance of 

collision or loss of the ability to maneuver are examples of conditions which must be 

responded to in a manner outside the normal query-decision-command cycle. These 

situations are best accommodated through the initiation of reflexive behaviors. This class 

of behaviors is designed to override existing control to avert problems affecting the safety 

of the vehicle. The Execution level, operating synchronously and responsible for the direct 

manipulation of the vehicle’s transport mechanisms, is best suited to carry out these 

behaviors in a timely fashion. Once initiated, control of the vehicle is wrested from the 

Strategic level until normal conditions are reestablished. It is conceivable that a return to 

total normalcy with respect to mission accomplishment is impossible, as would occur, for 

example, if a control plane on an autonomous submarine became inoperative. The degree 

of fault tolerance and recoverability of the vehicle in these circumstances depends on the 

application and design philosophy of the mission specialist. In any case, the mission logic 

contained at the top level must account for unanticipated events, either explicitly, as would 

be appropriate for mission replanning, or for cases when orders are disobeyed as a result of 

a reflexive behavior. 

Another scenario to be addressed relates to systems employing distributed 

multiprocessors as hosts for each level of control. Should communications between levels 

be lost, or if the commands or data from an adjacent level is determined to be erroneous, 

behaviors should be available to insure, at a minimum, the integrity of the vehicle. This is 

made possible through the isolation of responsibility within each level. The Execution level 

maintains the stability of the vehicle at all times. If commands from the Tactical level are 

interrupted, the vehicle remains stable. It may also be desirable for the Execution level to 

perfom a recovery maneuver should commands not be received after a period of time. 

Likewise, the Tactical level should be endowed with behaviors whose purpose is to provide 
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sufficient direction to the vehicle following the loss of the Strategic level. In this way, 

hardware failures, while possibly jeopardizing the success of the mission, may not 

necessarily result in the loss of or damage to the vehicle. 

The potential for human intervention may be required in certain circumstances. 

Thus, even though the Strategic level cannot be interrupted from within, the possibility 

exists for external interruption if the inference engine executes in an interpretive mode, as 

opposed to a compiled executable module. Just as there are rules that query the Tactical 

level about the status of various vehicle subsystems, a rule may be included in the rule set 

to provide a check for receipt of messages from external sources. The success of such a rule 

could result in the activation of additional stored rule sets or perhaps even the receipt of a 

new mission. Interruptions of this type would typically be related to recall, mid-mission 

reconfiguration, or fail-safe procedures. 

The building block of the Slrategic level is the goal. The logic of mission 

accomplishment through behavior sequencing depends solely on the relationship of these 

goals with respect one another. Individual goals are identified through goal decomposition 

based on goal-directed reasoning, concepts discussed in detail in Chapter IV. Once the set 

of primitive goals has been identified, the behaviors required to satisfy these goals will 

likewise be specified. The next step in the construction of the Strategic level is to express 

the logic in a symbolic, rule-based language incorporating a rule interpreter. The result of 

the interpreter’s search will be the expected sequence of primitive goals and their 

associated behavior activations. 

Originally, the strategic level of the RBM was defined to contain a concise, 

operational doctrine which described a top-level control strategy based on the avoidance of 

behavioral conflicts as opposed to the resolution of these conflicts [Ref. 1471. Specifically, 

the doctrine expressed the decomposition of the overall mission in terms of a goal tree with 

constraints on its traversal. Alternative branches of the goal tree could be combined to form 

an AND/OR search graph (see Chapter IV). This graph was then searched in depth-fist 

fashion by a backward-chaining inference mechanism. The inherent ordering of the rules 
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as they were searched insured the avoidance of conflicts. Modifications to the overall 

behavior of the system could be accomplished by altering the logic of the rules or, more 

subtly, by changing the rule order [Ref. 2.31. 

This approach to the executable representation of operational docmne is a very 

powerful concept and as such wiU be retained in this work in its entirety. The vehicle for 

which the original RBM was developed, the six-legged Adaptive Suspension Vehicle 

(ASV) [Ref. 441, was not autonomous in the purest sense, however. The Strategic level of 

the RBM employed on the ASV was primarily responsible for the coordination of limb 

motion based on free (non-periodic) gaits and consistent with some desired motion goal. 

These goals, in the form of vehicle motion commands, were provided by a human operator 

by means of a joystick. This configuration allowed for human control of three major axes 

of motion: forward velocity, lateral velocity, and turning velocity [Ref. 441. 

I -  

I 

I 

Thus, the human operator of the ASV generated the high-level goals to be attained 
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realize generic functions, an operations order is issued to specify a unique mission tailored 

to some set of circumstances. Together, the operation order and the field manuals (doctrine) 

provide the guidance essential for the proper execution of a mission by a military unit [Ref. 

1571. Likewise, the mission specification and the doctrine make up the entire rule set found 

in the Strategic level of a RBM software architecture and contain the knowledge necessary 

for the autonomous vehicle to carry out its mission. 

DEFINITION The Mission Specification is the part of the Strategic level 

containing the rule set embodying mission specific knowledge. 

DEFINITION: The Doctrine is the part of the Strategic level containing the 

mission-independent rule set containing the logic required to solve problems not unique to 

the mission at hand. Doctrine is in general vehicle dependent. 

The addition of a mission specification to the doctrine does not alter the 

fundamental relationship between the Strategic and Tactical levels. This is not to say, 

however, that the doctrine is immutable. If a new mission involves strategies not addressed 

in the existing doctrine, the doctrine should be updated to reflect this. The analogy of 

military doctrine is consistent with this possibility, as all published guidance produced by 

the military is subject to review and revision to reflect changing missions. 

The abstraction that links the mission specification to the doctrine is goal 

decomposition. At some point, the subgoals derived from the top-level mission goal will 

merge with the top-level goals of the doctrine. It should be emphasized that the inference 

engine used to search the composite rule set will not distinguish between the doctrine and 

the mission specification, and all rules will be represented within the scope of a single 

AND/OR goal tree. That is, the separation of rules into mission specification and doctrine 

is strictly for the purpose of human convenience and understanding. 

Because of the goal driven nature of this approach to the construction of the 

Strategic level, it follows that a backward chaining inference engine would be the ideal 

choice for an RBM implementation [Ref. 1581. Although this approach is indeed well 

suited for the large class of potential missions characterized by a backward reasoning 
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solution, the strategic level of RBM is not constrained to this one implementation 

paradigm. The forward chaining approach to mission implementation is commonly used in 

autonomous vehicle control applications [Ref. 45][Ref. 5O][Ref. 561. For this reason, we 

introduce two classes of RBM, distinguished by the type of chaining employed by their 

respective strategic level reasoners. The backward chaining, doctrine-based 

implementations of RBM are instantiations of the class RBM-Backward. 

DEFIMTION. The Rational Behavior Model-Backward (RBM-B) is a form of 

RBM characterized by a backward-chaining inference mechanism at the strategic level 

employing goal decomposition and an AND/OR goal tree as the basis for its search. 

The Strategic level of a member of the class RBM-B contains a rule set, composed 

of a mission specification and a doctrine, which essentially reflects the compiled logic a 

human operator would use to solve problems related to mission accomplishment; and a 

backward-chaining rule inference engine responsible for the orderly and logically 

consistent interpretation of these rules. 

The search performed by the inference engine is likely to involve repetition, since 

values returned from the Tactical level can change over time. In the context of mission 

execution. some search paths are designed to be continuously tried until success is reached. 

The notion of dynamic search is an extension of the usual notion of AND/OR graphs as 

static data structures [Ref. 1371. In applications involving autonomous vehicles in dynamic 

environments, dynamically changing data must be assumed. 

A second class of the Rational Behavior Model, REiM-Forward (RBM-F), 

includes implementations of the Strategic level still founded upon goal-driven reasoning 

but controlled using forward chaining. Forward chaining systems require that all states of 

the mission and transitions between these states be explicitly identified [Ref. 159][Ref. 

1601. This class of software control architectures, RBM-Forward, is now introduced. 

DEFINITION The Rational Behavior Model-Forward (RBM-F) is a form of 

RBM characterized by a forward-chaining inference mechanism at the Strategic level 

employing a statetransition diagram to organize the sequence of allowable state transitions. 
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The strategic level of a member of the class RBM-F contains three elements: (1) 

a rule set containing the rules which define the preconditions and postconditions associated 

with each transition between the members in the set of mission states; (2)  a working 

memory containing the mission and vehicle variables necessary to uniquely identify the 

current state of the mission; and (3) a rule interpreter (a forward-chaining inference engine) 

which searches through the rule set, activating rules as the mission state warrants, and 

selects and fies a rule based on a well-defined conflict resolution strategy. 

The rule set found in the knowledge base of an RBM-F architecture does not share 

the explicit hierarchical structure of the AND/OR graph found in the RBM-B mission 

specification and doctrine. Hence, RBM-F mission implementations are, generally 

speaking, less concise and less understandable than the missions expressed in the RBM-B 

Strategic levels. However, the forward-chaining inference mechanism associated with the 

RBM-F class does employ a search structure in its execution of the mission. This structure 

is a state-transition diagram (STD), augmented with transition path priorities. An 

explanation of the STD is given in Chapter IV of this dissertation. 

The most general mission of the RBM-F controller is described by a traditional 

STD, which we call the mission STD. Here, the mission designer can configure the desired 

mission into phases, each phase represented by a state. Hence, the mission STD represents 

a top-level model of the mission and identifies the various phases of the mission (ix., 

transit, search, track, etc.). These phases are subjected to a refinement process, whereby 

each state is "exploded" to reveal another STD. The lower-level STD contains the states 

internal to the parent state, including the appropriate conditions and actions for each 

transition. In many respects, the mission STD and the immediate partitions derived from it 

correspond to a mission specification of RBM-B. Beyond this point, the states identified 

through further partitioning correspond to the mission-independent doctrine of RBM-B. 

Eventually, the recursive partitioning of states results in the identification of final states. A 

final state represents the conditions necessary to performinteraction with the Tactical level. 

94 



It should be stressed that a final state in RBM-F is not equivalent to a primitive 

goal in RBM-B. A final state represents the set of conditions which must exist prior to the 

activation of behaviors in the Tactical level. These activations occur in concert with the 

f i n g  of a transition out of the final state. In contrast, the primitive goal of RBM-B 

explicitly invokes the Tactical-level behavior from within the node. For this reason, 

additional states are needed for an exact translation between the AND/OR and STD 

structures. 

c -  

Conventional State Transition Diagrams require that state transitions be identified 

for all possible conditions and that these conditions be exhaustive and mutually exclusive 

so as to avoid nondeterminism [Ref. 1361. A state transition diagram describing a mission 

based on the forward-chaining RBM-F paradigm may involve states which have multiple 

successor states but transition conditions which are not mutually exclusive. This gives rise 

to a conflict, the resolution of which must be accomplished to insure the proper behavior is 

initiated. Since traditional STD notation does not make allowance for this, a prioritized 

state transition diagram is required to resolve these conflicts. Usually, conflicts that arise 

between competing behaviors are handled through a system of voting or the prioritizing of 

transition paths with respect to each other [Ref. 31][Ref. 521. 

The state transition diagram with path priorities provides a convenient, graphical 

tool for modelling systems which exhibit “competing” entities. The term competing is used 

here to describe a scenario whereby two or more processes/tasks/behaviors request some 

resource simultaneously. Competing entities could then be represented by several paths 

emanating from the same state and with non-mutually exclusive transition conditions. 

Previous attempts have been made to partition conflicting behaviors through the use of state 

transition diagrams, most notably Bellingham’s State Configured Layered Control [Ref. 

561. This model utilizes a single, top-level STD to partition the mission in much the same 

way as the mission STD is used. Further partitioning of the State Configured Layered 

Control STD is not perfomd, however. Instead, each state of the STD defines a subset of 

alayered control architecture [Ref. 311. Hence, State Configured Layered Control does not 
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address conflict resolution at the same logically abstract level used to define the mission. 

Therefore, this approach suffers from the verifiability problems characteristic of 

behaviorist systems [Ref. 551. 

Because the implementation of the reasoning used in the design of the Strategic 

level in both RBM-B and RBM-F is guided by some form of search graph, the inference 

engine must keep track of the current phase of the executing mission. The inference engine 

can be thought of as manipulating the state of the mission. This state refers to the facts 

available for use by the inference mechanism in its search of the rule set. Since backward 

chaining systems use a search algorithm based on rule position and depth-first traversal, no 

explicit state is required to determine rule priority. Forward chainers, conversely, apply 

search techniques which do not necessarily rely on positional relationships between rules. 

Instead, an explicit database of conditions, or facts, must be maintained. This fact base, 

representing the current state of the mission, determines which rules are to be activated at 

a given time. In any case, it is essential that the mission specialist be familiar with the 

particular search strategy employed by the inference engine. Mission development can then 

proceed based on this strategy and with the understanding that the inference mechanism 

will maintain the state of the search. 

The purpose of avoiding an explicit fact list (and global memory, for that matter) 

in RBM-B implementations and minimizing such a state in RBM-F implementations is to 

simplify mission development by abstracting the control problem to the maximum extent 

possible. Outside of the capability of expressing a mission in some rule-based language, it 

should not be presumed that the human mission specialist is a computer scientist. In 

addition, comprehensive knowledge of the underlying computer systems architecture by 

this individual should not be assumed. 

The concept of the Strategic level of RBM is built upon the observed need for 

high-level logical control of complex autonomous systems. While this requirement has 

been met, the equally important issues of expressive power, understandability, and 

modifiability of mission logic have been addressed. Placing the constraints discussed 
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herein on the development of the Strategic level, while dramatic, is perceived as necessary 

if order is to be brought to the chaos of the “real” world. Once high level goals have been 

identified and their sequence of attainment specified, the vehicle must have the capacity to 

respond. This level of control is contained within the second of RBM’s three levels, the 

Tactical level. 

2. Tactical Level 

The middle level of RBM, like the middle levels of the three-level architectures 

mentioned earlier in this chapter, acts as intermediary between a knowledge-based 

behavior sequencing mechanism and the lowest level vehicle-control subsystem. A wide 

variety of approaches have been applied to the design of this level, from the competing 

behaviors of subsumption in SSS [Ref. 1491 to discrete event modelling using Petri nets 

[Ref. 1481. The Tactical level of RBM further refines concepts from both these 

philosophies. Specific characteristics of this level are presented here, along with the 

justification supporting each. As with the Strategic level, certain restrictions are included 

as part of the architectural definition. 

The primary purpose of the Tactical level is to provide asynchronous coordination 

between the symbolic-based, behavior-enabling goals of the Strategic level and the 

numeric-based servo loops of the Execution level. To accomplish this, the Tactical level 

implements a finite set of behaviors. The result of a behavior may be a change to the 

internal state of the Tactical level, receipt and analysis of sensory data passed from the 

Execution level, a non-routine data request, or the transmission of commands in the form 

of numerical setpoints and modes as required for the proper operation of the Execution 

level subsystems. In addition, upon completion of a behavior, the Tactical level must 

respond to the Strategic level. This response may be explicit, as an answer to a query, or 

simply a return of control following the acceptance or completion of a commanded 

behavior. 
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The behaviors contained within this level of the model are non-logic based, 

repetitively executed processes, as compared to the rule-based reasoning of the top level. 

Behaviors may be thought of as being performed by one or more entities within the Tactical 

level. These entities, which possess a unique, defining, and persistent state, are referred to 

as software objects [Ref. 881. A software object is essentially a finite-state machine 

producing a consistent output when an identical sequence of inputs is encountered, 

assuming the same starting state for each trial. A software design composed of a set of 

objects communicating with each other through well-defined interfaces is called object- 

based or object-oriented2 [Ref. 891. Object-based and object-oriented design 

methodologies are explained in [Ref. 881 and [Ref. 941. Formal specification of each object 

and the behaviors associated with each may eventually be accomplished using an approach 

similar to the Spec machine construct [Ref. 1611. 

Because the behaviors required of an autonomous vehicle resemble the 

functioning of a human crew on manned vehicles, an object-based design methodology 

whereby the functionality of objects correspond to that of individual crew members may be 

adopted for the Tactical level of RBM. This approach was used in the instance of RBM 

presented in the next chapter of this dissertation. Implementation of the various behaviors 

defined for the mission are divided among these objects. Some behaviors may require 

interaction between two or more objects. This interaction, as specified by the object-based 

design paradigm, takes the form of message passing. Receipt of a message results in the 

execution of a corresponding method defined within the receiving object. 

To enhance modularity and maintainability of the software, the objects of the 

Tactical level are organized in an object hierarchy [Ref. 881. Child (dependent) objects are 

components of their parent object and can be accessed only through methods defied by the 

2.Object-oriented programming involves the concept of class inheritance: object-based programming 
does not Either is suitable for the implementation of the objecu of the Tactical level. Both provide the 
advantages of eae of object instantiation, internal data and process encapsulation, and message passing. 
Object-oriented programming provides the additional feature of the class hie-hy, allowing the reuse of 
both variable and function definitions through the mechanism of inheritance. 

. 

P 

. 
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parent. A child object has knowledge of its parent; hence, messages requesting services not 

contained within the child or its descendents must be sent to the parent for subsequent 

dispatch to other branches of the hierarchy. An exception is that data of a global nature (k., 

data required by several objects in the performance of their functions) may be obtained 

directly from an object designated to manage that data. 

- -  

The object residing at the top of the Tactical level object hierarchy has no parent 

and must serve as the interface between the hierarchy and the non-object-based world. All 

behaviors implemented in the Tactical level originate at this object. Behaviors are 

responses to primitive goals specified by the Strategic level. Therefore, the Strategic level 

communicates to the Tactical level solely through the interface provided by this object. By 

way of analogy, the captain of a ship directs which goal is to be achieved. The goal is passed 

to the ship’s Officer of the Deck (OOD), who has the responsibility to insure that the goal 

is attained, The OOD assigns tasks to subordinates in support of the main goal. When 

completed, the OOD reports to the captain and awaits further directives. Note that the 

captain should not be involved in the implementation of behaviors, nor should he be 

involved in the direct control of the ship. In this scenario, the captain resides outside the 

realm of the ship’s operation. 

The Tactical level object hierarchy and the behaviors associated with it, together 

with the telemetry systems and servo control loops of the Execution level, constitute a 

functionally equivalent robot vehicle as viewed by the Strategic level. Behavior relating to 

navigation, system checking, sonar interpretation, and obstacle replanning are appropriate 

for the Tactical level. In order to isolate the reasoning process of the Strategic level from 

the vehicle-dependent Execution level, the Tactical level must provide for the complete 

monitoring and control of the Execution level while being guided by the primitive goals of 

the Strategic level. 

One characteristic of the Strategic level is its lack of knowledge of the operational 

environment, both external and internal to the vehicle. The purpose of this is to enhance top 

level simplicity, re-enterability, and consistency. The Tactical level, however, must base its 
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are behaviors whose execution times are functions of the environmental complexity and 

quantity of data to be assimilated. Some objects may require synchronous operation, such 

as the sensory receiver. For the most part, however, asynchronous operation is the norm; 

therefore, any process or task directly affecting the stability or safety of the vehicle must 

reside at the synchronous Execution level. 

The Tactical level implements the goals directed by the Strategic level by 

producing setpoints, mode changes, and data requests recognizable by control loops within 

the Execution level and which, when applied to these loops, will result in the desired 

change to the physical state of the vehicle. This transformation is accomplished through the 

initiation of behaviors manifested in the activation of objects. The objects contained in the 

Tactical level are organized into a tree structured hierarchy. By resmcting inter-object 

communications to parent-child links, this hierarchy is inherently loop-free. Taken 

together, these characteristics enhance the understanding, maintenance, and software reuse 

at the Tactical level. 

3. Execution Level 

This level, called the “Servo” level within SSS [Ref. 1491, “hardware control” by 

Saridis [Ref. 371, and “real-time” level by Blidberg [Ref. 391, is the best understood of the 

three levels of RBM. This derives from the fact that the body of knowledge constituting 

closed-loop servo control theory [Ref. 1641 is mature, having developed over many 

decades. Hence, in most instances, the design and implementation of software at this level 

is accomplished by control engineers, not computer scientists. Indeed, this level is often 

taken more or less for granted by the researchers concentrating on the upper, more abstract 

levels of control. 

The Strategic level of RJ3M replaces the supervisory control provided by the 

human operator in remotely operated and manned vehicles. In some instances, human 

involvement in the control of a vehicle goes so far as to include direct control of thrusters 

[Ref. 1651. This degree of control requires that the human ROV pilot possess highly 
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developed hand-to-eye coordination and motor skills, similar to those possessed by a 

helicopter pilot. For autonomous control of vehicles, these functions must be provided 

within the RBM architecture. It is appropriate for the Execution level to provide these 

capabilities. . .  

Therefore, the Execution level of RBM must provide the means necessary to 

assure the underlying stability of the vehicle. Within the realm of autonomous underwater 

vehicles, this requirement is most easily satisfied through the application of at least the 

following: (1) a steering autopilot7 for heading control or rate conaol; (2) a diving autopilot 

capable of providing stable depth changes or control over pitch angle on command; (3) a 

speed control autopilot to adjust the vehicle speed in either a vehicle speed control mode or 

propeller rate mode; and (4) a hovering mode autopilot for maintaining position in a 

prescribed attitude [Ref. 1661. Land and air vehicles require specialized autopilots to 

provide the necessary stability, but whose purpose are the same. The internal 

implementations of these autopilots is unimportant as Iong as adequate robustness and 

stability of vehicle motion is guaranteed. 

By their nature, autopilots provide stability as long as the underlying servo loops 

are properly designed and continue to meet a prescribed update rate. This constraint may 

be met through the use of a fixed schedule triggered by timed interrupts from a real-time 

clock. Processes enabled in such a way are said to be time driven or synchronous. Rate 

monotonic scheduling guarantees efficient use of processor capacity in such circumstances 

[Ref. 1671. 

Commands must always be available for consumption by the autopilots. In 

vehicles operating in water or on smooth land terrain, these parameters may be provided by 

asynchronously executing objects in the tactical level. The robust nature of well designed 

3. Autopilots are devices that typically consist of a servo loop driving a servo controller. Secpolnts are 
the input parameters to these loops. The setpoints differ depending upon the control mode selected. So, for 
example, a steering autopilot may operate in a heading mode, requiring input based on a geometric angle 
offset or in a rate mode, requiring input related to the desired turn rate of the vehicle. Autopilots for depth 
and speed may likewise operate in different modes. 
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following an upgrade to a sensor or a change in the fundamental capability of the robot to 

perform a given task. 

There still remain many important problems to be solved at the Execution level, 

especially for vehicles which operate in three dimensions [Ref. 174J[Ref. 175][Ref. 1761. 

In contrast to the operation of wheeled vehicles in a laboratory setting, where the servo 

problem reduces to control of wheeled rotation [Ref. 54][Ref. 1491, the seemingly simple 

task of remaining stationary with respect to a given coordinate frame (i.e., station-keeping) 

is a very difficult problem for underwater vehicles. Unmanned airborne vehicles have their 

own unique stability problems [Ref. 1771. 

E. SUMMARY 

The Rational Behavior Model provides important advantages over existing approach- 

es to software development for the control of complex, autonomous vehicles, while allevi- 

ating or ameliorating some of their distinct disadvantages. As such, RBM provides a more 

powerful and versatile framework for the construction of these increasingly complex soft- 

ware systems. Versatility results from the isolation of responsibility inherent in each level. 

This conceptualizing is carried over to the design of the architecture, primarily through the 

association of specific programming paradigms to each level. Selection of computing hard- 

ware, operating systems, and implementation language is guided by product availability 

and the experience of the designers. 

RBM is also powerful with respect to the software maintenance of an existing system. 

Reasoning related to mission accomplishment resides only in the Strategic level; behaviors 

which cany out the goals of the Strategic level are located in the Tactical level; and syn- 

chronous processes responsible for stabilization of vehicular motion, hardware manipula- 

tion, reflexive behavior, and basic telemetry processing fall within the scope of the Execu- 

tion level. 

In addition, use of the object-oriented design methodology at the Tactical level enforc- 

es modularity, data and procedural encapsulation, and formalized interfaces within soft- 
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ware objects. Finally, modification of the software of one level need not affect adjacent lev- 

els. A well-defined, inter-level communications interface, terminated by single data “gate- 

ways” insures that commands and data are available to those processes requiring them. 
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VI. ARCHITECTURE VALIDATION 

A. INTRODUCTION 

This c ses the practical issues related to the design and implementation of 

the Rational Bendvior IModel. Chapter V provided a description of the attributes which 

characterize an instantiation of RBM, independent of the application, vehicle, or computa- 

tional configuration. By insuring that these attributes are not violated during implementa- 

tion, designers of autonomous vehicles who choose RBM as their control software archi- 

tecture may expect to benefit from the model’s advantages while still being afforded a rea- 

sonable amount of flexibility in terms of developmental decision making. Of course, this 

flexibility will certainly not prevent the consequences of a poor design and the resulting un- 

anticipated or unacceptable performance. 

What follows is an example implementation involving the simulation of a small Au- 

tonomous Underwater Vehicle executing a real-world mission under RBM control. The dis- 

cussion begins with a review of the issues a control software systems designer must con- 

front when considering the resources required to best support the vehicle’s capability and 

the class of missions that will be expected of it. These issues include the degree to which 

concurrency and real-time execution are needed; the available hardware resources and their 

configuration; and the programming languages and operating systems selected for the im- 

plementation. 

As an introduction to the experiments and analysis which forms the rest of the chapter, 

the example mission is presented, followed by an explanation of the RBM instance con- 

structed to realize this mission. The model is then tasked to execute the mission on a labo- 

ratory simulator. The various data resulting from this experiment are examined and evalu- 

ated, and conclusions are drawn. 
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B. IMPLEMENTATION CONSIDERATIONS 

Development of the control software architecture for an autonomous vehicle is strong- 

ly influenced by the hardware and software resources on hand, the experience of the pro- 

grammers, and the characteristics of the missions assigned to the vehicle. Resources in this 

context include the number and type of processors, memory, communications facilities, and 

other assorted hardware support; the capabilities of the operating system(s); the existence 

of pre-written software modules; and the availability of languages and software develop- 

ment tools. This section reviews the practical issues of implementing a software architec- 

ture with respect to languages, operating systems, real-time constraints, concurrency, and 

distributed computing. 

1. Languages 

The major programming paradigms were examined in Chapter III. While each 

paradigm has applications for which it is well suited, programmers of autonomous vehicles 

should not be expected to be “fluent” in every one. Additionally, the project’s budget may 

not allow for the purchase of representatives of each class of programming language along 

with the associated compilers, editors, design tools, etc. 

Nevertheless, the choice of RBM as a control framework implies a multi-para- 

digm approach. Besides the advantages of this architecture (as enumerated in Chapter V), 

this requirement is necessary to insure the desired isolation and separation of responsibili- 

ties between the disparate levels. The expressive power of each language and the potential 

for simplified software modification resulting from this design are sufficient reward to jus- 

tify any initial“start-up” costs associated with the purchase and learning of a new language. 

One additional potential cost involved with the use of multiple programming par- 

adigms is designing the interface between them. The capability of invoking “foreign” lan- 

guage calls from within a program is not always provided for by the particular compiler/ 

interpreter on hand. Since each language has its own parameter passing and variable typing 

conventions, a separate interface must be built for each. For example, the version of Quin- 
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tus Prolog used for the implementation of the Strategic level described in this chapter pro- 

vides pre-defined protocols to call C, Pascal, and Foman routines [Ref. 1781. Since Ada 

was chosen as the language for the Tactical level, the Prolog-Ada interface had to be con- 

structed from scratch. Furthermore, the Execution level was written in C; therefore, an Ada- 

C interface also had to be built. This topic will be elaborated in the discussion section of 

this chapter as it is an essential, although implicit, component of the architecture. 

2. Operating Systems 

The services provided by an operating system may be quite diverse and, as such, 

are often tailored to a particular application [Ref. 1061. Support provided by the resulting 

“executive” or “kernel” may include real-time job scheduling, multitasking, communica- 

tions, memory management, and exception handling. Of course, operating systems are soft- 

ware programs themselves and therefore must share the memory and processor with the ap- 

plication programs. In the past, these resources were scarce, and the responsibility of pro- 

viding these services fell upon the programmer. In addition, the control software was 

typically generated and compiled off-line and the resulting object files subsequently ported 

to the target computer. The programmer would then initiate the control program by loading 

the appropriate registers prior to execution [Ref. 1791. 

The need for efficiency, particularly in applications involving real-time execution 

requirements, has also resulted in software control system designs lacking a traditional op- 

erating system, Recently, however, operating systems have been introduced that explicitly 

address real-time concerns [Ref. 170][Ref. 1801. These products, combined with the simul- 

taneous reduction in cost and increase in speed of hardware, have relegated the decision re- 

garding operating systems with respect to autonomous vehicles to one of convenience rath- 

er than of performance. 

Still, the actual operating system(s) selected will depend heavily on the require- 

merits placed upon them. The DOS family of operating systems are general in scope and 

perform efficiently but do not provide multitasking. UNIX does support multitasking but 

% 
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cannot guarantee the scheduling necessary to meet real-time deadlines. While less prob- 

lematic, a version of the desired implementation language that is also compatible with an 

existing operating system may not be available. For the implementation described herein, 

versions of Prolog and Ada were available for use with UNIX but not for IRE,  the operat- 

ing system of the Silicon Graphics Iris workstations. Hence, at a minimum, two separate 

processors and two different operating systems were needed for this instantiation of RBM. 

Of course, RBM is not constrained to any specific languagdoperating system combination. 

3. Real-time Constraints 

Processes whose measure of “correcmess” is a function of time as well as accept- 

able output are classified, with the entities that they control, as hard real-time or, more sim- 

ply, real-time systems. Should these systems fail to meet a deadline imposed upon them, 

even if the output produced is computationally correct, serious consequences involving ve- 

hicle integrity or damage to objects in the vehicle’s immediate vicinity may ensue. Typi- 

cally, real-time processes are used to insure the fundamental stability, prevent imminent 

collision, and respond to internal failures of the vehicle. 

Within the RBM framework, all real-time processes reside in the Execution level. 

Once the various tasks have been identified and implemented, a scheduling policy must be 

generated. It is the responsibility of the real-time scheduler to insure that the processes are 

dispatched in a sequence which meets all deadlines. 

The deadlines under which the real-time control processes of the NPS AUV exe- 

cute are based upon the receipt of timed interrupts. Each interrupt signals a process to com- 

mence. It is therefore necessary for the previous process to have completed its tasks prior 

to the commencement of the next. By analyzing the execution times of each process sepa- 

rately along with the system “overhead”, if applicable, the adequacy of the schedule to meet 

all consaaints can be verified. 
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4. Concurrency 

The definition of the Tactical level of RBM states that this level shall be com- 

posed of software objects that communicate via a message passing mechanism. A signifi- 

cant provision of this design is that some (or all) of the objects may be active at a given 

time; that is, several objects may embody separate, distinct threads of control. On a single 

processor, logical concurrency of these objects is realized through the “interleaving” of 

each task‘s execution under the guidance of a time-sharing or priority-based algorithm. If 

multiple processors are available to support true parallel execution, objects may run simul- 

taneously. In either case, the actions of each are coordinated through the sending of mes- 

sages to one another. 

Concurrency may be provided in several ways. A multitasking operating system 

can emulate parallelism on a single processor. On wansputers or other multi-processor plat- 

forms, the operating system or programmer can assume the responsibility for the efficient 

assignment of tasks to available processors, a technique called load-balancing [Ref. 1071. 

In this scenario, the benefits of concurrent execution must be weighed against the time 

spent dividing the problem and assigning each piece to a processor. Needless to say, load 

balancing is not an attractive alternative for ill-defined, unstructured problems. 

Another approach to concurrent execution is to utilize control constructs provided 

by a concurrent programming language. This allows for the explicit identification of poten- 

tial parallelism within the program, although multiple processors, and a scheduler capable 

of assigning the tasks to the various processors, will still be necessary to realize an increase 

in performance. Ada provides these features and was therefore selected for this work. Al- 

though not used in this particular implementation of RBM, it is expected that future exten- 

sions to this instantiation will call for concurrent processing. 

5. Distributed Computing 

One approach to the employment of multiple processors is through a distributed 

network of computers. As mentioned earlier in this section, the implementation of RBM 
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discussed in this dissertation required that a multiprocessor solution be used. The proces- 

sors, in the form of separate workstations, were distributed in that they executed simulta- 

neously with respect to each other. In this case, message passing occurred over communi- 

cations channels provided by an Ethernet link [Ref. 1811. The processors in this network 

were loosely coupled, in that each had access to its own private memory (in contrast, a con- 

figuration in which separate processors share a common memory area is called tightly COU- 

pled). Inter-processor communication is a significant issue regardless of the configuration, 

but one for which solutions are generally available [Ref. 1821. 

A distributed system complements the emphasis placed by RBM on the isolation 

and divided responsibility of each level of control. As such, designs calling for the assign- 

ment of each level to a separate operating environment are feasible. For instance, a Strate- 

gic level written in Prolog, executing interpretively and running on a UNIX-based process- 

ing platform can pass commands to and receive replies from a Tactical level designed as an 

object hierarchy, implemented in Ada, and running on a second UNIX-based computer. Fi- 

nally, this Tactical level can issue commands to an Execution level written in yet another 

language and hosted on a third processor. Alternatively, the Strategic and Tactical levels 

can both execute concurrently on a single processor while the Execution level resides on a 

separate host The flexibility of this design is obvious, despite the implementation restric- 

tions placed on it by the definition of RBM. The three processor network described above 

was used for the instantiation of RBM discussed in the following sections; the two proces- 

sor configuration, on the other hand, reflects the design of the computing facilities on the 

actual NPS AUV [Ref. 721. 

C. THEMISSION 

During the spring of 1992, a workshop [Ref. 1831 was convened at the Florida Atlantic 

University under the sponsorship of the National Science Foundation to discuss and ad- 

vance the state of autonomy within the field of underwater vehicle technology. The work- 

shop participants recognized the importance of cooperation and collaboration among the 
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members of the Ocean Technology community as a way to focus efforts toward the attain- 

ment of common goals. Among the recommendations presented in the workshop results 

was the use of inter-institutional technology demonstrations to evaluate the effectiveness of 

current research concepts. To this end, three sample AUV mission scenarios were selected, 

each containing significant challenges and sufficient realism to insure that even partial task 

completion would insure valuable experimental results. The three task scenarios selected 

were search and rescue, pollution source location, and navigation with obstacle avoidance. 

Each mission provides a realistic basis for the employment of autonomous underwater ve- 

hicles. 

The scale and scope of these missions make them ideal for the experimental validation 

of any control software architecture. Each mission requires the demonstration of important 

capabilities expected of an AUV. Taken together, these capabilities include search, survey- 

ing, sampling, obstacle classification and avoidance, and payload management. Implicit in 

each mission is the obvious need to maintain vehicle stability, to navigate satisfactorily in 

a dynamic environment, and to provide provisions for the safety of the vehicle. For the pur- 

pose of this research, one mission, search and rescue, was selected as a test case for evalu- 

ation in this chapter. All of the missions are listed in Table 2 

D. INSTANTIATION OF THE MODEL 

This section discusses the implementation of RBM using a simulation of the N P S  

AUV as the underlying vehicle and the search and rescue scenario as the mission' to be ac- 

complished. Strategic and Tactical levels were constructed for this research with this mis- 

sion in mind. A non-linear, hydrodynamically accurate model of the N P S  AUV has been 

previously developed jointly by students from the Computer Science and Mechanical En- 

gineering departments of NPS in support of vehicle testing in the NPS pool [Ref. 1841. This 

simulation contains all the essential characteristics of an RBM Execution level, including 

1. ?his mission has come to be known as the Florida mission because the &nonstrations are scheduled 
to take place off the Florida coast. 

114 



Table 2: THE THREE FLORIDA MISSIONS AND THEIR REQUIREMENTS 

Mission 1: Search and Rescue. Given the parameters of a search region, the AUV will 
traverse to the region, locate a subsurface buoy, cut the buoy's mooring line, drop a 
weight as close to the buoy as possible, return to the launch site, and surface. 

Mission 2: Navigation and Obstacle Avoidance. The AUV transits to its starting posi- 
tion. At start time T, it transits to waypoint #I where it releases a marker at T+5 min. 
The AUV proceeds toward waypoint #2 choosing to either: avoid the target area 
entirely; or to identify and locate the relative position of all targets within the target 
area, proceed to the position represented by the centroid of the shape formed by the tar- 
gets, and drop a marker at that point. In either case, the AUV will arrive and drop a 
marker at waypoint #2 at T+15. The AUV will proceed towards waypoint #3, choosing 
to either: avoid the obstacle area altogether; or to enter the area and avoid the barrier. In 
either case, the AUV will arrive and drop a marker at waypoint #3 at T+20. The A W  
will then return to its starting point, arriving as close to T+25 as possible. 

Mission 3: Pollution Source Localization. The AUV will be launched from shore, 
downstream of the pollution source. The AUV will transit upstream using depth con- 
tour. The source of pollution (either acoustic signature or florescent dye) will be located 
and a beacon deployed. The AUV will then move to an exit point on shore. 

models of the guidance, depth, and speed control autopilots, vertical and directional gyro- 

scopes, and a synchronously updated control loop. Each level of the resulting RBM is de- 

scribed in detail below, and discussion concerning implementation choices and the ratio- 

nale behind each is included when appropriate. To provide closure with the discussion on 

forward and backward chaining presented in Chapter N, both forward and backward chain- 

ing Strategic levels for this mission have been implemented and are compared. 

1. Strategic Level 

The set of primitive goals associated with the Florida mission and the sequence of 

their execution results from an application of goal-driven reasoning by the mission devel- 

opers. Each mission originates with a single high-level goal, such as search andrescue. This 

top, or root, goal is then reduced by introducing simpler but more specific subgoals. Taken 

together, these subgoals will satisfy the root goal. In the search and rescue mission, the 
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problem reduces to having the AUV traverse a path from the launch site to a specified lo- 

cation, search for and locate a subsurface buoy, perform a simple task to mark the location 

of the buoy, and return to the launch site. These subgoals are subject to further decomposi- 

tion, depending on the degree of control desired at the top level. A Strategic level derived 

from an overly thorough refinement of the goals is analogous to a human micro-manager, 

whereas one based on a coarser decomposition and providing more general primitive goals 

to the Tactical level would reflect a “hands-off management style. Of course, this would 

necessitate a more complex implementation of the corresponding behaviors at the Tactical 

level. In any case, the reduction proceeds until subgoals of sufficient simplicity result 

which lend themselves to implementation. This completes the reasoning portion of the m i s -  

sion planning process. 

L 

The next step is to implement this mission. Two possible approaches are investi- 

gated in this work backward chaining and forward chaining. Since the Rational Behavior 

Model as defined can accommodate both approaches, an example of each is investigated. 

a. The Backward Chaining Implementation 

The goal-driven solution is naturally suited to a backward-chaining imple- 

mentation [Ref. 461. For this purpose, the logic programming language Prolog was select- 

ed. Prolog offers an additional advantage in that it provides a control mechanism called an 

inference engine to search the set of rules. As a result, the inference engine determines the 

sequence of primitive goals and, thus, the order of behavior activations. Although the Pro- 

log programmer is not concerned with the details of the inference engine, how it works 

greatly affects the resulting structure of the program. This stems from the fact that Prolog 

uses depth-fist search in its traversal of the rule set. 

Prolog provides the basic constructs of facts, rules, and queries found in rule- 

based languages. These clauses can form the basis of sophisticated expert systems whose 

purpose is to reason about the problem and select the best solution from a set of alternatives. 

The logical relationships upon which these decisions are made are embodied in the Prolog 

v 
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rules. Each rule expresses an implication or if-then relation. As shown in Figure 8, the if 
part of the Prolog rule, or body, lies to the right of the symbol ":-" and can consist of one 

or more subgoals linked through the logical AND operator. In Prolog, AND is represented 

by a comma. The then part of the relation, or head, lies on the left of the ":-" delimiter (read 

as "if"). Left sides of rules are restricted to one term only, a characteristic of the Horn clause 

form, as discussed in Chapter IV. 

I Figure 8. A Prolog Rule 

The goal residing on the left side is considered to be satisfied only when all 

subgoals on the right side have been satisfied. The Prolog inference engine attempts to sat- 

isfy each of these subgoals in order from left to right. Because multiple subgoals are logi- 

cally connected by AND, the failure of any one results in the failure of the rule. Evaluation 

of that rule stops when a failure is encountered, a technique known as lazy evaluation. 

Rules which share identical left sides are related to one another through the 

logical OR operator. In this case, if one rule fails, the next rule will be evaluated, and so on, 

until a related rule succeeds or until no more rules sharing the goal remain. Again, lazy 

evaluation stops any further search of the related rules once the goal has been satisfied. Be- 

cause Prolog scans the rule base from top to bottom rules related by an OR should be or- 

dered with respect to one another to reflect their respective priorities by placing the highest 

priority rule at the top of the group and the lowest priority rule at the bottom. 

Prolog always attempts to satisfy a subgoal by matching it to a fact or rule 

head. When a match is found, the process proceeds to the next subgoal in the rule and an- 
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other match is attempted. The inference engine guiding the search marks each goal to pro- 

vide a reference should the current inference chain fail. If a match cannot be made given 

the existing circumstances, an attempt to resatisfy the previous subgoal is automatically 

done through a control mechanism called backtracking. If no subgoal can be satisfied, the 

corresponding rule is skipped and an alternative rule is selected, if available. 

Prolog provides the built in control flow primitive repeat which, when used 

in concert with backtracking, allows for the creation of loops. When first encountered, the 

repeat succeeds and the loop is entered. The repeat subsequently succeeds when encoun- 

tered through backtracking. This provides for multiple attempts to satisfy those subgoals 

lying to the right of the repeat. 

Another control primitive is required to insure a strict, iterative loop. This is 

the cur, denoted by “!”, which acts to block backtracking. In the context of RBM, the cut is 

used to eliminate internal cycles and to force a specific sequence of behavior activations. 

While the use of these control flow predicates compromises the program from the stand- 

point of pure logic programming, they are essential if unwanted backtracking is to be avoid- 

ed. 

Reference is now made to the Prolog implementation of the Strategic level for 

the search and rescue mission given in Appendix A-I. Since a backward-chaining language 

is being used, this instantiation is a member of the class of RBM-B architectures. The pro- 

gram is initiated when the query “?-execute-auv-mission.”is issued to the Prolog inference 

engine. Scanning the heads of each rule from the top of the rule set to the bottom, the rule 

“execute-auv-mission :- initialize, repeat, mission.” is encountered. Prolog will first at- 

tempt to satisfy the subgoal “initialize”. The rule set is scanned, again from the, top, for a 

matching rule head. Two initialize rules exist, although the rule “initialize :- vehi- 

cle-ready-for-launch-p(ANS l), Ah’s 1 == 1, select_first~waypoint(ANS2).” has priority 

because it is encountered first. 

The subgoal “vehicle-ready-for-launch-p(ANS1)” is an example of a prim- 

itive god, that is, it is a goal not subjected to further decomposition. Primitive goals mark 

. 
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the interface between the Strategic and Tactical levels and may represent requests for in- 

formation or commands. A request expects a response that can take on values representing 

TRUE or FALSE. This value in tum influences which one of several alternative reasoning 

paths is taken by the inference engine. A command, on the other hand, is a directive that 

may or may not expect a response other than an acknowledgment that the task was initiated 

or accomplished. The variable ANS (for ANSwer) associated with each primitive goal ac- 

cepts the Boolean value returned from the Tactical level and is then available within that 

rule for comparison. 

An implementation detail associated with the use of Prolog with foreign lan- 

guage calls is the requirement to supply return variables in every case. In the program under 

discussion, the primitive goals are actually making calls to C routines written to support the 

communications link between the two workstations hosting the Strategic and Tactical lev- 

els. The C routines then pass the desired goal over the network where it is accept by the 

Tactical level. Although some primitive goals are not followed by a comparison and that 

value will be discarded, the variable is still required as part of the function call acknowl- 

edgment. 

After the primitive goal invokes the appropriate behavior, the Strategic level 

must wait until a response is received. The Strategic level is, in effect, suspended during 

this time. If the behavior associated with readying the vehicle for launch is completed suc- 

cessfully, a TRUE (represented in the C programming language by the integer 1) is returned 

to the Strategic level and bound to the variable ANS 1. The primitive goal is then considered 

to be satisfied. Next, the retum value is checked. If TRUE was returned, the comparison 

‘‘ANSI == 1” succeeds and the next primitive goal, “select-first-waypoint(ANS2)”, is 

reached. If, however, the value of ANSl had been FALSE due to some failure encountered 

in readying the vehicle, the comparison would fail, causing the f i s t  “initialize” rule to fail. 

The inference engine would then select the second “initialize” rule. This rule involves a 

primitive goal commanding the Tactical level to alert the user, followed by a Prologfail 

predicate that forces the failure of the rule. Since no other “initialize” rules exist, the “ini- 
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tialize” subgoal of the “execute-auv-mission” rule fails and, thus, so does the original que- 

ry, representing failure of the entire mission. 

Assuming the initialization process succeeds, the Tactical level is then com- 

manded to select the first waypoint. Once this behavior has been performed, the first “ini- 

tialize” rule succeeds. Prolog then returns to the “execute-auv-mission” rule and proceeds 

to the right in its attempt to satisfy all the remaining subgoals sequentially. The repeat pred- 

icate is encountered and succeeds automatically. This identifies the entry into the logical 

control loop consisting of the subgoal “mission”. There are four “mission” rules in the rule 

base, one for each phase: transit search, task, and return. These rules are ordered so that the 

satisfaction of each will occur in the desired sequence. 

The f i s t  “mission” rule implements behaviors supporting the transit to the 

target area. First, a query “in-transit-p(ANS1)” is sent to the Tactical level to verify that 

the mission is truly in the transit phase. Although this may appear a bit unusual, it is neces- 

sary because the Strategic level cannot maintain an explicit state of its own and must rely 

on the Tactical level for status information related to the vehicle, the mission, and the en- 

vironmen?. The response to the “in-transit-p” query is returned and bound to the variable 

ANS 13, a comparison is done, and, if the mission is in the transit phase, the subgoal “tran- 

sit” is searched. 

Two “transit” rules are in the rule set. The f i s t  rule contains the “waypoint-- 

control” subgoal, and the other contains the “surface” primitive goal. The “waypoint-con- 

trol” subgoal is further decomposed, as specified by the rule of that name, into a series of 

“critical-system-prob” checks, a waypoint status check, a planning sequence (if neces- 

sary), and a directive to issue new setpoint and mode commands to the Execution level. 

2. These restrictions result in Prolog code devoid of assert and retract statements, unification, and quan- 
tification. The use of variables is allowed only in conjunction with primitive goals (foreign function calls) 
and even then may only be of type Boolean. 

3. Similar variable names shared among different rules implies nothing. In Prolog, the scope of a vari- 
able extends only within the rule in which it resides. Therefore, when the search moves to a different rule, 
previously bound variables are not accessible. 
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One “critical-system-prob” rule is included in the rule set for each vehicle 

subsystem which could, upon failure, jeopardize the mission. These rules, logically OR-ed 

together, each involve a query to the Tactical level relating to the status of one such sub- 

system. These systems are checked, in sequence, every time through the mission control 

loop. If one system is reported to have failed, the corresponding “critical-system-prob” 

rule will succeed. Returning to the “waypoint-control” rule, the truth of the subgoal “crit- 

ical-system-prob” is negated by the not predicate, a system-provided logical operator. 

Hence, a critical system failure will cause the failure of the “waypoint-control” rule which 

in turn causes the “transit” rule to fail. However, if each “critical-system-prob” rule fails, 

the failure is negated within the “waypoint-control” rule causing the search to proceed to 

the “get-waypoint-status” subgoal. This subgoal consists of the logic needed to determine 

whether a Global Positioning System (GPS) reading is needed and, if it is, to obtain it. Next, 

the Tactical level is asked if the current waypoint has been reached. If so, a command to 

select the next waypoint is issued. The facts “gps-needed” and “get-waypoint-status” pro- 

vide for success by default for their respective subgoals. In other words, if the correspond- 

ing rules fail, then the subgoal will succeed when these facts are reached. 

The “plan” rules provide the logic for replanning the mission. The f is t  plan 

involves global replanning as aresult of reduced system capabilities. In this scenario, non- 

critical vehicle systems are checked which, if faulty, would not necessarily threaten the suc- 

cess of the mission. Instead, these faults would require a replan that may possibly result in 

a truncated mission or the relaxing of certain performance requirements. If global replan- 

ning is not needed, then the next “p1an”rule checks whether an uncharted obstacle has been 

identified. If so, a local replan is performed. Note that the rules for both global and local 

replanning contain commands to initiate a “loiter” routine prior to performing the replan. 

By placing the vehicle in this mode, the Tactical level is free to concentrate its resources on 

the problem of replanning. It is conceivable, and probably desirable, to move some of the 

decision-making responsibilities of replanning to the Strategic level. The level of logical 

sophistication is determined by the mission specialist and probably depends on the com- 
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plexity of the replanning schemes to be used. If neither type of replanning is required, a 

“plan” fact is included to represent the nominal operating condition and to insure the suc- 

cess of the “plan” subgoal. 

Once the “plan” subgoal has been satisfied, one last subgoal of the “way- 

point-control” rule must be satisfied. This subgoal is the primitive goal “send-setpoint- 

s-and-modes(ANS)” and whose intent is to direct the Tactical level to issue the new com- 

mand packet to the Execution level. After the packet is sent, the Tactical level returns ac- 

knowledgment to the Strategic level, completing the evaluation of the “waypoint-control” 

rule. 

Should the first “transit” rule fail due to the failure of the “waypoint-control” 

subgoal, the second rule will activate a behavior causing the AUV to surface. Surfacing is 

performed only as a last resort, but the inclusion of this rule is necessary to avoid an excep- 

tional condition for which the vehicle has no response. If, for instance, the first “transit” 

rule failed due to a systemic fault, and a second rule initiating the surface routine wasn’t 

available, the Strategic level would be “stuck” between the failure of the transit subgoal and 

the success of the repeat consmct in the “execute-auv-mission” rule, producing an unac- 

ceptable infinite loop. 

Given that the various vehicle subsystems are healthy and a replan is not re- 

quired, the first “transit”rule will succeed. Prolog’s inference engine will return to the orig- 

inating “mission” rule and continue its attempt to satisfy the rule. When moving from left 

to right, the cut succeeds, and the next subgoal is investigated. Depending on the response 

to the primitive goal “transit-done-p” and the subsequent comparison, Prolog will either 

reach thefail predicate at the end of the rule or backtrack to the last subgoal. In the former 

case, the transit phase has reached completion and thefaif forces failure of the fust “mis- 

sion” rule. Prolog then searches for an alternative path to satisfy the “mission” subgoal. In 

the latter case, the “transit” phase has not yet completed, and backtracking commences 

from the comparison “ANS2 == 1”. Primitive goals, in their capacity as function calls, fail 

during backtracking and are passed over; therefore, “transit-done-p” is not retried. This 
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leads to an encounter with the cut. For the purpose of the search, this predicate identifies 

the point from which remaining subgoals are not to be reconsidered. In effect, the rest of 

the rule body is “cut” away, and Prolog will drop its attempt to satisfy the “mission” sub- 

goal. Backtracking then returns to the “execute-auv-mission” rule where the repeat causes 

Prolog to again attempt to satisfy the “mission” subgoal. 

The search, task, and return phases of the mission are completed in much the 

same way. Mission rules for each are structured similarly, in that a verification of the phase 

is made, followed by the logic relevant to that phase, and a check for phase completion. At 

the Tactical level, flags are maintained identifying the current state of the mission. The Tac- 

tical level is also responsible for recognizing the end of each phase. When a phase is com- 

pleted, the flag associated with that phase is reset and the flag for the next phase is set. As 

in the case of the transit phase, the other phases have two rules associated with them: one 

representing the normal case and one meant to deal with unrecoverable failures. For the 

purpose of this evaluation, any anomalies of this type result in the decision to surface. This 

alternative rule is always turned to as a last resort and, hence, is placed after its normal-case 

counterpart. 

When the return phase of the mission is completed, signified by a TRUE re- 

sponse to the “return-done-p” subgoal of the fourth “mission” rule, the primitive goal 

“wait-for-recovery(ANS3)” is reached. This goal directs the Tactical level to place the ve- 

hicle in a state compatible with recovery. After this has been accomplished, the fourth “mis- 

sion” rule succeeds, satisfying the “mission” subgoal of the “execute-auv-mission” rule. 

Since all of its subgoals have been satisfied, ayes response is given by Prolog to the original 

query “?-execute-auv-mission.”, indicating successful mission completion. 

The mission specialist responsible for programming the mission determines 

to what degree control is to be exercised from the Strategic level and the amount of respon- 

sibility to be delegated to the Tactical level. The primitive goals “do-search-pattern”, 

“start_local_replar”, and “start_global-replanner” are prime candidates for further de- 

composition at the Strategic level. In addition, seemingly straightforward goals such as 
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“surface” may need to be more precisely specified to account for circumstances in which 

the vehicle could behave differently to achieve the same goal (i.e., driving to the surface 

versus blowing ballast tanks). 

The clauses of the Prolog program in Appendix A-1 have been divided into 

two groups marked “Mission Specification” and “NPS AUV Doctrine”. The purpose of this 

is to identify those rules which can vary from mission to mission (the Specification) and 

those of a more general nature which would be applicable for any mission (the Doctrine). 

This partition is purely to assist in human understanding. The inference engine views the 

entire program as a single rule set and searches it accordingly. 

b. The Forward Chaining Implementation 

The original goal-driven solution to the search-and-rescue mission may also 

be implemented using a forward-chaining approach. The resulting control architecture is an 

instantiation of the Rational Behavior Model with a forward-chaining Strategic level 

(RBM-F). As can be seen from the source code listing of Appendix A-2, a great deal more 

complexity is involved as compared to the backward-chaining example. The reason for this 

is twofold: (1) forward chaining rules are better suited to data-driven as opposed to goal- 

driven problems and (2) forward chaining solutions rely on the explicit identification and 

maintenance of the problem state space, tasks that were handled implicitly by the inference 

engine in the Prolog implementation. 

Regardless of the direction of the chaining selected for the Strategic level, the 

sequence of primitive goals attained during mission execution must be identical to that 

specified by the goal-driven solution. In terms of a forward-chaining system, this implies a 

particular sequence of state transitions. A State Transition Diagram is a graphical represen- 

tation of the relevant states of a problem and the relationships (or transitions) between 

them. 

In a forward chaining implementation, the rules represent the transitions. 

Each rule consists of two parts: a condition (or antecedent) and an action (or consequent), 
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similar to an IF-THEN statement in an imperative language. If the condition side of a rule 

is satisfied by the current state of the problem, then the rule is said to be active. Should the 

actions specified by the consequent side of the active rule are applied, the rule is said to be 

fired. 

Except for final or “trap” states, each state has one or more successor states 

associated with it. If a single transition exists, the corresponding rule is f ied which alters 

the facts (state) accordingly. When multiple transitions lead from the current state, the po- 

tential exists for a conflict. This occurs when the rules defining the transitions are simulta- 

neously active, and each must be investigated to determine which is to be selected for fi- 

ing. The resolution of these conflicts is generally the responsibility of an arbitrating entity 

(such as an inference engine). 

For this work, CLIPS (an acronym for C-Language Integrated Production 

System [Ref. 1341) was selected. CLIPS is a forward-chaining, rule-based expert system 

shell which mimics both LISP and OPS5, two languages whose features form the founda- 

tion of CLIPS. Another important characteristic that CLIPS shares with its predecessors is 

its use of the Rete pattern-matching and inference algorithm [Ref. 1851. The form of a 

CLIPS rule is shown in Figure 9. The antecedent of the rule lies on the left-hand side of the 

(defrule rule-name antecedent 
N’ 

econditional-elements> 

M 
=> 

<actions>) 

Figure 9. A CLIPS Rule 

production arrow (=>). The remaining portion of the rule resides on the right hand side of 

the arrow and is referred to as the consequent. The antecedent is a set of conditions which 

must be satisfied for the rule to be applicable. In CLIPS, the conditions of a rule are satisfied 
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based on the specified facts in the database (called the fact-list). The CLIPS inference en- 

gine matches the various conditions (patterns) against the current fact-list and determines 

which rules are applicable. Rules whose left-hand sides are matched by the facts are placed 

on the list of active rules called the agenda. CLIPS provides a full complement of logical 
t 

connectives to relate multiple conditional elements. 9 

The consequent of a rule is a set of zero or more actions that are applied when 

the rule is executed. Rule firing, as well as the resolution of conflicts between active rules, 

is done by the inference engine. Whereas Prolog relied on depth-fist search as its sole con- 

flict resolution strategy, the CLIPS system provides several possible stxategies. Of particu- 

lar significance in this work is the facility provided by CLIPS to assign saliences (priorities) 

to the rules. In any case, the actions of the executed rule are performed, typically causing a 

change of state in the form of retracted and asserted facts. The new fact-list may in turn af- 

fect the list of applicable rules, causing new rules to be activated while other previously ac- 

tive rules are removed from the agenda. This cycle of rule selection and execution contin- 

ues until no applicable rules remain. 

Although similar in many ways to the procedural IF-THEN statements of im- 

perative languages, CLIPS rules are selected and remain active as long as their conditions 

are satisfied. In this way, any number of rules may be available for execution at a given 

point during problem solution. It is the responsibility of the inference engine to insure that 

the list of applicable rules is always kept current. 

Within CLIPS, states are defined by sets of facts contained in the current fact- 

list. These facts may be structured using the CLIPS deftemplate construct. The resulting 

fact template defines a group of related fields into which facts are placed. Each field may 

have associated with it an explicit type defiition, a f i t e  list of allowable values which the 

field can accommodate, and the default value of the field. * 

Appendix A-2 contains the forward chaining Strategic level code for the 

search and rescue mission written in CLIPS. The template defmitions, which have been 

gathered together at the front of the program solely for ease of understanding, define the 

* 
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relevant states of the goal-driven search and rescue mission solution. The goal-driven so- 

lution is the same one used to develop the backward-chaining implementation. However, 

in order to preserve the same sequence of behavior activations (or, equivalently, the same 

ordering of primitive goals), additional states reflecting alternative solution paths had to be 

defined. These alternative paths are enumerated in the “allowed-symbol” slot of the corre- 

sponding deftemplate. These templates are identified, in turn, by the inclusion of the prefix 

“or” in the label of the deftemplate structures. In affect, these templates provide the “traffic 

control” necessary to resolve conflicts between simultaneously active transition paths. 

The remaining CLIPS code for this implementation comprises the rule defi- 

nitions which are identified by the defrule keyword. Each rule supports the attainment of 

some goal defined in the AND-OR goal tree produced by the goal-directed problem decom- 

position of the search-and-rescue mission. To assist in understanding, a particular labeling 

convention was used for these rules. As an example, the rule “waypoint-control- 134’  is an- 

alyzed here. The name “waypoint-control” is derived directly from the goal of the same 

name. The first digit of the numerical suffix refers to the first (highest priority) path to sat- 

isfaction of this goal. In the case where alternative paths exist, this digit would range from 

1 to the total number of paths. In Prolog, these alternatives are manifested in multiple rules 

which share identical left-hand sides. The second digit of the numerical suffix represents 

the target subgoal (state) whose satisfaction is currently being attempted. Continuing the 

example, the suffix 13 would refer to the transition to the third state (“plan”) of the first 

inference path of “waypoint-control” (of which there is only one). The letter “s” (for sturt) 

indicates that this rule involves the transition into the plan state; a letter “e” (signifying exit) 

would identify a rule whose firing would assert facts indicating the success of the goal as- 

sociated with that state. 

In the Prolog solution, a response corresponding to failure caused the infer- 

ence engine to halt its attempt to satisfy the goal specified by the head of the current rule. 

The search path would then proceed, in depth-first fashion, to the next rule containing an 

identically labeled head. By sharing the same rule left-side, these rules represented alterna- 
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tive (ORed) solutions. In addition, the priority of these rules with respect to each other was 

determined by their placement in the rule set. 

An analogous prioritizing of OR-related rules does not exist in CLIPS. Tex- 

tual ordering of the rules is irrelevant; instead simultaneously activated rules are ordered 

based on their saliences. When a conflict occurs due to the existence of multiple state tran- 

sition paths, the transition (rule) with the highest priority is taken. Each subsequent rule fir- 

ing along that path may include a primitive goal whose purpose is to query the Tactical lev- 

el about the state of the mission or vehicle. The response to each query could potentially 

lead to the failure of this reasoning path. This in turn requires that the state of the OR-rela- 

tion be restored, allowing the alternative path(s) to be investigated. Restoration of these 

states is the purpose of the “traffic control” slot values within deftemplates containing the 

word “or” in their designators. 

Once the CLIPS environment is entered, the “(start)” fact is asserted onto the 

fact-list. The CLIPS inference engine searches all the rule left-hand side patterns to identify 

active rules which, when found, are placed on the agenda. In this example, the rule “exe- 

cute-auv-mission-104’ is activated because its condition is satisfied. Since it is the only 

rule on the agenda, it is fired, resulting in the reaaction of the “(start)” fact and the assertion 

of the fact “(execute-auv-mission (state initialize))”. This fact represents the state which 

corresponds to the “initialize” subgoal of the execute-auv-mission Prolog rule. The CLIPS 

inference engine then searches the rule set, attempting to match this new fact against the 

condition patterns of the rules. The rule “execute-auv-mission-114’ is then activated and 

it is fued. This results in the assertion of the fact “(initialize (state start))”. Again, the infer- 

ence engine searches the rule set, and the rule “initialize-10-s” is activated and fied. The 

firing of this rule leads to the first of two alternative branches specified by the “or-initial- 

ize” template with its states “or-initialize-1” and “or-initialize-2”. 

At this point, the fact-list holds the two facts “(or-initialize (state or-initial- 

ize-1))” and “(initialize (state select-first-waypoint))”. The rule “initialize-1 1” requires 

these two patterns to satisfy its left-hand side, in addition to the primitive goal “ready-ve- 
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hicle-for-launch”. In order to determine if this condition is applicable, this query must be 

answered by the Tactical level. The response is then used in the “(test (= (ready-vehicle-- 

for-launch) 1))” expression. This involves the invoking of the function ‘‘ready-vehicIe-- 

for-launch” (the same used in the Prolog implementation) which returns a Boolean value. 

The reserved word “test”, along with the “=” function, performs an equivalence compari- 

son between this response and the number 1. If the comparison succeeds, the rule “initial- 

ize-1 1” will fire. If, however, the comparison fails, the rule “initialize-1 1” will not be acti- 

vated, instead, the rule “initialize-10-e” is fired. This rule retracts the “(or-initialize (state 

or-initialize-I))” fact, breaking this inference chain, and establishing the alternative path 

by asserting the fact “(or-initialize (state or-initialix-2))”. This fact will lead to rules caus- 

ing the primitive goal “alert-user” to be attained. 

. 

. 

Presuming that the initialization phase of the mission is successful, the mis- 

sion rules are then considered. These rules correspond to the four phases of the search-and- 

rescue mission: transit, search, task, and return. In a manner similar to that describing the 

initialize rules, these rules are activated and fired based on saliences, attainment of a goal, 

and the results of queries. The functionality of the special Prolog control constructs repeat, 

!, andfail are emulated through the formulation of the left-hand side of each rule. 

To verify that the forward-chaining implementation did in fact produce the 

same side effects as the backward-chaining version, a trace of the sequence of primitive 

goals reached by each was collected for examination. The two versions of RBM did pro- 

duce identical sequences of behavior activations. The trace for a completed search-and-res- 

cue mission is found in Appendix A-3. Also included is a trace of an experiment involving 

the failure of the power supply of the vehicle. Traces such as these can be used to verify the 

mission logic upon which the Strategic level is instantiated. 

r 2. Tactical Level 

The Tactical level developed for this study is shown in Figure 10. This design was 

patterned after the watch crew of a manned submarine [Ref. 1861, because the division of 
I 
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responsibility and command relationships between parties was already well understood. 

Each block in the diagram represents a distinct entity within the organization and corre- 

sponds to a software object. Most of the objects are arranged into a hierarchy as indicated 

by the dotted lines linking them together. The AUV Officer of the Deck (OOD) resides at 

the top of the hierarchy and assumes overall control of the operation. In addition, the OOD 

provides the single interface between the Strategic and Tactical levels. Primitive goals from 

the top level are passed to the OOD who in turn activates behaviors known to the Tactical 

level and designed to satisfy those goals. Using the analogy of the watch crew, the Captain 

of the submarine issues commands to or asks for status reports from the OOD. The OOD 

then turns to his subordinates and issues the appropriate orders to satisfy the goal or query 

presented by the Captain. 

. -  
. 

All the behaviors that are capable of being performed by the vehicle are embodied 

within the various objects of the Tactical level. The OOD must coordinate the actions of 

each object to insure each task is accomplished as expected. The behaviors, for their part, 

are reflected in the methods contained within the applicable object(s). Typically, a behavior 

will involve the interaction of multiple objects. Necessary inter-object communications are 

provided through the passing of messages. As depicted in Figure 10, direct communica- 

tions between members of the hierarchy is restricted to parent-child links. While this comes 

at the expense of efficiency, the benefits include the avoidance of unconstrained communi- 

cation paths and a greater degree of modularity. These characteristics support RBM’s em- 

phasis on providing a framework to the user that aids in the understanding and maintenance 

of the software at this level. 

Communications with the Execution level is likewise restricted. Commands, in 

the form of packets containing numerical set points and discrete mode changes, are issued 

only from the Command Sender object under the supervision of the OOD. Likewise, telem- 

etry data from the Execution level is received solely by the Sensory Receiver object. By 

constraining these interfaces, the potential for command conflict and data inconsistency is 

avoided. 

. 
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Several objects at the Tactical level are not explicitly connected to the object hi- 

erarchy. These represent databases or data stores intended to be accessed by any requesting 

objects. The state of the mission, the environmental model, current sensor readings, and 

mission history are maintained and encapsulated within the corresponding objects. Re- 

quests for information and data updates are handled as they arrive; however, these objects 

do not participate in task accomplishment directly. 

7 

The choice of an implementation language for this design was made from a range 

of object-oriented and object-based programming languages. The candidate languages con- 

sidered included Ada, C++, and CLOS. Each provide consmcts for data abstraction, infor- 

mation hiding, instantiation of objects, and, with one exception, inheritance. The exception 

is Ada, which does not support the concept of class hierarchies. However, Ada does provide 

the control primitives needed for concurrency which are not found in the other languages. 

This potential for parallelism, coupled with the availability of an object-oriented extension 

to Ada called Classic-Ada [Ref. 921, were the deciding factors in its selection as the lan- 

guage for the Tactical level. 

A brief description of each object is now given. This description will be limited 

to the purpose of the object as well as any significant or unusual characteristic which may 

be of interest to the reader. The source code use in this implementation, including the data 

structures, methods, and interface specification of each class can be found in the Classic- 

Ada source listing included in Appendix B. 

For the purpose of the evaluation that follows, the complete object hierarchy was 

instantiated. Not all behaviors, however, were fully implemented. Details of the individual 

behaviors (e.g. path planning and fault recovery) are not of primary interest here. Instead, 

the integration of these numerous and diverse behaviors is one of the fundamental require- 

ments of any software architecture and, hence, will be the focus of this investigation. 

132 



a. A W O O D  

The OOD provides the sole interface between the Strategic and Tactical lev- 

els. Thus, this object, upon receipt of a primitive goal, must identify and activate the corre- 

sponding behavior(s) needed to satisfy that goal. Some behaviors may require the activa- 

tion of several objects. These activities, whether performed sequentially or concurrent with 

each other, must be coordinated by the OOD. 

The OOD has four immediate subordinates: the Navigator, the Engineer, the 

Weapons Officer, and the Command Sender. It is to these objects that the responsibility for 

supporting goal achievement is delegated. If these objects, or the dependents of these ob- 

jects, require services from a sibling or dependent of a sibling, that request, in the form of 

amessage, must be sent through the object hierarchy to the OOD. The OOD must then route 

the message to the appropriate subordinate. 

Commands to the Execution level are composed of a mode and setpoints 

specifying the desired heading, depth, and speed. These components are calculated by dif- 

ferent objects after which they are passed to the OOD. There, they are assembled into a sin- 

gle command packet and sent to the Command Sender for subsequent passage to the Exe- 

cution level. 

b. Navigator 

The Navigator is primarily responsible for the current and future location of 

the vehicle. Hence, the tasks of guidance, position estimation, and path replanning fall un- 

der the purview of this object. Like the OOD, the Navigator is responsible for the dissem- 

ination of orders to its subordinates and the coordination of their actions. 

c. Guidance 

This object provides the desired heading setpoint which is eventually includ- 

ed in the command to the Execution level. This value may be obtained through the appli- 

cation of a guidance law, an algorithm that accepts parameters relating to current position, 

desired position, and environmental dynamics and produces a value corresponding to the 
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angle in which the vehicle needs to align itself. Several algorithms may be implemented, 

including line-of-sight (LOS), Cross Track Error, and variations for homing and hovering. 

For this research, a LOS guidance calculation was employed. When tasked to 

provide a new heading, this object performs the following calculation: 

Ycrnd=  atan[ (Ynext  - 8) ~ ] 
(Xnex t  - X )  

where (2, 8) is the A W ' s  current location, (Xnext, Ynext) is the next waypoint to be 

achieved, and Ycmd is the angle between the reference and the line joining the two points. 

The result, in radians, is then converted to degrees, as expected by the steering autopilot. 

d. GPSControl 

The methods to activate, monitor, and take readings from the Global Position- 

ing System receiver are contained here. This system provides the ability to locate the posi- 

tion of the vehicle to a high degree of accuracy [Ref. 1871. Although this system is sched- 

uled to be implemented on the NPS AUV, its functionality was not included in this simu- 

lation. 

e. Sonar Confro1 

This object is responsible for the issuance of sonar commands, object identi- 

fication and classification, and estimating vehicle location based on this interpretation. This 

capability was not modeled for this study. Related research includes [Ref. 1881. 

f. Dead Reckoning 

The purpose of this object is to provide an estimate of the vehicle's position 

based on a known position fii and the elapsed time since that fix. In the NPS AUV, dead 

reckoning output is required by the synchronous processes; hence, a separate dead reckoner 

is implemented in the Execution level. Although not essential, the Tactical level dead reck- 
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oner may be used as a way of checking the consistency and validity of Execution level op- 

eration. 

g. Mission Replanner 

Two types of replanning is performed by this object: local replanning caused 

by an uncharted obstacle and global replanning driven by a vehicle fault. Neither was mod- 

eled for this study. 

h. Engineer 

The Engineer monitors the health of the vehicle. Systems and conditions of 

interest include power, computer, propulsion, steering, diving, buoyancy, thrusters, pres- 

sure, and temperature. For this study, only the power system was modeled. 

i. Weapons Officer 

The primary concern of the Weapon’s Officer is the viability and delivery of 

the vehicle’s payload. No payload was modeled for this study. 

j .  Command Sender 

This object accepts command packets from the OOD and transmits them to 

the Execution level. Since the Tactical and Execution levels are physically separated in this 

instantiation, the Command Sender incorporated the software necessary to perform net- 

work communications. Each command packet consists of the following: heading com- 

mand, depth command, speed command, and mode. Commands pertaining to latitudinal 

and longitudinal positioning are also sent; however, these relate to the AUV’s hover mode 

which was not used in these experiments. 

k. Sensory Receiver 

This object accepts telemetry records from the Execution level. Subsequent- 

ly, it extracts and stores individual data values and makes them available to other objects 

in the Tactical level. This object also affixes a time stamp on each sensory packet before 

sending the packet to the Data Recorder for archival purposes. In this instantiation, the Sen- 
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sory Receiver was synchronized with the Execution level at a 2 Hz transfer rate. Each sen- 

sory packet consists of a position given as (X, Y, ALT, depth) where X and Y are Cartesian 

coordinates mapped to the N P S  swimming pool, ALT is the distance above the floor pool, 

and depth is the current depth of the vehicle [Ref. 1891. 

1. Mission Model 

This object contains the list of waypoints generated off-line by the mission 

planner, including the vehicle’s start and finish location. It also maintains the flags indicat- 

ing the current phase of the mission. For the purpose of this dissertation, methods and data 

structures are also included to support the initialization of the simulator. 

m WorldModel 

This object contains maps, lists of known objects, and other data reflecting 

the vehicle’s operational environment that are available prior to mission initiation. 

n. Data Recorder 

This object maintains all telemetry records passed to it by the Sensory Re- 

ceiver, plus any additional messages designed to explain unforeseen or unusual events. 

Data is configured to best support post-mission analysis. Further details concerning these 

issues, as well as the communication interface incorporated within the Data Recorder, may 

be found in [Ref. 1901. 

3. Execution Level4 

The instantiation of this level is patterned after the single loop controller imple- 

mented in the actual vehicle. Once the communications have been established and the sim- 

ulation initialized, the program runs in a continuous loop broken only by periodic data ex- 

changes with the Tactical level. Each pass through the loop consists of determining the 

depth of the water under the keel, checking the system clock for the next exchange with the 

4. The software for this level was written by S. M. Ong mf. 1891, D. B. Nordman Ref. 1841, and D. 
Marc0 Ref. 1911. 
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Tactical level, an additional clock measurement in support of the real-time graphics update, 

calculating vehicle dynamics and position based on the time since the last frame was drawn, 

and finally a redraw of the simulation frame. Communication with the Tactical level con- 

sists of the receipt of commands followed by transmission of telemetry. The target ex- 

change rate on the actual AUV is 10 Hz. However, due to the time required by the graphics 

portion of the program, a 2 Hz communications rate was realized in the simulation study of 

this dissertation. 

* -  

To provide realism to the simulation, the mass characteristics of the N P S  AUV 

were modeled along with hydrodynamic coefficients for longitudinal, lateral, and normal 

forces as well as roll, pitch, and yaw. The vehicle model program calculates the dynamic 

equations of motion using readings from rudders, dive planes, and propeller rpm. The out- 

put is X, Y, and Z in world coordinates and the vehicle azimuth, elevation, and roll Euler 

angles. Drag force is calculated and integrated over the vehicle using four-term gauss 

quadrature. The resulting N P S  AUV simulation is shown in Figure 11. 

E. EXPERIMENTS 

Complete instantiations of both the Rational Behavior Model-Backward and Rational 

Behavior Model-Forward were implemented. The Strategic level of the architecture, writ- 

ten in Prolog (for RBM-B) and CLIPS (for RBM-F), ran on a Sun SPARCstation 1 under 

the UNIX operating system. The interpreted rule set, derived from a top-down goal decom- 

position of the Florida search and rescue mission, is included for each form of RBM in Ap- 

pendix A. The Tactical level was written in Classic-Ada, an object-oriented extension of 

Ada. The Classic-Ada compiler produces “pure” Ada source code which is ready for com- 

pilation. Verdix Ada running under UNIX on a second Sun SPARCstation 1 was used for 

the generation of the executable modules. The Classic Ada source code listings are located 
. in Appendix B. The simulation, implemented in the C programming language, ran on a Sil- 

icon Graphics 4D/240VGX workstation under the IRIX operating system. The three work- 

stations were linked over an Ethernet connection. All communications was accomplished 
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Figure 11. The NPS AUV Simulation 

using stream sockets. Data values were converted into ASCII characters prior to transmis- 

sion and reconverted to their original type following receipt. The data was transmitted in a 

form whereby the data type and size was explicitly included. The software used to provide 

the communications support was written in the C programming language by Professor S. 

H. Kwak and is included at Appendix C. 

The first experiment involved the traversal of a figure-8 around the NPS pool. In order 

to better represent the four-phase Florida mission, the primitive goals “search” and ‘‘task’’ 

were assumed to be accomplished at the half-way point. The “traversal” and “return” phas- 

es were represented by movement along the respective halves of the path. The results of a 
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. 

(500,500,35) 

(350,700,40) 

typical time for the trial controlled by Prolog and CLIPS versions of RBM are compiled in 

Tables 3 and 4, respectively. 

77/245 500.63 480.77 33.82 355 

76/321 363.38 686.14 38.53 319 

Table 3: PERFORMANCE OF RBM-B IN TRANSIT PHASE 

[200,1150,12) 

(350,1300,20) 

TimeRotal X position Y position Depth Heading 1 (seconds) 1 (in) 1 (in) 1 (in) 1 (degrees) 
Waypoint 

78/470 197.18 1130.69 13.36 7 

66/536 335.49 1287.62 18.81 50 

I I I I I 

(350,100,10) I 102/102 I 332.93 I 92.73 I 9.61 I 7 1  

(500,1150,30) 

(500,900,40) 

(350,700,50) 

(200,500,50) 

(500,250,30) I 66/168 I 488.78 I 235.58 I 28.75 I 42 

81/617 491.04 1167.50 28.88 154 

77/694 498.18 918.40 38.08 178 

77R71 361.38 715.22 48.17 219 

71/842 209.00 516.68 47.91 211 

(250,150,50) 

(200,900,40) I 71/392 I 211.95 I 885.78 I 38.40 I 3 2 1  

104/946 244.66 169.22 50.35 166 

Associated with each waypoint is the time required by the AUV to reach it since the 

last waypoint, along with the total elapsed time of the run and the actual position and head- 

ing of the vehicle when waypoint attainment was determined. A waypoint was considered 

reached when the Pythagorean distance between it and the center of mass of the vehicle was 

less than 20 inches. Although calculated using only two dimensions (X and Y), the vehicle 

was equally adept at maintaining the desired depth. 

The close similarity of performance between backward and forward chaining imple- 

mentations of the RBM indicate that both Strategic levels performed sufficiently to satisfy 

the 2 Hz update rate required by the Execution level. This implies that the complexity of 
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Table 4: PERFORMANCE OF RBM-F IN TRANSIT PHASE I 
Waypoint 

(350,100,lO) 

(500,250,30) 

TimeKotal X position Y position Depth Heading 
(in) (W (in) (degrees) (seconds) 

104/103 332.97 90.92 11.89 63 

66/169 488.76 235.36 28.63 41 

(500,500,35) 

(350,700,40) 

(200,900,40) 

(200,1150,12) 

each Strategic level may increase up to the point at which the time taken by the Strategic 

level to reason about the next goal exceeds the minimum acceptable update rate between 

the Tactical and Strategic levels. 

To examine the impact a different computational configuration would have on the per- 

formance of RBM, a two workstation test was performed. In this case, the Strategic and 

Tactical levels shared the processor of a single Sun SPARCstation 1. Again, UNIX was the 

operating system and communications between the Tactical and Execution levels took 

place over Ethernet. The operating system was relied upon to provide context switching be- 

tween the Strategic and Tactical levels. Not surprisingly, the results of this experiment were 

essentially identical with those of the three-workstation configuration for both RBM-B and 

RBM-F. The reason for this lies in the relationship between the two levels in this implemen- 

78/247 499.31 480.06 33.73 359 

77/324 362.75 685.41 38.53 318 

71/395 211.62 884.92 38.46 323 

78/473 200.60 1131.26 13.50 2 

140 

(350,1300,20) 

(500,1150,30) 

1500,900.40) 

69/542 334.06 1290.34 18.69 57 

78/620 490.85 1167.41 28.78 152 

77/697 500.46 919.38 38.19 182 

(350,700,50) 

(200,500,50) 

(250,150,50) 

76/773 363.94 714.32 48.01 222 

71/84  210.70 516.42 47.77 217 

104/948 246.73 169.28 50.53 167 



tation. When the Strategic level is searching for the next primitive goal, the Tactical level 

is dormant. Similarly, after the primitive goal has been issued, the Strategic level sleeps un- 

til it is notified by the Tactical level of goal attainment. Note that this instantiation did not 

implement any active objects. If it had, the two-workstation configuration would have suf- 

fered in performance because the active objects would have been blocked each time the 

Strategic level was given access to the processor. In a scenario in which the Tactical level 

includes active objects, a three-workstation configuration would allow the Tactical level 

continuous access to a processor. Of course, the objects themselves would be required to 

compete. for the single processor; nevertheless, with the Strategic level searching its rule 

base, true parallel execution could then occur between all three levels of RBM. 

. .  

A trace of the primitive goals during this trial is included in Appendix A-3. This trace 

begins with the activation of the inference mechanism followed by a successful initializa- 

tion and the selection of the first waypoint. The mission then moves into the transit phase. 

The primitive goals supporting this phase are presented in a continuous sequence to the 

Tactical level which in turn activates the associated behaviors. During each “cycle”, the 

Strategic level checks for waypoint attainment and directs the selection of the next way- 

point, if appropriate. As can be seen, the majority of the goals supported the transit and re- 

turn phases of the mission. This is due to the general nature of the “search” and “task” goal. 

The expansion of the logic associated with either of these would by necessity involve ad- 

ditional primitive goals. 

The next experiment was designed to test the ability of the Strategic level to reason in 

the face of a subsystem failure. A battery model was included whose voltage level was a 

function of time. Again, the resulting trace is given in Appendix A-3. As expected, when 

the voltage falls below a specified threshold, the “transit” rule corresponding to the nominal 

case fails. The search them moves to the second rule, included to account for failures of this 

type. The trace indicates that the “surface” goal was encountered, and performance of this 

behavior was verified visually on the simulator. 

. 
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F. PERFORMANCE DISCUSSION AND EVALUATION 

The importance of “visual verification” should not be. taken lightly in the domain of 

autonomous vehicle control. Evaluation of a control software architecture cannot be subject 

to mathematical proof due to the complexity and diversity of the software involved. Fur- 

thermore, the concept of “correctness” as it relates to an autonomous vehicle’s behavior is 

a subjective one. One may speak of a vehicle’s “robust behavior in an unstructured envi- 

ronment” but be unable to devise proofs supporting these observations due to the lack of 

precise definitions [Ref. 621. In lieu of this situation, evaluation must be based on actual 

performance [Ref. 1921. 

Nevertheless, some amount of verification and validation of software should occur pri- 

or to installation on the actual vehicle. A trace of the logic embodied in the rule set of the 

Strategic level should be examined under a variety of circumstances to insure the proper 

sequencing of primitive goals and, by extension, behaviors. Some behaviors, particularly 

those performing numeric or iterative computation, may be candidates for algorithmic anal- 

ysis. Individually, these can be shown to be correct from a mathematical standpoint. Taken 

collectively, this analysis should include the resulting commands to the Execution level to 

determine if goals are being effectively translated into vehicle actions. 

The ultimate test, however, is the demonstration of satisfactory Performance on the tar- 

get vehicle. This, of course, can only be determined qualitatively by the individual whose 

opinion carries the most significance--the user. 

G. SUMMARY 

This chapter presents a complete instantiation of the Rational Behavior Model using 

different programming paradigms for each level. Specifically, the Strategic level was im- 

plemented in Prolog, the Tactical level in Ada, and the Execution level in C.  To demonstrate 

the effectiveness of this architecture, a study was performed involving arealistic simulation 

of the NPS AUV. A four-phase search and rescue mission formed the basis for the logic em- 

bodied in the rules of the Strategic level. The Tactical level design was patterned after the 
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watch crew of a manned submarine, partly because of the clear division of responsibility 

and chain of command. 

The experiments were performed on both two and three workstation configurations. 

The motivation for this was to demonstrate the feasibility of a heterogenous approach to the 

implementation of software architectures. Traces were taken of the execution of the Strate- 

gic level inference engine, and timing, positional, and heading commands were collected 

as output from the Tactical level. However, it was the observed performance of the AUV 

simulation that determined the success of the RBM architecture as a framework for the con- 

trol of an autonomous vehicle. 
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VII. SUMMARY AND CONCLUSIONS 

In this dissertation, a complete, bi-level, multi-paradigm software architecture for the 

control of autonomous vehicles is defined, instantiated, and evaluated. By definition, each 

level of the Rational Behavior Model has associated with it a particular abstraction 

mechanism which, when applied to the control problem, yields a solution that emphasizes 

software maintainability, modifiability, and a potential for reuse. At the Strategic level, 

high-level mission logic resides which provides for the deterministic sequencing of the 

underlying behaviors of the vehicle. The central Tactical level performs the computations 

and processing necessary to provide a symbolic-to-numeric interface between the two outer 

levels while implementing the behaviors capable of satisfying the goals assigned by the top 

level. Finally, the lower, Execution level contains the algorithms directly supporting the 

stability, safety, and hard real-time needs of the vehicle. These mechanisms and features 

are carried over from the design to the implementation through the use of specified 

programming paradigms, also explicit in the definition. 

This chapter lists the contributions made to computer science by this research as well 

as suggestions for possible future extensions. 

A. RESEARCH CONTRIBUTIONS 

Control of autonomous vehicles encompasses a bewildering array of problem do- 

mains, from classical robotics and modem control theory to automated reasoning. Research 

has tended to focus on specific aspects of the overall control problem, such as navigation, 

path replanning, fault identification and isolation, sensor integration, and modeling at the 

expense of the global issue of system control. As autonomous systems have gained in so- 

phistication due, in part, to breakthroughs in hardware technology, the lack of a general 

control software architecture to coordinate and organize the many diverse software sub- 

systems has become evident. 
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~ ~ ~ ~ ~ 

From this need has emerged the field of research dedicated to intelligent control of ro- 

bots, both stationary and mobile [Ref. 61. The seminal work of Saridis [Ref. 371 argued for 

a multi-disciplinary, multi-level approach to software architectures; NASREM [Ref. 431 re- 

lied on a strict, top-down, hierarchical view; and Brooks [Ref. 311, partly as a philosophical 

challenge to the established robotics community, eschewed traditional approaches for a 

non-representational, behaviorally-layered architecture. 

. -  

It has become apparent that these approaches, in their purest form, cannot provide the 

necessary flexibility of performance required and expected of autonomous vehicles [Ref. 

551. As aresult, hybrid software architectures have begun to appear which exhibit both de- 

liberative and reflexive components. Layered architectures have been fitted with top-level 

behavior-sequencing mechanisms [Ref. 56][Ref. 1931, while hierarchical systems have in- 

tegrated subsumptionist concepts at their lower levels [Ref. 45][Ref. 1491. 

Despite obvious progress, important problems still remain, as many suggested hybrid 

architectures have yet to be fully implemented. In addition, the ability to readily modify ve- 

hicle missions has been, for the most part, inadequately addressed. The Rational Behavior 

Model, a tri-level control software architecture, has been developed with the solution to 

these particular problems in mind. 

As a way of bridging the gap from concept to implementation, RBM provides guid- 

ance to the autonomous vehicle system designer by explicitly specifying the programming 

paradigm and operational characteristics of each level in its definition. This was done to 

avoid the over-generalization of the solution, a common trait of existing architectures ac- 

counting for their less than complete instantiation. Many of these multi-level architectures, 

some recognized in the literature for a decade, remain only partially realized because of the 

lack of a perceived development smtegy [Ref. 7][Ref. 39][Ref. 431. Others have propo- 

nents whose research interests emphasize only one facet of the architecture [Ref. 37][Ref. 

1941. In this dissertation, a total implementation of a multi-level control software architec- 

ture is presented. 
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Related to this issue is the importance RBM places on the interfaces between its three 

levels. While many architectures rely on the use of a blackboard data structure for the sup- 

port of inter-level communications [Ref. 43][Ref. 61][Ref. 1951, RBM requires simple, 

well-defined communications paths for the transmission of commands and data. The moti- 

vation behind this decision was three-fold: to contribute to the isolation of responsibility at 

each level; to minimize the affect an altered state or a software change at one level has upon 

another; and to provide for the potential of integrating RBM with an existing control sys- 

tem. 

To facilitate the reconfiguration of the mission, it is necessary to separate mission logic 

from mission implementation. RBM accomplishes this by isolating this logic in the Strate- 

gic level. In other words, the portion of the architecture that specifies what the vehicle is to 

accomplish is completely divorced from the behavioral aspect of how the desired goals are 

to be attained. In addition, by excluding explicit state variables from the strategic level, the 

potential for undesired side-effects and undue complexity is avoided, further enhancing 

mission development and alteration. Several architectures have attempted similar solutions, 

but have either sacrificed simplicity for expressive power [Ref. 1941 or have not provided 

a sufficient mechanism for reconfiguration [Ref. 561. 

B. SUGGESTIONS FOR FUTURE RESEARCH 

This research discussed the relationship between the two primary approaches to soft- 

ware architecture consmction and the form of chaining used by their respective automated 

reasoners. From a pure logic standpoint, forward and backward chaining are merely two 

possible methods to solve a given problem. However, although the end results of each ap- 

proach will be the same, the internal steps each takes in its path to the solution may differ 

significantly. In terms of the control of autonomous vehicles, these internal steps refer to 

the order in which behaviors and their associated side-effects are applied to the problem. 

This sequence of side-effects is often just as important to the designer and user of autono- 

mous systems as the confidence in ultimate mission achievement. So, whereas a forward- 
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chaining architecture may attain the desired end goal assigned to it, the level of perfor- 

mance displayed during execution may be unacceptable. 

The cause of this can be traced to the need for these systems to resolve conflicts asso- 

ciated with simultaneously activated behaviors. In many cases, conflicts are handled 

through the assignment of priorities, giving preference to the behavior considered most 

likely to move the state of the mission closer to the goal. Backward-chaining, goal-driven 

systems are characterized by their lack of conflicts with respect to behavior activations. 

This approach to reasoning, used by RBM, reflects directly the process of goal decomposi- 

tion and the implied ordering of goals produced. 

Despite the considerations outlined above, the majority of research in the field of au- 

tonomous vehicle control has been from the forward-chaining perspective. For this reason, 

RBM provides the option for a forward-chaining Strategic level. Should this option be ex- 

ercised, however, the requirement remains that the primitive goals passed to the Tactical 

level be in the same sequence as would be achieved through backward chaining. Prelimi- 

nary research into an algorithmic translation of a goal-driven solution to a forward-chaining 

implementation has resulted in the concept of the State Transition Diagram with Path Pri- 

orities [Ref. 1401. Development of such an algorithm is seen as a significant step towards 

merging the two approaches used in autonomous vehicles for the representation of human 

knowledge. 

At the Tactical level, further exploration and possible refinement is warranted into the 

characteristics of the object hierarchy. Although ideally suited for a concurrent executing 

environment, the implementation detailed in this dissertation did not utilize the facility of 

multitasking provided by the Ada programming language. At issue here are performance 

enhancements and the potential impact concurrent programming has on software complex- 

ity and interaction. From the experimental results of Chapter VI, it was found that the per- 

formance of the simulation was virtually identical regardless of whether execution took 

place on two or three processors. Accounting for this is the minimal impact of inter-proces- 

sox communications and the sequential relationship between the two levels. The conclusion 
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can then be drawn that for RBM implementations consisting of only static objects at the 

Tactical level, one processor is sufficient to host both the Strategic and Tactical levels. This 

would not be true for instantiations of RBM involving true parallelism at the Tactical level. 

There exists a need to join this work to that done with pre-mission operator interfaces 

[Ref. 1891. These systems are designed to automatically generate the path(s) to be taken by 

the vehicle in the completion of its mission. These paths are typically in the form of lists of 

waypoints. This process is seen as an adjunct to the task of mission decomposition for the 

determination of primitive goals. In the researched reported in this dissertation, path plan- 

ning and mission definition were handled in separate steps. 

Another potential area of research relating to the expression of missions within the 

RBM framework is the development of language translators for the Seategic level. In the 

instantiations described in this work, Prolog and CLIPS were selected as examples of rule- 

based languages capable of effectively representing compiled human knowledge. Further- 

more, these languages are made even more attractive by their inclusion of an inference 

mechanism responsible for the control of rule activation and firing. Once the mission has 

been defined to a sufficient degree, it is conceivable, and may even be desirable, to employ 

a language such as Lisp or Ada as the implementation language at the top level. For exam- 

ple, a complete, executable mission program written in Prolog may be available while cir- 

cumstances dictate that some other language be used. Manual translations of this type indi- 

cate that this process may lend itself to automation [Ref. 1961. Of course, when generating 

non-rule-based language systems, the translator must bear the responsibility of representing 

knowledge in an effective way while properly emulating the relationship that exists be- 

tween rule base and inference engine. 

As presently defined, the Strategic level, once encoded, is immutable. This view de- 

rives from the paramount importance of predictability in vehicles designed for military ap- 

plications. However, the applicability to RBM of machine learning resulting in modified 

rule sets better able to cope with uncertain environments may prove to be an important ex- 

tension. In related research, an approach to the testing and evaluation of autonomous vehi- 

148 



cle controller performance using genetic algorithms has been recently demonstrated [Ref. 

1971. These techniques are seen as a way to measure the robustness of an intelligent con- 

troller by subjecting it to a number of adaptively-chosen fault scenarios. An investigation 

into the integration of this research with the implementation of RBM is certainly warranted. 

In the final analysis, the success of a software architecture is measured in terms of how 

well it provides structure and ease of interaction to the many software components while 

preventing undesirable interference or interaction between them. Since a feel for the "math- 

ematical" correctness of a software architecture is not feasible, the system must be imple- 

mented on a real vehicle and its resulting behavior observed before full validation can be 

claimed. Unfortunately, the time schedules of the author and the rebuild schedule of the 

N P S  AUV did not coincide sufficiently to allow this. An experimental validation on a de- 

tailed simulation of the vehicle is not without value, however, and much doctoral-level re- 

search into architectural approaches to autonomous vehicle control have relied on it [Ref. 

60][Ref. 62][Ref. 1981. Nevertheless, the results demonstrated by the actual N P S  AUV run- 

ning the Florida search-and-rescue mission under the overall control of RBM will provide 

an important epilog to this research. 
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APPENDIX A. STRATEGIC LEVEL PROGRAM LISTINGS 

1. PROLOG JMPLEMENTATION (RBM-B) 

/* Strategic Level for the RBM AUV Mission Controller/Coordinator 

by Bymes, Kwak, Healey, Marco for use in the Florida Mission 

Version: 2.5 Dec 15, 1992*/ 

/* -----------MISSION SPECIFICATION FOR SEARCH AND RESCUE-------------- */ 

:- compile(library(not)). 
:- cornpile(floridaforeign). 

/* A Quintus Prolog library providing “not” predicate */ 
/* This file contains the foreign language interface */ 

initialize :- ready-vehicle-for-launch-p(ANS l), ANS 1 == 1, 

initialize :- alert-user(ANS), fail. 
select-first-waypoint(ANS2). 

mission :- in-transit-p(ANSl), ANSl == 1, transit, !, transit_done_p(ANS2), ANS2 = 1, 

mission :- in-search-p(ANSl), ANSl == 1, search, !, search_done_p(ANS2),ANS2 == 1, 

mission :- in-task-p(ANSl), ANSl == 1, task, !, task_done_p(ANS2), ANS2 == 1, fail. 
mission :- in-retun-p(ANSl), ANSl == 1, return, !, retum_done_p(ANS2), ANS2 == 1, 

fail. 

fail. 

wait-for-recovery(ANS3). 

transit :- waypoint-control. 
transit :- surface(ANS l), wait-for-recovery(ANS2). 

search :- do-search-pattem(ANS), ANS = 1. 
search :- surface(ANS l), wait-for-recovery(ANS2). 
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task :- homing(ANSl), ANSl = 1, drop-package(ANSZ), ANS2 == 1, 

task :- surface(ANS I), wait-for-recovery(ANS2). 

return :- waypoint-control. 
return :- surface(ANS I), wait-for-recovery(ANS2). 

get_gpsPfix(ANS3), ANS3 = 1, get_next_waypoint(ANS4), ANS4 == 1. 

. 

/* ______________________________ NpS AUV DOCTRINE .-------------*/ 

- 

execute-auv-mission :- initialize, repeat, mission. 

waypoint-control :- not(critical-system-prob), get-waypoint-status, plan, 
send-setpoints-and-modes(ANS). 

get-waypoint-status :- gps-check, reach-waypoint-p(ANS l), ANSl == 1, 

get-waypoint-status. 
get-next-waypoint(ANS2). 

gps-check :- gps-needed-p(ANSl), ANSl == 1, get_gps_fix(ANSl). 
gps-check. 

plan :- reduced-capacity_system-prob, global-replan. 
plan :- near-uncharted-obstacle, local-replan. 
plan. 

near-uncharted-obstacle :- unknown-obstacle-p(ANS l), ANS 1 == 1, 
lognew-obstacle(ANS2). 

local-replan :- loiter(ANS l), start_local_replanner(ANS2). 

global-replan :- loiter(ANS I), start~lobal-replanner(ANS2). 

critical-system-prob :- powerJone-p(ANS), ANS == 1. 
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critical-system-prob :- computer_system-inop-p(ANS), ANS == 1. 
critical-system-prob :- propulsion-system-p(ANS), ANS = 1. 
critical-system-prob :- steering-system-inop-p(ANS), ANS == 1. 

reduced-capacity-system-prob :- diving_system-p(ANS), ANS == 1. 
reduced-capacity-system-prob :- bouyancy-system-p(ANS), ANS == 1. 
reduced-capacity-system-prob :- thruster-system-p(ANS), ANS == 1. 
reduced-capacity-system-prob :- leak-test-p(ANS), ANS == 1. 
reduced-capacity-system-prob :- payload-prob-p(ANS), A N S  == 1. 
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2. CLIPS IMPLEMENTATION (RBM-F) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.* . 
;* Title : Strategic Level for the NF'S AUV I1 
;* Name : strlev4.0 
;* Version : 4.0 
;* Author : Thomas Scholz 
;* Date : 22 February 1993 
;* Revised 
;* System : Sun UNIX 
;* Compiler : Clips 5.1 
;* Description 
.* top level of the Rational Behavioral Model design 
;* Remarks : Don't make any changes to this program! 
.* It runs fine on the N P S  AUV Simulator on IRIS! 

: 23 February 1993 - First good run at 11:45am 

: This program is the strategic level of the NPS AUV LI, 

.* 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

;********************NPS AUV - RBM Mission Controller/Coordinator*********** 

(deftemplate execute-auv-mission 
(field state 

(type SYMBOL) 
(allowed-symbols 
(default inactive))) 

(deftemplate or-initialize 
(field state 

(type SYMBOL) 
(allowed-symbols 

initialize mission done inactive) 

or-initialize-1 
or_initialize_2 
failed done inactive) 
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(default inactive))) 

(deftemplate initialize 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate or-mission 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate mission 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate transit 
(field state 

(type SYMBOL) 
(allowed-symbols 

Start 
select-first-waypoint 
alert-user 
failed done inactive) 

or-mission-1 
or-mission-:! 
or-mission-3 
or-mission-4 
done inactive) 

Start 
transit in-transit-p transit-done-p 
search in-search-p search-done-p 
task in-task-p task-done-p 
return in-return-p return-done-p 
done inactive) 

Start 
waypoint-control 
surface 
done inactive) 
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(default inactive))) 

(deftemplate or-transit 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate search 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate or-search 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate task 
(field state 

(type SYMBOL) 
(dowed-symbols 

(default inactive))) 

or-transit-1 
or-transit-2 
done inactive) 

Start 
do-searc h-pattern 
surface 
done inactive) 

or-search-1 
or-search-2 
done inactive) 

Start 
homing drop-package getms-fii 
get-next-waypoint surface 
done inactive) 

(deftemplate or-task 
(field state 
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(type SYMBOL) 
(allowed-symbols or-task- 1 

or-task-2 
done inactive) 

(default inactive))) 

(deftemplate return 
(field state 

(type SYMBOL) 
(allowed-symbols Start 

waypoint-control 
surface 
done inactive) 

(default inactive))) 

(deftemplate or-return 
(field state 

(type SYMBOL) 
(allowed-symbols or-return-1 

or-retun-2 
done inactive) 

(default inactive))) 

(deftemplate waypoint-control 
(field state 

(type SYMBOL) 
(allowed-symbols Start 

cnt-system-prob 
get-waypoint-status 
plan send-setpoints-and-modes 
done inactive) 

(default inactive))) 

(defternplate get-waypoint-status 
(field state 

(type SYMBOL) 
(allowed-symbols Start 

gps-check 
reach-waypoint 
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(default inactive))) 

! (deftemplate or-get-waypoint-status 

. (type SYMBOL) 
(allowed-symbols 

(field state 

(default inactive))) 

(deftemplate gps-check 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate or-gps-check 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate plan 
(field state 

(type SYMBOL) 
(allowed-symbols 

get-next-waypoint 
done inactive) 

or_get-waypoint-status-l 
or_get-waypoint-status-2 
done inactive) 

Start 
gps-needed 
get-s-fix 
done inactive) 

or-gps-check-1 
or-gps-check-2 
done inactive) 

Start 
red-cap-sy stem-prob 
near_uncharted_o bstacle 
global-replan 
local-replan 
done inactive) 

(default inactive))) 
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(deftemplate or-plan 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate near-uncharted-obstacle 
(field state 

(type SYMBOL) 
(allowed-symbols 

or-plan-1 
or-plan-2 
or-plan-3 
done inactive) 

Start  
unknown-obstacle-p 
log-new-obstacle 
done inactive) 

(default inactive))) 

(deftemplate global-replan 
(field state 

(type SYMBOL) 
(allowed-symbols Start 

loiter 
startjlo bal-replanner 
done inactive) 

(default inactive))) 

(deftemplate local-replan 
(field state 

(type SYMBOL) 
(allowed-symbols Start 

loiter 
start-local-replanner 
done inactive) 

(default inactive))) 

(deftemplate crit-system-prob 
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. 
(default inactive))) 

(field state 
(type SYMBOL) 
(allowed-symbols Start 

power-gone-p 
computer-system-inop-p 
propulsion-system-p 
steering-system-inop-p 
done inactive) 

(deftemplate or-crit-system-prob 

(type SYMBOL) 
(allowed-symbols 

(field state 

(default inactive))) 

(deftemplate red-cap-system-prob 
(field state 

(type SYMBOL) 
(allowed-symbols 

(default inactive))) 

(deftemplate or-red-cap-system-prob 
(field state 

(type SYMBOL) 
(allowed-symbols 

or-crit-s y stem-pro b- 1 
or-crit-system-prob-2 
or-crit-system-prob-3 
or-dt-s ystem-pro b-4 
done inactive) 

Start 
diving_system-p 
bouyanc y-s y stem-p 
thruster-system-p 
leal-test-p 
payloadqrob-p 
done inactive) 
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done inactive) 
(default inactive))) 

(defrule execute-auv-mission- 10s 
?x <- (start) 

(retract ?x) 
(assert (execute-auv-mission (state initialize)))) 

=> 

(defrule execute-auv-mission-10-e 
?x <- (execute-auv-mission (state done)) 

(retract ?x) 
(reset) 
(assert (execute-auv-mission (state mission)))) 

=> 

(dekule execute-auv-mission-1 1-s 
(execute-auv-mission (state initialize)) 

(assert (initialize (state start)))) 
=> 

(defrule execute-auv-mission-1 1-e 
?x <- (execute-auv-mission (state initialize)) 
?y <- (initialize (state done)) 

(retract ?x) 
(retract ?y) 
(assert (execute-auv-mission (state mission)))) 

=> 

(defrule execute-auv-mission- 125 
(execute-auv-mission (state mission)) 

(assert (mission (state start)))) 
=> 
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(defrule execute-auv-mission-12-e 
?x <- (execute-auv-mission (state mission)) 
?y <- (mission (state done)) 

(retract ?x) 
(retract ?y) 
(assert (execute-auv-mission (state done)))) 

=> 

(defrule initialize-10-s 
(declare (salience 10)) 
?x <- (initialize (state start)) 

(retract ?x) 
(assert (or-initialize (state or-initialize-1))) 
(assert (initialize (state select-first-waypoint)))) 

=> 

(defrule initialize-10-e 
(declare (salience -10000)) 
?x <- (or-initialize (state or-initialize-1)) 

(retract ?x) 
(assert (or-initialize (state or-initialize-2)))) 

=> 

(defrule initialize-1 1 
(or-initialize (state or-initialize-1)) 
(initialize (state select-fh-waypoint)) 
(test (= (ready-vehicle-for-launch) 1)) 

(select-first-waypoint) 
(assert (initialize (state done))) 
(printout t "* * * auv execution initialized * * *" crlf crlf)) 

=> 

(defrule initialize-20-s 
(or-initialize (state or-initialize-2)) 

(assert (initialize (state alert-user)))) 
=> 

(defrule initialize-20-e 
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?x <- (initialize (state alert-user)) 

(retract ?x) 
(alert-user ) 
(printout t "*** lnihalize ' ' ' failed ***" crlf crlf) 
(assert (initialize (state failed)))) 

=> 

(defrule mission-10-s 
(declare (salience 30)) 
?x <- (mission (state start)) 

(retract ?x) 
(assert (or-mission (state or-mission-1))) 
(assert (mission (state transit)))) 

=> 

(defrule mission- 10-e 
(declare (salience -1000)) 
?x <- (or-mission (state or-mission-1)) 

(retract ?x) 
(assert (or-mission (state or-mission-2)))) 

=> 

(defrule mission- 1 1-s 
(or-mission (state or-mission-1)) 
(mission (state transit)) 
(test (= (in-transit-p) 1)) 

(assert (transit (state start)))) 
=> 

(defrule mission- 1 1-e 
(or-mission (state or-mission-1)) 
?x <- (mission (state transit)) 
?y <- (transit (state done)) 

(retract ?x) 
(retract ?y) 
(assert (mission (state transit-done-p)))) 

=> 
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. 

(defrule mission-I2 
(or-mission (state or-mission-1)) 
?x <- (mission (state transit-done-p)) 
(test (= (transit-done-p) 1)) 

) 
=> 

(defrule mission-20-s 
(declare (salience 20)) 
(or-mission (state or-mission-2)) 

(assert (mission (state search)))) 
=> 

(defrule mission-20-e 
(declare (salience -1000)) 
?x <- (or-mission (state or-mission-2)) 

(retract ?x) 
(assert (or-mission (state or-mission-3)))) 

=> 

(defrule mission-21-s 
(or-mission (state or-mission-2)) 
(mission (state search)) 
(test (= (in-search-p) 1)) 

(assert (search (state start)))) 
=> 

(defrule mission-21-e 
(or-mission (state or-mission-2)) 
?x <- (mission (state search)) 
?y <- (search (state done)) 

(retract ?x) 

(assert (mission (state search-done-p)))) 

=> 

(retract ?y) 

(defrule mission-22 
(or-mission (state or-mission-2)) 
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?x <- (mission (state searchdone-p)) 
(test (= (searchdone-p) 1)) 

) 
=> 

(defrule mission-30-s 
(declare (salience 10)) 
(or-mission (state or-mission-3)) 

(assert (mission (state task)))) 
=> 

(defrule mission-30-e 
(declare (salience -1000)) 
?x <- (or-mission (state or-mission-3)) 

(retract ?x) 
(assert (or-mission (state or-mission-4)))) 

=> 

(defrule mission-31-s 
(or-mission (state or-mission-3)) 
(mission (state task)) 
(test (= (in-task-p) 1)) 

(assert (task (state start)))) 
=> 

(defrule mission-31-e 
(or-mission (state or-mission-3)) 
?x <- (mission (state task)) 
?y <- (task (state done)) 

(retract ?x) 
(retract ?y) 
(assert (mission (state task-done-p)))) 

=> 

(defrule mission-32 
(or-mission (state or-mission-3)) 
?x <- (mission (state task-done-p)) 
(test (= (task-done-p) 1)) 
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=> 
I 

(defrule mission-40-s 
(declare (salience 0)) 
(or-mission (state or-mission-4)) 

(assert (mission (state return)))) 
=> 

(defrule mission-40-e 
(declare (salience -1000)) 
?x <- (or-mission (state or-mission-4)) 

(retract ?x) 
(assert (mission (state done)))) 

=> 

(defrule mission-41-s 
(or-mission (state or-mission-4)) 
(mission (state retun)) 
(test (= (in-return-p) 1)) 

(assert (return (state start)))) 
=> 

(defrule mission-41-e 
(or-mission (state or-mission-4)) 
?x <- (mission (state return)) 
?y <- (return (state done)) 

(retract ?x) 
(retract ?y) 
(assert (mission (state return-done-p)))) 

=> 

(defrule mission42 
(or-mission (state or-mission-4)) 
?x <- (mission (state retun-done-p)) 
(test (= (retun-done-p) 1)) 

(wait-for-recovery) 
=> 
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(retract ?x)) 

(defrule transit-10-s 
(declare (salience 10)) 
?x <- (transit (state start)) 

(retract ?x) 
(assert (or-transit (state or-transit-1)))) 

=> 

(defrule transit-10-el 
(declare (salience 9)) 
(transit (state done)) 
?x <- (or-transit (state'or-transit-1)) 

(retract ?x)) 
=> 

(defrule transit- 10-e 
(declare (salience -100)) 
?x <- (or-transit (state or-transit-1)) 

(retract ?x) 
(assert (or-transit (state or-transit-2)))) 

=> 

(defrule transit-1 1-s 
(or-transit (state or-transit-1)) 

(assert (transit (state waypoint-control))) 
(assert (waypoint-control (state start)))) 

=> 

(defrule transit-11-end 
(or-transit (state or-transit-1)) 
?y <- (transit (state waypoint-control)) 
?z <- (waypoint-control (state done)) 

(retract ?y) 
(retract ?z) 
(assert (transit (state done)))) 

=> 
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(defrule transit-2 1 -s 
(or-transit (state or-transit-2)) 

(assert (transit (state surface)))) 
=> 

(defrule transit-21-end 
?x <- (or-transit (state or-transit-2)) 
?y <- (transit (state surface)) 

(surface) 
(retract ?x) 
(retract ?y) 
(assert (transit (state done)))) 

=> 

(defrule search-10-s 
(declare (salience 10)) 
?x <- (search (state start)) 

(retract ?x) 
(assert (or-search (state or-search-1)))) 

=> 

(defrule search- 10-el 
(declare (salience 9)) 

?x <- (or-search (state or-search-1)) 

(retract ?x)) 

(search (state done)) 

=> 

(defrule search-10-e 
(declare (salience -100)) 
?x <- (or-search (state or-search-1)) 

(retract ?x) 
(assert (or-search (state or-search-2)))) 

=> 

(defrule search-1 1-s 
(or-search (state or-search-1)) 
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=> 
(assert (search (state do-search-pattern)))) 

(defrule search- I 1-end 
(or-search (state or-search-1)) 
?y <- (search (state do-searchqattern)) 
(test (= (do-searchgattern) 1)) 

(retract ?y) 
(assert (search (state done)))) 

=> 

(defrule search-21-s 
(or-search (state or-search-2)) 

(assert (search (state surface)))) 
=7 

(dehle  search-21-end 
?x <- (or-search (state or-search-2)) 
?y <- (search (state. surface)) 

(surface) 
(retract ?x) 
(retract ly)  
(assert (search (state done)))) 

=> 

(defrule task- 10-s 
(declare (salience 10)) 
?x c- (task (state start)) 

(retract ?x) 
(assert (or-task (state or-task-1)))) 

=> 

(deliule task-10-el 
(declare (salience 9)) 

(task (state done)) 
?x <- (or-task (state or-task-1)) 

(retract ?x)) 
=> 
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(defrule task-10-e 
(declare (salience -100)) 
?x <- (or-task (state or-task-1)) 

(retract ?x) 
(assert (or-task (state or-task-2)))) 

=> * 

(defrule task-I 1-s 
(or-task (state or-task-1)) 

(assert (task (state homing)))) 
=> 

(defrule task- 11-e 
(or-task (state or-task-I)) 
?x <- (task (state homing)) 
(test (= (homing) 1)) 

(retract ?x) 
(assert (task (state dropqackage)))) 

=> 

(defrule task-12 
(or-task (state or-task-1)) 
?x <- (task (state drop-package)) 
(test (= (drop-package) 1)) 

(retract ?x) 
(assert (task (state getss-fix)))) 

=> 

(defrule task-13 
(or-task (state or-task-1)) 
?x <- (task (state get-gp-fix)) 
(test (= (getgps-fix) 1)) 

(retract ?x) 
(assert (task (state get-next-waypoint)))) 

=> 
* 

. 
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(defrule task-14-end 
(or-task (state or-task-1)) 
?y <- (task (state get-next-waypoint)) 
(test (= (get-next-waypoint) 1)) 

(retract ?y) 
(assert (task (state done)))) 

=> 

(defrule task-2 1 -s 
(or-task (state or-task-2)) 

(assert (task (state surface)))) 
=> 

(defrule task-21-end 
?x <- (or-task (state or-task-2)) 
?y <- (task (state surface)) 

(surface) 
(retract ?x) 
(retract ?y) 
(assert (task (state done))) 
(printout t "*** starting task failed ***" crlf) 
(printout t crlf "+++ auv is surfacing [due to problems] +++" crlf) 
(printout t "+++ [and] mission execution terminated +++" crlf crlf)) 

=> 

(defrule return-10-s 
(declare (salience 10)) 
?x <- (return (state start)) 

(retract ?x) 
(assert (or-return (state or-return-1)))) 

=> 

(defrule return-10-el 
(declare (salience 9)) 
(return (state done)) 
?x <- (or-return (state or-return-1)) 

(retract ?x)) 
=> 
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(defrule return-10-e 
(declare (salience -100)) 
?x <- (or-return (state or-return-1)) 

(retract ?x) 
(assert (or-return (state or-return-2)))) 

=> . -  

(defrule return-1 1-s 
(or-retum (state or-return-1)) 

(assert (return (state waypoint-control))) 
(assert (waypoint-control (state start)))) 

=> 

(defrule return- 1 1-end 
(or-return (state or-return-1)) 
?y <- (return (state waypoint-control)) 
?z <- (waypoint-control (state done)) 

(retract ?y) 
(retract ?z) 
(assert (return (state done)))) 

=> 

(defrule return-21-s 
(or-retum (state or-return-2)) 

(assert (return (state surface)))) 
=> 

(defrule return-21-end 
?x <- (or-return (state or-return-2)) 
?y <- (return (state surface)) 

(surface) 
(retract ?x) 

* (retract ?y) 
(assert (return (state done)))) 

=> 

(defrule waypoint-control- 10-s 
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?x <- (waypoint-control (state start)) 

(retract ?x) 
(assert (waypoint-control (state crit-system-prob)))) 

=> 

(defrule waypointcontrol-1 1-s 
(waypoint-control (state crit-system-prob)) 

(assert (crit-system-prob (state start)))) 
=> 

(defrule waypoint-control- 11-e 
?x <- (waypoint-control (state cnt-system-prob)) 
(not (crit-system-prob (state done))) 

(retract ?x) 
(assert (waypoint-control (state get-waypoint-status)))) 

=> 

(defrule waypoint-control- 12-s 
(waypoint-control (state get-waypoint-status)) 

(assert (get-waypoint-status (state start)))) 
=> 

(defrule waypoint-control- 12-e 
?x <- (waypoint-control (state get-waypoint-status)) 
?y <- (get-waypoint-status (state done)) 

(retract ?x) 
(retract ?y) 
(assert (waypoint-control (state plan)))) 

=> 

(defrule waypoint-control- 13-s 
(waypoint-control (state plan)) 

(assert (plan (state start)))) 
=> 

(defrule waypoint-control- 13-e 
?x <- (waypoint-control (state plan)) 
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?y <- (plan (state done)) 

(retract ?x) 
(retract ?y) 

=> 

(defrule waypoint-control- 14-end 
?x <- (waypoint-control (state send-setpoints-and-modes)) 

(send-setpoints-and-modes) 
(retract ?x) 
(assert (waypoint-control (state done)))) 

=> 

(defrule get-waypoint-status- 10-s 
(declare (salience 10)) 
?x <- (get-waypoint-status (state start)) 

(retract ?x) 
(assert (or-get-waypoint-status (state or_get-waypoint-status-l)))) 

=> 

(defrule get-waypoint-status- 10-e 1 
(declare (salience -9)) 
(get-waypoint-status (state done)) 
?x <- (or-get-waypoint-status (state orset-waypoint-status-1)) 

(retract ?x)) 
=> 

(defrule get-waypoint-status- 10-e 
(declare (salience -10)) 
?x <- (or-get-waypoint-status (state orset-waypoint-status-I)) 

(retract ?x) 
(assert (or-get-waypoint-status (state or_get-waypoint-status-2)))) 

=> 

(defrule get-waypoint-status- 11-s 
(or-get-waypoint-status (state or_get-waypoint-status-l)) 

(assert (get-waypoint-status (state gps-check))) 
=> 
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(assert (gps-check (state start)))) 

(defrule get-waypoint-status- 1 1-e 
(or-get-waypoint-status (state or_get-waypoint-status-l)) 
?x <- (get-waypoint-status (state gps-check)) 
?y <- (gps-check (state done)) 

(retract ?x) 
(retract ? y) 
(assert (get-waypoint-status (state reach-waypoint)))) 

=> 

(defiule get-waypoint-status- 12-end 
(or-get-waypoint-status (state orjet-waypoint-status-1)) 
?y <- (get-waypoint-status (state reach-waypoint)) 
(test (= (reach-waypoint) 1)) 

(get-next-waypoint) 
(retract ?y) 
(assert (get-waypoint-status (state done)))) 

=> 

(defrule get-waypoint-status-2 1 -end 
?x <- (or-get-waypoint-status (state or_get-waypoint-status-2)) 

(retract ?x) 
(assert (get-waypoint-status (state done)))) 

=> 

(defrule gps-check-10-s 
(declare (salience 10)) 
?x <- (gps-check (state start)) 

(retract ?x) 
(assert (or-gps-check (state. oras-check-1)))) 

=> 

(defrule gps-check-10-el 
(declare (salience 9)) 
(gps-check (state done)) 
?x <- (or-gps-check (state oras-check-1)) 

=> 
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(retract ?x)) 

(defrule gps-check- 10-e 
(declare (salience -10)) 
?x <- (or-gps-check (state or_gps-check-l)) 

(retract ?x) 
(assert (or-gps-check (state or_gps-check-2)))) 

=> 

(defrule gps-check-11-s 
(or-gps-check (state or_gps-check-l)) 

(assert (gps-check (state gps-needed)))) 
=> 

(defmle gps-check-11-end 
(or-gps-check (state oras-check-1)) 
?y <- (gps-check (state gps-needed)) 
(test (= (gps-needed) 1)) 

(getxps-fix) 
(retract ?y) 
(assert (gps-check (state done)))) 

=> 

(defrule gps-check-21-end 
?x <- (or-gps-check (state or_gps-check-2)) 

(retract ?x) 
(assert (gps-check (state done)))) 

=> 

(defrule plan-10-s 
(declare (salience 10)) 
?x <- (plan (state start)) 

(retract ?x) 
(assert (or-plan (state or-plan-1)))) 

=> 

(defrule plan-20-s 
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(declare (salience -10)) 
?x <- (or-plan (state or-plan-I)) 

(retract ?x) 
(assert (or-plan (state or-plan-2)))) 

=> 

(defrule plan-30-s 
(declare (salience -20)) 
?x <- (or-plan (state or-plan-2)) 

(retract ?x) 
(assert (or-plan (state or-plan-3)))) 

=> 

(defrule plan-1 1-s 
(or-plan (state or-plan-1)) 

(assert (plan (state red-cap-system-prob))) 
(assert (red-cap-system-prob (state start)))) 

=> 

(defrule plan-I 1-e 
(or-plan (state or-plan-1)) 
?x <- (plan (state red-cap-system-prob)) 
?y <- (redcap-system-prob (state done)) 

(retract ?x) 
(retract ?y) 
(assert (plan (state global-replan))) 
(assert (global-replan (state start)))) 

=> 

(defrule plan-12-s 
(or-plan (state or-plan-1)) 
?x <- (plan (state global-replan)) 
?y <- (global-replan (state done)) 

(retract ?x) 
(retract ?y) 
(assert (plan (state done)))) 

=> 
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(defrule plan-21-s 
(or-plan (state or-plan-2)) 

(assert (plan (state near-uncharted-obstacle))) 
(assert (near-uncharted-obstacle (state start)))) 

=> 

(defrule plan-21-e 
(or-plan (state or-plan-2)) 
?x <- (plan (state near-uncharted-obstacle)) 
?y <- (near-uncharted-obstacle (state done)) 

(retract ?x) 
(retract ?y) 
(assert (plan (state local-replan))) 
(assert (local-replan (state start)))) 

=> 

(defrule plan-22-end 
?x <- (or-plan (state or-plan-2)) 
?y <- (plan (state local-replan)) 
?z <- (local-replan (state done)) 

(retract ?x) 
(retract ?y) 
(retract ?z) 
(assert (plan (state done)))) 

=> 

(defrule plan-31-end 
?x <- (or-plan (state or-plan-3)) 

(retract ?x) 
(assert (plan (state done)))) 

=> 

(deh le  near-uncharted-obstacle- 10-s 
?x <- (near-unchaaed-obstacle (state start)) 

(retract ?x) 
(assert (near-uncharted-obstacle (state unknown-obstacle-p)))) 

=> 
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(defrule near-uncharted-obstacle- 1 I-s 
?x <- (near-uncharted-obstacle (state unknown-obstacleq)) 
(test (= (unknown-obstacle-p) 1)) 

(retract ?x) 
(assert (near-uncharted-obstacle (state log-new-obstacle)))) 

=> 

(defrule near-uncharted-obstacle- 12-end 
?x <- (near-uncharted-obstacle (state log-new-obstacle)) 

(log-new-o bstacle) 
(assert (near-uncharted-obstacle (state done)))) 

=> 

(dehle  local-replan- 10-s 
?x <- (local-replan (state start)) 

(retract ?x) 
(assert (local-replan (state loiter)))) 

=> 

(defrule local-replan- 11-s 
?x <- (local-replan (state loiter)) 

(loiter) 
(retract ?x) 
(assert (local-replan (state start-local-replanner)))) 

=> 

(defrule local-replan- 12-end 
?x <- (local-replan (state start-local-replanner)) 

(start-local-replanner) 
(retract ?x) 
(assert (local-replan (state done)))) 

=> 

(defrule global-replan- 10-s 
?x <- (global-replan (state start)) 

(retract ?x) 
(assert (global-replan (state loiter)))) 

=> 
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(defrule global-replan- 1 1-s 
?x <- (global-replan (state loiter)) 

(loiter) 
(retract ?x) 

=> 
? -  

. (assert (global-replan (state star_global-replanner)))) 

(defiule global-replan- 12-end 
?x <- (global-replan (state startslobd-replanner)) 

(start_global-replanner) 
(retract ?x) 
(assert (global-replan (state done)))) 

=> 

(defrule crit-system-prob- 10-s 
(declare (salience 10)) 
?x <- (crit-system-prob (state start)) 

(retract ?x) 
(assert (or-crit-system-prob (state or-crit-system-prob-1)))) 

=> 

(deh le  crit-system-prob- 10-end 
(declare (salience 1)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-4)) 
?y <- (crit-system-prob (state steering-system-inop-p)) 

(retract ?x) 
(retract ?y)) 

=> 

(defrule crit-system-prob-20-s 
(declare (salience 9)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-1)) 
?y <- (crit-system-prob (state power-goneq)) 

(retract ?x) . (Etract ?y) 
(assert (or-crit-system-prob (state or-crit-system-prob-2)))) 

* 
=> 
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(defrule crit-system-prob-30-s 
(declare (salience 8)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-2)) 
?y <- (crit-system-prob (state compute-system-inop-p)) 

(retract ?x) 
(retract ?y) 
(assert (or-crit-system-prob (state or-crit-system-prob-3)))) 

=> 

(defrule crit-system-prob-40-s 
(declare (salience 7)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-3)) 
?y <- (crit-system-prob (state propulsion-system-p)) 

(retract ?x) 
(retract ?y) 
(assert (or-crit-system-prob (state or-crit-system-pro b-4)))) 

=> 

(defrule crit-system-prob- 11-s 
(or-crit-system-prob (state or-cnt-system-prob-1)) 

(assert (crit-system-prob (state power_gone-p)))) 
=> 

(defrule crit-system-prob-11-end 
(declare (salience 10)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-1)) 
?y <- (crit-system-prob (state power-gone-p)) 
(test (= (power_gone-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (crit-system-prob (state done)))) 

=> 

(dehle  crit-system-prob-21-s 
(or-crit-system-prob (state or-cnt-system-prob-2)) 

(assert (crit-system-prob (state computer-system-hop-p)))) 
=> 
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(defrule crit-system-prob-21 -end 
(declare (salience 9)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-2)) 
?y <- (crit-system-prob (state computer-system-inop-p)) 
(test (= (computer-system-inop-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (crit-system-prob (state done)))) 

=> 

(defrule crit-system-prob-3 1-s 
(or-crit-system-pro b (state or-crit-system-pro b-3)) 

(assert (crit-system-prob (state propulsion-sy stem-p)))) 
=> 

(defrule crit-system-prob-3 1-end 
(declare (salience 8)) 
?x <- (or-crit-system-prob (state or-crit-system-prob-3)) 
?y <- (crit-system-prob (state propulsion-system-p)) 
(test (= (propulsion-system-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (crit-system-prob (state done)))) 

=> 

(defrule crit-system-prob-41-s 
(or-crit-system-prob (state or-crit-sys tem-prob-4)) 

(assert (crit-system-prob (state steering_system_inop_p)))) 
=> 

(defrule crit-system-prob-41-end 
(declare (salience 7)) 
?x c- (or-crit-system-prob (state or-crit-system-prob-4)) 
?y c- (crit-system-prob (state steeringsystem-inopq)) 
(test (= (steering-system-inop-p) 1)) 

(retract ?x) 
=> 
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(retract ?y) 
(assert (crit-system-prob (state done)))) 

(defrule red-cap-system-prob- 10-s 
(declare (salience 10)) 
?x <- (red-cap-system-prob (state start)) 

(retract ?x) 
(assert (or-red-cap-system-prob (state or-red-cap-system-prob-1)))) 

=> 

(defrule red-cap-system-prob- 10-end 
?x <- (or-red-cap-system-pro b (state or-red-cap-system-prob-5)) 
?y <- (red-cap-system-prob (state payload-prob-p)) 

(retract ?x) 
(retract ?y) 
(assert (red-cap-system-prob (state done))) 

=> 

(defrule red-cap-system-prob-20s 
(declare (salience 9)) 
?x c- (or-red-cap-system-prob (state or-red-cap-system-prob-1)) 
?y <- (red-cap-system-prob (state divingsystem-p)) 

(retract ?x) 
(renact ?y) 
(assert (or-red-cap-system-prob (state or-red-cap-system-prob-2)))) 

=> 

(deh le  red-cap-system-prob-30-s 
(declare (salience 8)) 
?x <- (or-red-cap-system-prob (state or-red-cap-system-prob-2)) 
?y <- (red-cap-system-prob (state bouyancy-system-p)) 

(retract ?x) 
(retract ?y) 
(assert (or-red-cap-system-prob (state or-red-cap-system-prob-3)))) 

=> 

(defmle red-cap-system-prob-40-s 
(declare (salience 7)) 
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?x <- (or-red-cap-system-prob (state or-red-cap-system-prob-3)) 
?y <- (red-cap-system-prob (state thruster-system-p)) 

(retract ?x) 
(retract ?y) 
(assert (or-red-cap-system-prob (state or-red-cap-system-prob-4)))) 

=> 

(defrule red-cap-system-prob-50-s 
(declare (salience 6 )) 
?x <- (or-red-cap-system-prob (state or-red-cap-system-prob-4)) 
?y <- (red-cap-system-prob (state leak-test-p)) 

(retract ?x) 
(retract ?y) 
(assert (or-red-cap-system-prob (state or-red-cap-system-prob_5)))) 

=> 

(defrule red-cap-system-prob- 1 1-s 

=> 
(or-red-cap-system-prob (state or-red-cap-system-prob-1)) 

(assert (red-cap-system-prob (state diving-system-p)))) 

(defrule red-cap-system-prob-1 1-end 
(declare (salience 10)) 
?x <- (or-red-cap-system-prob (state or-red-cap-system-prob-1)) 
?y <- (red-cap-system-prob (state diving-system-p)) 
(test (= (divingsystem-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (red-cap-system-prob (state done)))) 

=> 

(defrule red-cap-system-prob-2 1-s 
(or-red-cap-system-prob (state or-red-cap-system-prob-2)) 

(assert (red-cap-system-prob (state bouyancy-system-p)))) 
=> 

(deh le  red-cap-system-prob-2 1 -end 
(declare (salience 9)) 
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?x <- (or-red-cap-system-prob (state or-red-cap-system-prob-2)) 
?y <- (red-cap-system-prob (state bouyancy-system-p)) 
(test (= (bouyancy-system-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (red-cap-system-prob (state done)))) 

=> 

(defrule red-cap-system-prob-3 1-s 
(or-red-cap-system-prob (state or-red-cap-system-prob-3)) 

(assert (red-cap-system-prob (state thruster-system-p)))) 
=> 

(defrule red-cap-system-prob-3 1 -end 
(declare (salience 8)) 
?x c- (or-red-cap-system-prob (state or-red-cap-system-prob-3)) 
?y <- (red-cap-system-prob (state thruster-system-p)) 
(test (= (thruster-system-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (red-cap-system-prob (state done)))) 

=> 

(defrule red-cap-system-prob-4 1-s 
(or-red-cap-system-prob (state or-red-cap-system-prob-4)) 

(assert (red-cap-system-prob (state leak-test-p)))) 
=> 

(defrule red-cap-system-prob-41-end 
(declare (salience 7)) 
?x <- (or-redcap-system-prob (state or-red-cap-system-prb.-4)) 
?y <- (red-cap-system-prob (state leak-test-p)) 
(test (= (leak-test-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (red-cap-system-prob (state done)))) 

=> 
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(defrule red-cap-system-prob-5 1-s 
(or-red-cap-system-prob (state or-red-cap-system-prob-5)) 

(assert (red-cap-system-prob (state payload-prob-p)))) 
=> 

(defrule red-cap-system-prob-5 1 -end 
(declare (salience 6 ) )  
?x <- (or-red-cap-system-prob (state or-red-cap-system-prob-5)) 
?y <- (red-cap-system-prob (state payload-prob-p)) 
(test (= (payloadgrob-p) 1)) 

(retract ?x) 
(retract ?y) 
(assert (red-cap-system-prob (state done)))) 

=> 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3. TRACES OF THE EXECUTION OF THE SEARCH AND RESCUE MISSION 

The first trace represents the chain of inference derived from the logic embodied in 
the rule set of the Prolog and CLIPS programs for a complete, four-phase search-- 
and-rescue mission in which no environmental or systemic abnormalities were 
encountered. 

* 

To start the mission using the backward-chaining Prolog implementation, a query 
“execute-auv-mission” is presented to the Prolog system. The inference engine 
searches the rule set for a rule head that matches this query and attempts to satisfy 
this rule’s subgoals in sequence from left to right: 

To start the mission using the forward-chaining CLIPS implementation, the (start) 
fact is first asserted to the fact-list, followed by the command (run). The CLIPS 
inference engine matches the current facts with the left-hand sides of the rules; 
responses to primitive goals are evaluated as part of the attempt to satisfy the con- 
ditional part of the rule. 

The traces listed herein are identical for both the Prolog and CLIPS implementa- 
tions. 

Entered the function ready-vehicle-for-launch-p 

Entered the function select-first-waypoint 

Following initialization, the “transit” phase is entered: 

Entered the function in-transit-p 

Entered the function power_gone-p 

Entered the function computer-system-hop-p 

Entered the function propulsion-system-p 

Entered the function steering-system-inop-p 
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Entered the function gps-neededg 

Entered the function reach-waypoint-p 

Entered the function divingsystem-p 

Entered the function bouyancy-system-p 

Entered the function thruster-system-p 

Entered the function leal-test-p 

Entered the function payload-prob-p 

Entered the function unknown-obstacle-p 

Entered the function send-setpoints-and-modes 

Entered the function transit-done-p 

Entered the function in-transit-p 

Entered the function power_gone-p 

Entered the function computer-system-inop-p 

- .  

and so on, occasionally reaching the primitive goal “get-next-waypoint” when the 
query goal “reach-waypoint” receives a TRUE response. When the transit phase is 
complete, i.e., when the vehicle arrives at the search area, the search phase begins: 

Entered the function in-transit-p 

Entered the function in-search-p 

.. Entered the function do-search-pattern 

Entered the function search-done-p 
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When the target has been located and identified, the search phase ends and the task 
phase commences: 

Entered the function in-transit-p 

Entered the function in-search-p 

Entered the function in-task-p 

Entered the function homing 

Entered the function drop-package 

Entered the function get-gps-fix 

Entered the function get-next-waypoht 

Entered the function task-done-p 

Finally, following the cornpletipon of the task and subsequent gps location fix, the 
next waypoint is selected, corresponding to the first waypoint on the return path. 
This prepares the vehicle for the return phase of the mission: 

Entered the function in-transit-p 

Entered the function in-search-p 

Entered the function in-task-p 

Entered the function kreturn-p 

Entered the function power-gone-p 

Entered the function computer-system-hop-p 

Entered the function propulsion-system-p 

Entered the function steerhgsystetn-hop-p 

Entered the function gps-needed-p 
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Entered the function reach-waypoint-p 

Entered the function diving-system-p 

~- Entered the function bouyancy-system-p 

Entered the function thruster-system-p 

Entered the function leak-test-p 

. 

Entered the function payload-prob-p 

Entered the function unknown-obstacle-p 

Entered the function send-setpointxand-modes 

Entered the function return-done-p 

Entered the function in-transit-p 

Entered the function in-search-p 

Entered the function in-task-p 

Entered the function in-return-p 

. 

The logic used is precisely the same as the outbound transit, because the return is 
nothing more than a second transit phase. Therefore, this loop will also visit the 
primitive goal “get-next-waypoint” if multiple waypoints have been specified for 
the return leg of the journey. Upon reaching the final goal, the return phase is 
marked complete and the vehicle prepares itself for retrieval: 

Entered the function in-transit-p 

Entered the function in-search-p 

Entered the function in-task-p 

Entered the function in-return-p 
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Entered the function powersone-p 

Entered the function computer-system-inop-p 

Entered the function propulsion-system-p 

Entered the function steering-system-inopg 

Entered the function gps-needed-p 

Entered the function reach-waypoint-p 

Entered the function diving-system-p 

Entered the function bouyancy-system-p 

Entered the function thruster-system-p 

Entered the function leak-test-p 

Entered the function payload-prob-p 

Entered the function unknown-obstacle-p 

Entered the function send-setpoints-and-modes 

Entered the function retun-done-p 

Entered the function wait-for-recovery 

By reaching this primitive goal, the inference engine completes its search. In the 
case of F’rolog, the initial query is satisfied and the system responds with “yes” to 
indicate that the mission has been successfully completed. In CLIPS, the inference 
engine halts its search because no rules remain on the agenda. 

The next trace is generated from the same rule sets and, hence, represent execution 
of the same mission. In this case, however, a problem involving the battery is 
encountered, resulting in a different sequence of primitive goals being generated. 

The mission is initiated and launched as before: 
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Entered the function ready-vehicle-for-launch2 

Entered the function select-first-waypoint 

Entered the function in-transit-p 

Entered the function power_gone-p 

Entered the function computer-system-inopg 

Entered the function propulsion-system-p 

Entered the function steering-system-inop-p 

Entered the function gps-neededq 

Entered the function reach-waypoint-p 

Entered the function diving-system-p 

Entered the function bouyancy-system-p 

Entered the function thruster-system-p 

Entered the function leaktest-p 

Entered the function payload-prob-p 

Entered the function unknown-obstacleg 

Entered the function send-setpoints-md-modes 

Entered the function transit-done-p 

Entered the function in-transit-p 

Entered the function power-gone-p 

Entered the function computer-system-inop-p 

. -  

~ 
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At some point during the transit, the battery level drops below the threshold of 
acceptability and the order to surface is given: 

Entered the function computer-system-inop-p 

Entered the function propulsion-system-p 

Entered the function steering-system-inop-p 

Entered the function gps-needed-p 

Entered the function reach-waypoint-p 

Entered the function diving-system-p 

Entered the function bouyancy-system-p 

Entered the function thruster-system-p 

Entered the function leak-test-p 

Entered the function payload-prob-p 

Entered the function unknown-obstacle-p 

Entered the function send-setpoints-~d-modes 

Entered the function transit-done-p 

Entered the function in-transit-p 

Entered the function power_gone-p 

Entered the function surface 

At this poinf control of the vehicle is turned over to the Tactical level. The Tactical 
level is then charged with issuing the appropriate commands to the Execution level 
which result in the desired action. For this implementation, once the vehicle 
reached the surface, communications links between the RBM levels were inter- 
rupted and the simulation stopped. Any number of alternatives are certainly possi- 
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ble, including initiation of a radio link or some other “SOS” signal. The Strategic 
level can be made to include this reasoning by adding the appropriate rules to its 
rule base. 
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APPENDIX B. TACTICAL LEVEL SOURCE CODE 

-- File: auv-ood-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised 15 Dec 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Oversees the execution of the Tactical level. 
-- Coordinates requests for information between the objects 
-- of the object hierarchy. Provides the interface between 
-- the Tactical level and the Strategic level. 

class AUV-OOD is 

method CREATE (NEW-AUV-OOD : out OBJECT-ID); 
instance method INITIALIZE; 
instance method LINKUP-MM (POINTER : OBJECT-ID); 
instance method LINKUP-SR (POINTER : OBJE(JTID); 
instance method DELETE; 
instance method DOWNLOAD-OBSTACLES; 
instance method DOWNLOAD-INITIAL-STATE; 
instance method DOWNLOAD-WAYPOINTS; 
instance method DOWNLOAD-FIN AL-GOAL; 
instance method SEL-1ST-W; 
instance method TRANSMIT COMMAND (HEADING : in FLOAT: - 1  ~ ~ ~ ~~~~ ~~ 

zwp : in FLOAT; SPEED : in  FLOAT; XWP : in FLOAT; 
YWP : in FLOAT; MODE : in INTEGER); 

instance method SYS CHECK ( A N S  : out LNTEGER): 
instance method PO-R-CHECK (ANS : out INTEGER); 
instance method SURFACE; 
instance method REACH-WAYPOINT ( A N S  : out BOOLEAN); 
instance method GET-NEXT-W 
instance method GET-VEH-POSTURE, 
instance method OBS-CHECK (ANS : out BOOLEAN); 
instance method PLAN, 
instance method EXECUTE-PLAN; 
instance method REACH-GOAL (ANS : out BOOLEAN); 
instance method NAV-OOD-BACKLlNK(O0D : OBJECT-ID); 
instance method ENGR-OOD-BACKLINK(O0D : OBJECT-ID): 
instance method WEAP-OOD-BACKLINK(O0D : OBJECT-ID); 

end AUV-OOD 
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-- File: auv-ood-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised: 15 Dec 92 
-- System: Gms 
-- Compiler: Classic-Ada, VADS 
-- Description: Following creation, all dependent objects are 
-- created as part of the initialization. Power model implemented, 
-- which resides in ENGINEER 

with TEXT-10, NAVIGATOR. ENGINEER, WEAPONS-OFFICER. 
COMMAND-SENDER, C-LIB: 

use TEXT-10, C-LIB; 

class body AUV-OOD is 

NAV : instance OBJECT-ID, -- instance of Navigator class 
ENGR : instance OBJECT-ID, -- instance of ENGINEER class 
WEAP : instance OBJECT-ID, -- instance of WEAPONS-OFFICER class 
CMDS : instance OBJECT ID, -- instance of COMMANDSENDER class 
MISS-MODEL : instance OBJECT-ID; -- pointer to MISSION-MODEL 
NUM-F, X, Y, Z, X-INIT, Y-INIT, Z-INIT, 
HEAD-INIT, SPEED-VAL, X-WAYPOINT, Y-WAYPOINT, 
Z WAYPOINT. SPEED-WAYPOINT, CMD-HEADING : instance FLOAT; 
N~JM-I, MODE-NUM :instance INTEGER 

method CREATE (NEW-AUV-OOD : out OBJECT-ID) is 
begin 

NEW-AUV-OOD := instantiate; 
send (NEW-AUV-OOD, INITIALIZE); -- initialize upon creation 
PUT LINEC‘AUV-OOD obiect is created!”); - 
NE W-LId;  

end CREATE, 

instance method INITIALIZE is 
begin 

NAV := NAVIGATOR.class-object; 
send(NAV, CREATE, new-navigator => NAV); 
send(NAV, GIJ-NAVBACKLINK, navig => NAV); 
send(NAV, GPS-NAVBACKLINK, navig => NAV); 
send(NAV, SON-NAV-BACKLINK, navig => NAV); 
send(NAV, DR-NAV-BACKLINK, navig => NAV); 
send(NAV, MR-NAVBACKLINK, navig => NAV); 
ENGR := ENGINEER.class-object; 
send(ENGR, CREATE, new-engineer => ENGR); 
WEAP := WEAPONS_OFFICER.class-object; 
send(WEAP, CREATE, new-weapons-officer => WEAP); 
CMDS := COMMAND-SENDER.clas-object; 
send(CMDS, CREATE, new-command-sender => CMDS); 

end INITIALIZE: 
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instance method NAV-OOD-BACKLINK (OOD : OBJECT-ID) is 
begin 

end NAV-OODBACKLINK; 

instance method ENGR-OOD-BACKLINK (OOD : OBJECT-ID) is 
begin 

end ENGR-OODBACKLINK, 

instance method WEAP-OODBACKLINK (OOD : OBJECT-ID) is 
begin 

end WEAP-OODB ACKLINK 

instance method LINKUP-MM (POINTER : OBJECT-ID) is 
begin 

PUT-LINE("Backlinking NAVIGATOR and OOD."); 
send(NAV, PARENT-LINK, OOD => OOD); 

PUT-LINE("Backlinkinking ENGINEER and OOD."); 
send(ENGR, PARENT-LINK, OOD => OOD); 

PUT-LINE("Backlinking WEAPONS-OFFICER and OOD."); 
send(WEAP, PARENT-LINK, OOD => OOD); 

MISS-MODEL := POINTER, 
PlJl-LINE("Passing ptr to MM to NAV."); 
send(NAV, LINKUP, MM =>POINTER); 

end LINKUP-MM; 

instance method LINKUP-SR (POINTER : OBJECT-ID) is 
begin 

PUT LINEC'Passinc utr to SR to NAV."k 
send@JAV, LINK-fR, SR => POINTERji 

end LINKUP-SR, 

instance method DOWNLOAD-OBSTACLES is 
begin 

s&d@lISS-MODEL, GET-NUM-OBSTACLES, num-obs => NUk-1); 
NUM-F := FLOAT(NUM-I); PUT-LINE(" The number of obstacles is"); 
put-float(NUM-F); 
PUT-LINE('' and the obstacles themselves:"): 
for I in 1.NUM-I loop 

send(M1SS-MODEL, GET-OBSTACLE, index => I, x-coord => X, 

put-floatv); 
put-float@'); 
put-float(2); 

y-coord => Y, z-coord => Z); 

end loop; 
end DOWNLOAD-OBSTACLES; 

instance method DOWNLOAD-INITJAL-STATE is 
begin 

send(M1SS-MODEL, GET-INITIAI-STATE, init-x => X-INIT, 

init-heading => HEAD_INIT); 
i n i t j  => Y-INIT, ini-z => Z-INIT, 
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put-float(X-INIT); 
uut float(Y INIT): 
putZfloat(Z1INITj; 
put-float(HEAD-INIT); 

end DOWNLOAD-INITIAL-STATE: 

instance method DOWNLOAD-WAYPOINTS is 
beein 
- Y  

send(M1SS-MODEL, GET-IWM-WAYPOINTS, num-wp => NUM-I); 
NUM-F := FLOAT(NUM-I); 
PUT-LINE(" The number of waypoints is"); 
put-float(NUM-F); 
PUT-LINE(" and the waypoints are:"); 
for I in l..NUM-I loop 

send(MISSMODEL, GET-WAYPOINT, index => I, speed => SPEED-VAL, 

put-float(SPEED-VAL); 
put-float(X); 
put-float(Y); 
put-float(Z); 

x-coord => X, y-coord => Y, z-coord => 2); 

end loop; 
end DOWNLOAD-WAYPOINTS; 

instance method DOWNLOAD-FINAL-GOAL is 
begin 

send(M1SS-MODEL, GET-FINK-GOAL, x-final=> X, y-final=> Y); 
put-floatG); 
put-float(Y); 

end DOWNLOAD-FINAL-GOAL; 

instance method SEL-1ST-WP is 
begin 

se.nd(NAV, LOAD-INIT-AND-GOAL-POSN); 
send(NAV, LOAD-WP, x-wp => X-WAYPOINT, y-wp => Y-WAYPOINT, 

send(NAV, GET-HEADING, commanded-heading => CMD-HEADING); 
send(self, TRANSMIT-COMMAND, heading => CMD-HEADING, 

PUT-LINE("SEL-1 ST-WP Done!"); 
NEW-LINE; 
NEW-LM; 

z-wp => Z-WAYPOINT, sp-wp => SPEED-WAYPOINT); 

zwp => Z-WAYPOINT, speed => SPEED-WAYPOINT, 
xwp => X-WAYPOINT, ywp => Y-WAYPOINT, mode => MODE-NUM); 

end SEL-1ST-W 

instance method TRANSMIT-COMMAND WADING : FLOAT; ZWP : FLOAT; 
SPEED : FLOAT; XWP : FLOAT; YWP : FLOAT MODE : INTEGER) is 

begin 
send(CMDS, SEND-COMMAND-PACKET, head-cmd => HEADING, 

z-cmd => ZWP, sp-cmd => SPEED, x-cmd => XWP, y-and => YWP, 
mode-cmd => MODE); 

end TRANSMIT-COMMAND; 
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instance method SYS-CHECK (ANS : out INTEGER) is 
beein 

s&d(ENGR, STATUS-REPORT, report => ANS); 
end SY S-CHECK 

instance method POWER-CHECK (ANS : out INTEGER) is 
beein 

s&d(ENGR, POWER-REPORT, report => ANS); 
end POWER-CHECK; 

instance method SURFACE is 
begin 

PUT-LlNE("Surfacing now..."); 
for I in 1..25 loop 

send(self, GET-VEH-POSTURE); 
send(seIf, PLAN); 
send(self, TRANSMIT-COMMAND, heading => CMD-HEADING, zwp => 0.0, 
speed => 0.0, xwp => X-WAYPOINT, ywp => YWAYPOINT, 
mode => MODE-NUM); 

end loop; 
end SURFACE: 

instance method REACH-WAYPOINT (ANS : out BOOLEAN) is 
begin 

end REACH-WAYPOINT; 

instance method GET-NEXT-WP is 
begin 

send(NAV, WP-REACHED, result => ANS); 

s&nd(NAV, LOAD-WP, x-wp => X-WAYPOINT, y-wp => Y-WAYPOINT, 
z-wp => Z-WAYPOINT, ~p-wp => SPEED-WAYPOINT); 

end GET-NEXT-WP; 

instance method GET-VEH-POSTURE is 
begin 

send(NAV, RECENE-POSN); 
send(NAV, RECENE-HEADING); 
send(NAV, RECEIVE-SPEED); 

end GET-VEH-POSTURE; 

instance method OBS-CHECK (ANS : out BOOLEAN) is 
&Fin 

&nd(NAV, CHECK-OBSTACLES, report => ANS); 
end OBS-CHECK; 

instance method PLAN is 
begin 

end PLAN; 
send(NAV, GET-HEADING, commanded-heading => CMD-HEADING); 
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. 

instance method EXECUTE-PLAN is 
begin 

send(self, TRANSMIT-COMMAND, heading => CMD-HEADING, 
zwp => Z-WAYPOINT, speed => SPEED-WAYPOINT, xwp => X-WAYPOINT, 
ywp =z Y-WAYPOINT, mode => MODE-NUM); 

end EXECUTE-PLAN; 

instance method REACH-GOAL (ANS : out BOOLEAN) is 
beein ~~ 

&nd(NAV, CHECK-GOAL, report => ANS); 
end REACH-GOAL; 

instance method DELETE is 
begin 

sendNAV. DELETE): ,~ ~ ~ ~ . _  

send(ENGR, DELETE); 
send(WEAP, DELETE); 
send(CMDS, DELETE): 
PUT-LINE("auv-ood object destroyed!"); 
destro y; 

end DELETE; 

end AUV-OOD; 
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-- File: navigator-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised : 24 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Responsible for the steering and location of the 
-- vehicle. 

class NAVIGATOR is 

method CREATE (NEW-NAVIGATOR : out OBJECT-ID); 
instance method INITIALIZE; 
instance method GUINAVBACKLINK (NAVIG : OBJECT-ID); 
instance method GPS-NAV-BACKLINK (NAVIG : OBJECT-ID); 
instance method SON-NAV-BACKLINK (NAVIG : OBJECT-ID); 
instance method DR-NAVBACKLINK (NAVIG : OBJECT-ID); 
instance method MR-NAV-BACKLINK (NAVIG : OBJECT-ID); 
instance method PARENT-LINK (OOD : OBJECT-ID); 
instance method LINKUP(MM : OBJECT-ID); 
instance method LINK-SR (SR : OBJECTJD); 
instance method LOAD_INIT-ANDGOAL-POSN 
instance method LOAI-WP (X-WP : out FLOAT; Y-WP : out FLOAT; 
2-WP : out FLOAT SP-WP : out FLOAT); 
instance method GET-HEADING (COMMANDED-HEADING : out FLOAT); 

instance method WP-REACHED (RESULT : out BOOLEAN); 
instance method RECEIVE-POSN, 
instance method RECEIVE-HEADING; 
instance method RECEIVESPEED 
instance method CHECK-OBSTACLES (REPORT : out BOOLEAN); 
instance method CHECK-GOAL (REPORT : out BOOLEAN); 

instance method DELETE; 

end NAVIGATOR 
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-- File: navigator-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised: 24 Nov 92 
-- System: Grus 

- .  -- Compiler: Classic-Ada, VADS 
-- Description: Instantiates dependent objects upon initialization. 

* with TEXT-10, GUIDANCE, GPS-CONTROL, SONAR-CONTROL, DEAD-RECK- 
ONING, 
MISSION-REPLANNER, MATH; 
use TEXT-10, MATH 

class body NAVIGATOR is 

package FLOAT-INOUT is new FLOAT-IO(FL0AT); 
use FLOAT-INOUT; 

GUIDE : instance OBJECT-ID; -- Instance of GUIDANCE class 
GPS : instance OBJECT-ID; -- Instance of GPS-CONTROL class 
SONAR : instance OBJECT-ID; -- Instance of SONAR-CONTROL class 
DR : instance OBJECT-ID; -- Instance of DEAD-RECKONING class 
REPLAN : instance OBJECT-D, -- Instance of MISSION-REPLANNER class 
OOD-HANDLE : instance OBJECT-ID; 
MISS-MODEL : instance OBJECT-ID; 
SENSORY-RECEIVER : instance OBJECT-ID; 
X-POSITION, Y-POSITION, Z-POSITION, 
X-WAYPOINT, YWAYPOINT, Z-WAYPOINT, X-GOAL, Y-GOAL, 
UNNEEDED, CALC, W€-THRESHOLD, 
TRUE-SPEED, TRUJ-HEADING : instance FLOAT; 

WP-INDEX : instance INTEGER 

method CREATE (NEW-NAVIGATOR : out OBJECT-ID) is 
begin 
NEW-NAVIGATOR := instantiate; 
send (NEW NAVIGATOR. INITIALIZE): -- initialize upon creation 
PUT:LINE(“Navigator object is created!”); 
NEW-LINE; 
end CREAm, 

instance method INITIALIZE is 

GUIDE := GUIDANCE.class-object; 
send(GUIDE, CREATE, newpidance => GUIDE); 
send(GUIDE, LOS-GUT-BACKLINK, pointer => GUIDE); 
GPS := GPS-CONTROL.class-object; 
send(GPS, CREATE, newas-control => GPS); 
SONAR := SONAR-CONTR0L.class-object; 
send(SONAR, CREATE, new-sonar-control => SONAR); 

begin 
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DR := DEAD-RECKONING.class-object; 
send(DR, CREATE, new-dead-reckoning => DR); 
REPLAN := MISSION-REPLANNER.class-object; 
send(REPLAN, CREATE, new-mission-replanner => REPLAN); 
WP-INDEX := 0; 
WP-THRESHOLD := 20.0 
end INITIALIZE; 

instance method GUI-NAV-BACKLINK (NAVIG : OBJECT-ID) is 
begin 
PUT-LINE("Backlinking GUIDANCE and NAVIGATOR."); 
send(GUIDE, PARENT-LINK, pointersn => NAVIG); 
end GUI-NAVBACKLINK; 

instance method GPS-NAV-BACKLINK (NAVIG : OBJECT-ID) is 
begin 
PUT-LINE("Backlinking GPS-CONTROL and NAVIGATOR."); 
send(GPS, PARENT-LINK, pointer-gpsn => NAVIG); 
end GPS-NAV-BACKLINK; 

instance method SON-NAVBACKLINK (NAVIG : OBJECT-ID) is 
begin 
PUT-LINE("Backlinking SONAR-CONTROL and NAVIGATOR."); 
send(SONAR, PARENT-LINK, pointer-sn => NAVIG); 
end SON-NAVBACKLINK, 

instance method DR-NAV-BACKLINK (NAVIG : OBJECT-ID) is 
begin 
P~T-LINE("Backling DEAD-RECKONING and NAVIGATOR."); 
send(DR, PARENT-LINK, pointer-& => NAVIG); 
end DR-NAV-BACKLW 

instance method MR-NAV-BACKLINK (NAVIG : OBJECT-ID) is 
begin 
P6T-LINE("Backlinking MISSION-REPLANNER and NAVIGATOR."); 
send(REPLAN, PARENT-LINK, pointer-mn => NAVIG); 
end MR-NAV-B ACKLINK, 

instance method PARENT-LINK (OOD : OBJECT-ID) is 
begin 
PUT-LINE("O0D reached NAVIG."); 
OOD-HANDLE := OOD; 
end PARENT-LINK, 

instance method LINKlJF'(MM : OBJECT-ID) is 

PUT-LJNE("I'm passing MM to GUIDANCE."); 
send(GUIDE, LINKW, miss-model => MM); 
MISS-MODEL := M M  
end LINKUP, 

begin 
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instance method LINK-SR (SR : OBJECT-ID) is 
begin 
SENSORY-RECEIVER := SR; 
PUT-LINE("Nav got ptr to SR."); 
end LINK-SR, 

instance method LOAD-INIT-ANDGOAL-POSN is 
begin 
sezd(MISS-MODEL, GET-INITIAL-STATE, init-x => X-POSITION, 

init-y => Y-POSITION, init-z => 2-POSITION, init-heading => UNNEEDED); 
send(MIS.9 MODEL, GET FINAL GOAL. x final => X-GOAL. v final => Y-GOAL); 

I- - - 
end LOAD~INIT-AND-GoAL-PC%N 

instance method LOAD-WP (X-WP : out FLOAT; Y-WP : out FLOAT 
Z-WP : out FLOAT; SP-WP : out FLOAT) is 
begin 
WP-INDEX := WP-INDEX + 1; 
send(MISS-MODEL, GET-WAYPOINT, index => WI-INDEX, speed => SP-WP, 

X-WAYPOINT := X-WP 
Y-WAYPOINT := Y-WP 
Z-WAYPOINT := Z-WP 
end LOAD-WP; 

instance method GET-HEADING (COMMANDED-HEADING : out FLOAT) is 
begin 
send(GUIDE, GET-HEADING, calculated-heading => COMMANDED-HEADING, 

x-posn => X-POSITION, y-posn => Y-POSITION, z-posn => Z-POSITION, 
x-waypt => X-WAYPOINT, y-waypt => Y-WAYPOINT, 
z-waypt => Z-WAYPOINT); 

x-coord => X-WP, y-coord => Y-WP, z-coord => Z-WP); 

end GET-HEADING, 

instance method WP-REACHED (RESULT : out BOOLEAN) is 
begin 
C k C  := SQRT((X-WAYPOINT - X-POSITION)**2 + 
if CALC < WP-THRESHOLD then 
(Y-WAYPOINT - Y_POSITION)**2); 

RESULT := TRUE 
PUT("Waypoint reached is (X,Y,Z): "); 
PUT(X WAYPOINT. fore => 5. aft => 2. exu => 0): 
PUT(Y:WAYPOINT; fore => 5; aft => 2; e ip  => oji 
PTJT(Z-WAYPOINT, fore => 5, aft => 2, exp => 0); 
NEW-LINE; 
Put("Actual X, Y, depth, and heading :"); 
PUT(X-POSITION, fore => 5 ,  aft => 2, exp => 0); 
PUT(Y_POSITION. fore => 5. aft => 2. exu => Ok 
PUT(ZPOSITION,' fore => 5,' aft => 2, exp => oj; 
PUT(TRUE-HEADING, fore => 5, aft => 2, exp => 0); 
NEW-LW 
else 
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RESULT := FALSE; 
end if; 
end WP-REACHED, 

instance method RECEIVE-POSN is 
begin 
send(SENS0RY-RECEIVER, GET-CURRENT-POSN, x => X-POSITION, 

end RECEIVE-POSN; 

instance method RECEIVE-HEADING is 
begin 
send(SENS0RY-RECEIVER, GET-CURRENT-HEADING, 

end RECEIVE-HEADING; 

instance method RECEIVE-SPEED is 
begin 
send(SENS0RY-RECEIVER, GET-CURRENT-SPEED, speed => TRUE-SPEED); 
end RECEIVE-SPEED, 

instance method CHECK-OBSTACLES (REPORT : out BOOLEAN) is 
begin 
send(SONAR, OBSTACLE-STATUS, status => REPORT): 
end CHECK-OBSTACLES; 

instance method CHECK-GOAL (REPORT : out BOOLEAN) is 
begin 

if CALC < WP-THRESHOLD then 
REPORT :=TRUE; 
PUT("Final Goal reached is (X,Y,Z): "); 
PUT(X-GOAL, fore => 5, aft => 2, exp => 0); 
PUT(Y-GOAL, fore => 5, aft => 2, exp => 0); 
NEW-LINE; 
Put("Actual X, Y, depth, and heading :"); 
PUT(X-POSITION, fore => 5, aft => 2, exp => 0); 
PUT(Y-POSITION, fore => 5, aft => 2, exp => 0); 
PUT(Z-POSITION, fore => 5, aft => 2, exp => 0); 
PUT(TRUE-HEADING, fore => 5, aft => 2, exp => 0); 
NEW-LME, 

y => Y-POSITION, z => Z-POSITION); 

head => TRUE-HEADING); 

CALC := SQRT((X-GOAL - X_POSITION)**2 + 
(Y-GOAL - Y_POSITION)**2); 

else 
REPORT :=FALSE 
end if; 
end CHECK-GOAL, 

instance method DELETE is 
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begin 
senh(GUIDE, DELETE); 
send(GPS, DELETE); 
send(S0NAR. DELETE): 
send(DR, DELETE); 
send(REPLAN, DELETE); 
PUT-LWE(“Navigator object going down...!”); 
destroy; 
end DELETE: 

end NAVIGATOR 
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-- File: guidance-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised: 16 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Responsible for the calculation of heading 

class GUIDANCE is 

method CREATE (NEW-GUIDANCE : out OBJECT-ID); 
instance method INITIALIZE 
instance method PARENT-LINK (POINTER-GN : OBJECI-ID); 
instance method LINKUP (MISS-MODEL : OBJECT-lD); 
instance method LOS-GUIBACKLINK (POINTER : OBJECT-ID); 
instance method GET-HEADING (CALCULATED-HEADING : out FLOAT; 

instance method DELETE; 

end GUIDANCE: 

-- commands. 

X-POSN, Y-POSN, Z-POSN, X-WAYPT, YWAYET, Z-WAYPT : in FLOAT); 
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-- File: guidance-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised: 16 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Instantiates “dependent” objects upon initialization. 

with TEXT-10, LOS-CALCULATOR 
use TEXT-10; 

class body GUIDANCE is 

LOS : instance OBJECT-lD; 
NAVIG-HANDLE : instance OBJECT-ID; 

method CREATE (NEW-GUIDANCE : out OBJECT-ID) is 
begin 
NEW-GUIDANCE := instantiate; 
send (NEW-GUIDANCE, INITIALIZE); -- intialize upon creation 
PUl-LINE(“Guidance object is created!”); 
NEW-LINE; 
end CREATE; 

instance method INITIALIZE is 
begin 
LOS := LOS-CALCULATOR.class-object; 
send(LOS, CREATE, new-10s-calculator => LOS); 
end INITIALIZE 

instance method GET-HEADING (CALCULATED-HEADING : out FLOAT 
X-POSN, Y-POSN, Z-POSN, X-WAYPT, Y-WAYPT, Z-WAYPT : in FLOAT) is 
begin 
send(LOS, GET-NEW-HEADING, heading-set-point => CALCULATED-HEADING, 

end GET-HEADING, 

xcurr => X-POSN, ycurr => Y-POSN, zcurr =7 Z-POSN, 
xnext => X-WAYPT, ynext =7 Y-WAYPT, znext => Z-WAYPT); 

instance method PARENT-LINK (POINTER-GN : OBJECT-ID) is 
begin 
PUT LINEC‘NAVIG reached GUIDE.”): 
NAV?G-H~NDLE := POINTER~GN ’ 
end PARENT-LW 

instance method LOS-GUI-BACKLINK(POIh’TER : OBJECT-ID) is 
begin 
PUT-LINE(“Backlinkng LOS and GUIDANCE.”); 
send(LOS, PARENT-LINK, guide => POINTER); 
end LOS-GUI-BACKLINK, 

instance method LINKUP(M1SS-MODEL : OBJECT-ID) is 
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begin 
P6T-LINE("I9m passing ptr to MISS-MODEL to LOS."); 
send(LOS, LINKUP, MM => MISS-MODEL); 
end LINKUP 

instance method DELETE is 
begin 
send(LOS, DELETE); 
PUT-LINEC'Guidance object going down!"); 
destroy; 
end DELETE, 

end GUIDANCE: 
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-- File: gps-control-spec.ca 
-- Author: Ran B. Bymes 
-- Date: 5 Oct 92 
-- Revised 25 Nov 92 
-- System: GNS 
-- Compiler: Classic-Ada, VADS 
-- Des&ption: Generates commands to activate/deactivate gps 
-- package. Obtains and analyzes readings. Provides positional 
-- information derived from those readings. 

class GPS-CONTROL is 

method CREATE (NEW-GPS-CONTROL : out OBJECT-ID); 
instance method INITIALIZE; 
instance method PARENT-LINK (POINTER-GPSN : OBJECT-ID); 
instance method DELETE 

end GPS-CONTROL; 
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-- File: gps-control-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 25 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: 

with TEXT-I0 
use TEXT-10, 

class body GPS-CONTROL is 

NAVIG-HANDLE : instance OBJECT-ID; 

method CREATE (NEW-GPS-CONTROL : out OBJECT-ID) is 
begin 
YVEW-GPS-CONTROL := instantiate; 
send (NEW-GPS-CONTROL, INITIALIZE); -- initialize upon creation 
end CREATE; 

instance method INITIALIZE is 
begin 
PETILINEC'GPS Control instantiated."); 
end INITIALIZE 

instance method PARENT-LINK (POINTER-GPSN : OBJECTID) is 
begin 
PUT-LINE('"AVIG reached GPS."); 
NAVIG-HANDLE := POINTERGPSN - 
end PAl?kN'-LSNK 

instance method DELETE is 
begin 
PUT-LINE("GPS Control being deallocated now."); 
destroy; 
end DELETE; 

end GPS-CONTROL; 

r 
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-- File: sonar-control-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 25 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Activateddeactivates sonar(s), takes readings 
-- from sonars and determines location and identification of 
-- objects; provides vehicle position in conjunction with 
-- the world model. 

class SONAR-CONTROL is 

method CREATE (NEW-SONAR-CONTROL : out OBJECUD); 
instance method INITIALIZE 
instance method PARENT-LINK (POINTER-SN : OBJECT-ID); 
instance method OBSTACLE STATUS (STATUS : out BOOLEAN): - 
instance method DELETE; 

end SONAR-CONTROL; 
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-- File: sonar-control-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised 25 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: 

with TEXT-I0 
use TEXT-I0 

class body SONAR-CONTROL is 

NAVIG-HANDLE : instance OBJECT-ID; 

method CREATE (NEW-SONAR-CONTROL : out OBJECTUDI is 
~ 

begin 
NEW-SONAR CONTROL := instantiate: 
send (NEW-So”R-CONTROL, INITL~LIZE); -- initialize upon creation 
end CREATE; 

instance method INITIALIZE is 
begin 
PUT-LINEr‘Sonar Controller has been instantiated.”): ,. 
end I%lkIZE; 

instance method PARENT-LINK (POINTER-SN : OBJECXID) is 
begin 
PUT-LINEf‘NAVIG reached SONAR.”); 
NAVIG-HANDLE := POINTER-SN 
end PARENT-LINK; 

instance method OBSTACLE-STATUS (STATUS : out BOOLEAN) is 
begin 
STATUS := FALSE -- Obstacle identification algorithm goes here 
end OBSTACLE-STATUS; 

instance method DELETE is 
begin 
PUT-LINEC‘Sonar control going down.”); 
destroy; 
end DELETE, 

end SONAR-CONTROL; 
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-- File: dead-reckoningspec.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 24 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Determines vehicle position by dead reckoning 

class DEAD-RECKONING is 

method CREATE (NEW-DEAD-RECKONING : out OBJECT-ID); 
instance method INITIALIZE 
instance method PARENT-LINK (POINTER-DR : OBJECT-ID); 
instance method DELETE, 

end DEAD-RECKONING; 
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-- File: dead-reckoning-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 24 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Will estimate vehicle location in the X-Y 
-- plane using dead reckoning. Required parameters 
-- will be obtained from the Sensory Receiver (the 
-- link to which needs to be established). 

with TEXT-10, 
use TEXT-10; 

class body DEAD-RECKONING is 

NAVIG-HANDLE : instance OBJECT-ID; 

method CREATE (NEW-DEAD-RECKONING : out OBJECT-ID) is 
begin 
EW-DEAD-RECKONING := instantiate: 
send (NEW-DEAD-RECKONING, INITIALIZE); -- initialize upon creation . 
end CREATE; 

instance method INITIALIZE is 
begin 
PUT-LINE("Dead Reckoner object created."); 
end INITIALIZE 

instance method PARENT-LINK (POINTER-DR : OBJECT-ID) is 
hegin 
P?T:LlNE("NAVIG reached DR."); 
NAVIG-HANDLE := POLNTER-DR; 
end PAl&Nl-LINK 

instance method DELETE is 
begin 
PUT-LINE("Dead Reckoner being destroyed."); 
destroy; 
end DELETE; 

end DEAD-RECKONING, 

214 



. 

-- File: mission_replanner_spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised 25 Nov 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Performs local replanning (obstacle avoidance) and 
-- globalreplanning (fault tolerance) as directed. 

class MISSION-REPLANNER is 

method CREATE (NEW-MISSION-REPLANNER : out OBJECT-ID); 
instance method INITIALIZE 
instance method PARENT-LINK (POINTER M N  : OBJECT-ID): - - 
instance method DELETE- 

end MISSION-REPLANNER, 
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-- File: mission-replanner-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 25 Nov 92 
-- System: GNS 
-- Compiler: Classic-Ada, VADS 
-- Description: 

with TEXT-I0 
use TEXT-I0 

class body MISSION-REPLANNER is 

NAVIG-HANDLE : instance OBJECT-ID; 

method CREATE (NEW-MISSION-EU5PLANNER : out OBJECT-ID) is 

NEW-MISSION-REPLANNER := instantiate; 
send (NEW-MISSION-REPLANNER, INITIALIZE); -- initialize upon creation 
end CREATE; 

instance method INITIALIZE is 
begin 

begin 

PCTiLINE(''Mission Replanner object created."); 
end INITIALIZE 

instance method PARENT-LINK (POINTER-MN : OBJECT-ID) is 
begin 
PcTiLINE("NAV1G reached REPLAN."); 
NAVIG-HANDLE := POINTER-MN; 
end PARENT-LINK, 

instance method DELETE is 
begin 
PUT-LINE("Mission Replanner going down."): . .  
destroy; 
end DELETE, 

end MISSION-REPLANNER 
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-- File: engineer-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised 15 Dec 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: 

. class ENGINEER is 

method CREATE (NEW-ENGINEER : out OBJECT->); 
instance method INITIALIZE 
instance method PARENT-LINK(O0D : OBJECT-ID); 
instance method STATUS-REPORT (REPORT : out INTEGER); 
instance method POWER-REPORT (REPORT : out INTEGER); 
instance method DELETE, 

end ENGINEER, 
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-- File: engineer-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 15 Dec 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: Responsible for the monitoring and health of the vehicle's 
-- subsystems. Battery model resides here. 

with TEXT-10; 
use TEXT-10; 

class body ENGINEER is 

OOD-HANDLE : instance OBJECT-ID 

BATTERY : instance FLOAT 

method CREATE (NEW-ENGINEER : out OBJECT-ID) is 
beein 
NEW-ENGINEER := instantiate; 
send (NEW-ENGINEER, INITIALIZE); -- initialize upon creation 
end CREATE; 

instance method INITIALIZE is 
hegin 
BZ%RY := 24.0; 
PUT-LINE(''Engineer has been created."); 
end INITIALIZE, 

instance method PARENT-LINK (OOD : OBJECT-ID) is 

PUT-LINE("O0D reached ENGR."); 
OOD-HANDLE := OOD; 
end PARENT-LINK, 

instance method STATUS-REPORT (REPORT : out INTEGER) is 
begin 
-- read and compare various systems parameters 
-- Devise a listing of codes, each associated with a particular system fault. 
REPORT := 1; 
end STATUS-REPORT 

instance method POWER-REPORT (REPORT : out INTEGER) is 
begin 
BATTERY := BATTERY - 0.08; 
if BA'ITERY < 18.0 then 
REPORT := 0; 

begin 

else 
REPORT := 1; 
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end if; 
end POWER-EEPORT 

instance method DELETE is 
begin 
PUT-LINEC'Engineer being destroyed"); 
destroy; 
end DELETE 

end ENGINEER 
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-- File: weapons-officer-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 16 Nov 92 
-- System: Gms 
-- Compiler: Classic-Ada, VADS 
-- Description: Responsible for the deployment of the vehicle’s 
-- payload(s). 

class WEAPONS-OFFICER is 

method CREATE (NEW-WEAPONS-OFFICER: out OBJECT-ID); 
instance method IMTIALIZE 
instance method PARENT-LINK(O0D : OBJECTJD); 
instance method DELETE 

end WEAPONS-OFFICER 
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-- File: weapons-officer-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised 16 Nov 92 
-- System: Gms . -  -- Compiler: Classic-Ada, VADS 
-- Description: 

with TEXT-I0 
use TEXT-I0 

class body WEAPONS-OFFICER is 

OOD-HANDLE : instance OBJECT-ID; 

method CREATE (NEW-WEAPONS-OFFICER : out OBJECT-ID) is 
begin 
NEW WEAPONS OFFICER := instantiate.: 
send (kEW-WEApONS-OFFWER, INITIALIZE); -- initialize upon creation 
end CREATE; 

instance method INITIALIZE is 
beein 
P<T-LZNE(“Weapons Officer created.”); 
end INITIALIZE; 

instance method PARENT-LINK (OOD : OBJEC’I-ID) is 
begin 
PUT-LINE(“O0D reached WEAPONS.”); 
OOD-HANDLE := OOD; 
end PARENT-LINK 

instance method DELETE is 
begin 
PUT-LINE(“Weapons officer destroyed.”); 
destroy; 
end DELETE; 

end WEAPONS-OFFICER; 
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-- File: command-sender-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 23 Nov 92 
-- System: Gms 
-- Compiler: Classic-Ada, VADS 
-- Descriution: Collects all commands (sf 8oint.s) ue ining to the 
-- curreni mode and needed to drive the aGopilots’located in the 
-- Execution level. Builds a command packet using these individual 
-- commands and sends the packet to the command port. 

class COMMAND-SENDER is 

method CREATE (NEW-COMMAMI-SENDER : out OBJECT-ID); 
instance method INITIALIZE 
instance method SEND-COMMAND-PACKET (HEAD-CMD : in FLOAT 

Z-CMD : in FLOAT; SP-CMD : in FLOAT; X-CMD : in FLOAT; 
Y-CMD : in FLOAT; MODE-CMD : in INTEGER); 

instance method DELETE 

end COMMANDSENDER 
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-- File: command-sender-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 5 Oct 92 
-- Revised: 13 Dec 92 
-- System: Grus 

-- Description: 

with TEXT-10, C-LIB; 
use TEXT-10, C-LIB; 

class body COMMAND-SENDER is 

. .  -- Compiler: Classic-Ada, VADS 

~ 

package FLOAT-INOUT is new FLOAT-IO(FL0AT); 
use FLOAT-INOUT; 

method CREATE (NEW-COMMAND-SENDER : out OBJECT-ID) is 
begin 
NEW-COMMAND-SENDER := instantiate; 
send (NEW-COMMAND-SENDER, INITIALIZE); 
end CREATE; 

instance method INITIALIZE is 
begin 
PUT-LINEC'Command sender has been created and initialized."); 
end INITIALIZE 

instance method SEND-COMMAND-PACKET (HEAD-CMD : in FLOAT 
Z-CMD : in FLOAT; SP-CMD : in FLOAT; X-CMD : in FLOAT; 
Y-CMD : in FLOAT; MODE CMD : in INTEGER) is - 

begin- 
put-float(HEADCMD); 
put-float(Z-CMD); 
put-float( SP-CMD); 
put-float(X-CMD); 
put-float(Y-CMD); 
put-mode(M0DE-CMD); 
end SENDCOMMAND-PACKET; 

instance method DELETE is 
begin 
PUT-LlNE("Command Sender is going down."); 
destrov: 
end DELETE, 

end COMMAND-SENDER 

223 



-- File: sensory-receiver-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- Revised 25 Nov 92 
-- System: Grus 
-- Compiler: Classic Ada, VADS 
-- Description: Accepts telemetry from Execution level; breaks out 
-- individual sensor readings from packet and stores in locations 
-- accessable by using objects 

class SENSORY-RECEIVER is 

method CREATE (NEW-SENSORY-RECEIVER: out OBJECT-ID); 
instance method INITIALIZE 
instance method LINKUP-DR (DR : in OBJECT ID): 
instance method GET-CU%RENT-POSN (X, Y,% : out FLOAT); 
instance method GET-CURRENT-HEADING (HEAD : out FLOAT); 
instance method GET-CURRENT-SPEED (SPEED : out FLOAT); 
instance method DELETE 

end SENSORY-RECEIVER, 
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-- File: sensory-receiver-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- Revised: 12 Jan 93 
-- System: Grus 
-- Compiler: Classic Ada, VADS 
-- Description: Defines the external interface of the object 

with TEXT-10, C-LIB; 
use TEXT-10, C-LIB; 

class body SENSORY-RECEIVER is 

DATA-REC : instance OBJECT-ID; -- pointer to DATA RECORDER 
ALT : instance FLOAT; 

package FLOAT-INOUT is new FLOAT-IO(FL0AT); 
use FLOAT-INOUT; 

method CREATE (NEW-SENSORY-RECEIVER : out OBJECT-ID) is 
begin 
NEW-SENS ORY -RECEIVER : = instantiate; 
send (NEW-SENSORY-RECEIVER, INITIALIZE); 
end CREATE; 

instance method INITIALIZE is 
begin 
PUT-LlNE(“Sensory Receiver created.”); 
end INITIALIZE; 

instance method LINKUP-DR (DR : in OBJECT-ID) is 
begin 

PUT LINEr‘SR knows about DR.”): 
DATA-REC := D R  

end LINKUP-DR 

instance method GET-CURRENT-POSN (X, Y, Z : out FLOAT) is 
begin 
X := get-float; 
Y := get-float; 
ALT := get-float; 
Z := get-float; 
end GET-CURRENT-POSN, 

instance method GET-CURRENT-HEADING (HEAD : out FLOAT) is 
begin 
HEAD := get-float; 
end GET-CURRENT-HEADING, 

instance method GET-CURRENT-SPEED (SPEED : out FLOAT) is 
begin 
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SPEED := 0.0; -- Speed isn’t obtained from this version of the auvsim 
end GET-CURRENT-SPEED; 

instance method DELETE is 
begin 
PUT-LINE(“Sensory receiver destroyed.”); 
destroy; 
end DELETE 

end SENSORY-RECEIVER; 

. 
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-- File: mission-model-spec.ca 
-- Author: Ron B. Bymes 
-- Date: 8 Oct 92 
-- Revised: 23 Nov 92 
-- System: GNS 
-- Compiler: Classic Ada, VADS 
-- Description: A data base containing the various mission parameters 

. .  
. class MISSION-MODEL is 

method CREATE (NEW-MISSION-MODEL: out OBJECT-ID); 
instance method INITIALIZE 
instance method GET-NUM-OBSTACLES (NUM-OBS : out INTEGER); 
instance method GET-OBSTACLE (INDEX : in INTEGER 
X-COORD : out FLOAT; Y-COORD : out FLOAT; 
Z-COORD : out FLOAT); 
instance method GET-MTIAL-STATE (WIT-X : out FLOAT 
INIT-Y : out FLOAT INIT Z : out FI,OAT 
INIT-HEADING : out FLOAT); 

instance method GET-NUM-WAYPOINTS (NUM-WP : out INTEGER); 
instance method GET-WAYPOINT (INDEX : in INTEGER 
SPEED : out FLOAT; X-COORD : out FLOAT; 
Y-COORD : out FLOAT Z COORD : m t  FI,OA7?. 

~ ~ 

instance method GET-FINALGOAL (X-FINAL : b’ut FLOAT; 
Y FINAL : out FLOATV ~ 

initance method GET-FkXT-WP (XWP : out FLOAT; YWP : out FLOAT); 
instance method DELETE; 

end MISSION-MODEL; 

I 

. 
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-- File: mission-model-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- Revised 15 Dec 92 
-- System: Grus 
-- Compiler: Classic Ada, VADS 
-- Description: 

with TEXT-10, 
use TEXT-I0 

class body MISSION-MODEL is 

OBSTACLE-LIST : ARRAY (1..4, 1..3) of FLOAT := 
((350.0,350.0,50.0), 
(70.0. 1330.0.50.0). 
(630.0, 1330.0,50.0), 
(350.0, 1050.0,50.0)); 

-- Waypoints are arranged (speed, x, y, z) 
WAYPOINT-LIST : ARRAY (1..12, 1..4) of FLOAT := 
(( 300.0.350.0,100.0. 10.0). 
(~300.0,500.0,'250.0,'30.0)~' 
(300.0, 500.0, 500.0,35.0), 
(300.0,350.0,700.0,40.0), 
(300.0,200.0,900.0,40.0), 
(300.0,200.0, 1150.0, 12.0), 
(300.0,350.0,1300.0,20.0), 
(300.0,500.0, 1150.0,30.0), 
(300.0,500.0,900.0,40.0), 
(300.0,350.0,700.0,50.0), 
(300.0. 200.0,500.0.50.0~, 

I-WP : instance INTEGER 
NUMBER-OBSTACLES, NUMBER-WAYPOINTS : instance INTEGER 
INITIALX, INITIAL Y ,  INITIAL-2, INITIAL-HEADING, 
FINAL-GOAL-X, FI%AL-GOALIY : instance &OAT; 

method CREATE (NEW-MISSION-MODEL : out OBJECT-ID) is 
begin 
NEW-MISSION-MODEL := instantiate.; 
send (NEW-MISSION-MODEL, INITIALIZE); 
end CREATE; 

instance method INITIALIZE is 
heein 
i i fV? := 0; -- Index to keep track of current waypoint 
NUMBER-OBSTACLES := 4: 
NUMBER:WAYPOINTS := 12: 
INITIAL-x := 0.0; 
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INITIAL-Y := 0.0; 
INITIAL-Z := 0.0; 
INITIAL HEADING := 90.0: 
FINAL-GOAL-x := 250.0; 
FINAL-GOAL-Y := 150.0; 
PUT-LINE("Mission Model Created."); 
end INITIALIZE; 

- instance method GET-NUM-OBSTACLES (NUM-OBS : out INTEGER) is 
begin 
NUM-OBS := NUMBER-OBSTACLES; 
end GET-NUM-OBSTACLES; 

instance method GET-OBSTACLE (INDEX : in INTEGER: 
X-COORD : out FLOAT Y-COORD : out FLOAT; 
Z-COORD : out FLOAT) is 
begin 
X-COORD := OBSTACLELIST(INDEX, 1); 
Y-COORD := OBSTACLE_LIST(Ih'DEX,2); 
Z-COORD := OBSTACLE_LIST(INDEX,3); 
end GET-OBSTACLE 

instance method GET-INITIAL-STATE (INIT-X : out FLO 
MT-Y : out FLOAT INIT-Z : out FLOAT; 
INIT-HEADING : out FLOAT) is 

T; 

beein 
W"T-X := INITIAL-X 
WIT-Y := INITIAL-Y, 
INIT-Z := INITIAL-Z 
INIT-HEADING := INITIAL-HEADING; 
end GET-INITIAL-STATE, 

instance method GET-NUM-WAYPOINTS (NUM-WP : out INTEGER) is 
hmin 
a - W P  := NUMBER-WAYPOINTS; 
end GET-NUKWAYPOLNTS; 

instance method GET WAYPOINT (INDEX : in INTEGER: ~ ~ ~ ~~ ~ ... ~~ ~~ 

SPEED : out FLOAT~X-COORD : Out FLOAT; 
Y-COORD : out FLOAT; Z-COORD : out FLOAT) is 
begin 
SPEED := WAYPOIhT-LIST(INDEX,l); 
X-COORD := WAYPOINl-LIST@VDEX,2); 
Y-COORD := WAYPOINT'-LIST(INDEX,3); 
Z-COORD := WAYPOINT-LIST(INDEX,4); 
end GET-WAYPOINT; 

instance method GET-FINAL-GOAL (X-FINAL : out FLOAT; 
Y-FINAL : out FLOAT) is 
begin 
X-FINAL := FINAL-GOAL-X 
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Y-FINAL := FWAL-GOAL-Y, 
end GET-FINAL-GOAL; 

instance method GET-NEXT-WP (XWP: out FLOAT; YWP : out FLOAT) is 
begin 
I-WP := I-WP + 1; 
XWP := WAYPOIN'I-LIST(I-WP,Z); 
YWP := WAYPOINT-LIST(1-WP.3); 
end GET-NEXT-WP; 

instance method DELETE is 
begin 
PUT-LINEC'Mission Model Destroyed"); 
destroy; 
end DELETE, 

end MISSION-MODEL; 
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-- File: world-model-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- System: Grus 
-- Compiler: Classic Ada, VADS 
-- Description: Contains the representation of the known world 
-- relavent to the current mission 

class WORLD-MODEL is 

method CREATE (NEW-WORLD-MODEL: out OBJECT-ID); 
instance method INITIALIZE 
instance method DELETE; 

end WORLD-MODEL; 

-~ 
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-- File: world-model-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- System: Grus 
-- Compiler: Classic Ada, VADS 
-- Description: 

with TEXT-10, 
use TEXT-10; 

class body WORLD-MODEL is 

method CREATE (NEW-WORLD-MODEL : out OBJECT-ID) is 
begin 
NEW-WORLD-MODEL := instantiate: 
send (NEW-WORLD-MODEL, INITIALIZE); 
end CREATE; 

instance method INITIALIZE is 
beein 
PUT-LINEC' World Model being created."); 
end INITIALIZE 

instance method DELETE is 
begin 
PUT-LINE("World Model being destroyed."); 
destroy; 
end DELETE; 

end WORLD-MODEL; 
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-- File: data-recorder-spec.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- System: Grus 
-- Compiler: Classic Ada, VADS 
-- Description: Accepts as input tcmetry data for post-mission analysis 
-- and messages indicating special circumstances (system faults, 
-- replans). 

class DATA-RECORDER is 

method CREATE (NEW-DATA-RECORDER out OBJECT-ID); 
instance method INITIALIZE 
instance method DELETE; 

end DATA-RECORDER; 
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-- File: data-recorder-body.ca 
-- Author: Ron B. Byrnes 
-- Date: 8 Oct 92 
-- System: Grus 
-- Compiler: Classic-Ada, VADS 
-- Description: 

with TEXT-I0 
use TEXT-10; 

class body DATA-RECORDER is 

method CREATE (NEW-DATA-RECORDER : out OBJECT-ID) is 
begin 
hEW-DATA-RECORDER := instantiate; 
send (NEW-DATA-RECORDER, INITIALIZE); 
end CREATE; 

instance method INITIALIZE is 
begin 
PLk-LINE("Data Recorder created."); 
end INITIALIZE; 

instance method DELETE is 
begin 
PUT-LINE(''Data Recorder destroyed."); 
destroy; 
end DELETE, 

end DATA-RECORDER 
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-- File: tactical5.ca 
-- Author: Ron B. Byrnes 
-- Date: 2 Oct 92 
-- Revised: 15 Dec 92 
-- Svstem: Grus 

~ ~- 
-- Compiler: Classic-Ada, VADS 
-- Description: The program creates the AUV-OOD of the tactical level. Also provides 
-- the cokunications link between the procedural and object-oriented worlds 

with TEXT 10. AUV OOD. DATA RECORDER. MISSION-MODEL, 
- 

SENSORY-RECEIVER. WORLD~MODEL. C-LIB. C A L E ~ D A R ;  
use TEXT-10, C-LE3, CALENDAR: 

procedure TACTICAL3 is 

OOD: OBJECT-ID := AW-0OD.class-object; 
DR : OBJECT ID := DATA RECORDER.class obiect: 

~~~ ~~ 

MM : OB%?-Ib : = MISSfON-MODEL.classIobjectf 
SR : OBJECT-ID := SENSORY-RECEIVER.class-object: 
WM : OBJECT-ID := WORLD-MODEL.class-object: 

CODE : BOOLEAN, 
LOOP-COUNT : INTEGER := 0; 
BEGIXTIME, ENE-TIME : TIME; 
TOT-SECS : DURATION 
goal : INTEGER 
GOAL-FLAG : INTEGER 
STATUS-NLJM : INTEGER; 

package FLOAT-INOUT is new FLOAT-IO(FL0AT); 
useFLOAT INOUT 

procedure PRINT-HEADER is 
beein 
NEW-LINE; 
PUT-LINE("We1come to the startup program!"); 
NEW-LINE; 
end PRINT-HEADER 

procedure PRINT-TRAILER is 
begin 

NEW-Lnq 
PUT-LINE("Simulation complete!"); 

. end PRINT-TRAILER 

procedure INSTANTIATE-ALLES is 
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begin 
PUT-LINE("Instantiations beginning from top level..."); 
send(DR, CREATE, new-data-recorder => DR); 
send(MM, CREATE, new-mission-model => MM); 
send(SR, CREATE, new-sensory-receiver => SR); 
send(WM, CREATE, new-world-model => WM); 
send(OOD, CREATE, new-auv-ood => OOD); 
send(OOD, NAV-OOD-BACKLINK, OOD => OOD); 
send(OOD, ENGR-OOD-BACKLINK, OOD => OOD); 
send(OOD, WEAP-OODBACKLINK, OOD => OOD); 
PUT-LINE("Everything's created!"); 
NEW-LINE, 
end INSTANTIATE-ALLES; 

procedure DELETE-ALLES is 
begin 
PUT-LINE("Deletions beginning from top level..."); 
send(OOD, DELETE): 
sendfDR. DELETE): ~~ ~~ 

sendtMM, DELE&\; 
send(SR, DELETE); 
send(WM, DELETE); 
PUT-LINErEverything's gone!"); 
NEW-LINE; 
end DELETE-ALLES; 

procedure LINK-OBJECT S is 
begin 
PUT_LINE(''Revealing handles of sub-objects..."); 
send(OOD, LINKUP-MM, pointer => MM); 
send(OOD, LINKUP-SR, pointer => SR); 
send(SR, LINKUP-DR, DR => DR); 
end LINK-OBJECTS; 

procedure OPEN-NETWORK is 
begin 
PUT("Connecting tactical to execution now..."); 
start-comms; 
NEW-LINE, 
PUT("Staaing tactical server, listening for strategic level..."); 
start-iris-s; 
PUT-LINE("Done!"); 
end OPENJETWORK 

procedure READY-VEHICLEFOR-LAUNCH is 
beein 
P~T-LINEC'Downloading mission parameters..,"); 
PUT-LlNE("Obstacles first: x, y, and depth."); 
send(OOD, DOWNLOAD-OBSTACLES); 
PUT-LINE(''Then the init state: x, y, depth, and heading."); 
send(OOD, DOWNLOAD-mAL-STATE); 
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PUT-LINE(''Then the waypoints: speed, x, y, and depth."); 
send(OOD, DOWNLOAD-WAYPOINTS); 
PUT-LINEC'Finally, the goal point: x-final and y-final."); 
send(OOD, DOWNLOAD-FINAL-GOAL); 
PUT-LINEC'State loaded and systems checks completed."); 

GOAL-FLAG := 1; -- Should query OOD for success 
end READY-VEHICLE-FOR-LAUNCH; 

procedure SELECT-FIRST-WAYPOINT is 
begin 
PUT-LINEC'Selecting first waypoint, generating first "); 
PUT-LINE(" heading command, and sending it."); 
send(OOD, SEL-1 ST-WP); 

GOAL FLAG := 1: 
NEw:INE; ~ 

PUT-LINEC'Mission initiated..."); 
NEW-LINE; 

end SELECT-FIRST-WAYPOKNT; 

procedure ALERT-USER is . 
begin 

NEW-LINE; 
PUT-LINE("Fai1ure occurred during mission download and/or "); 
PUT -LINEYore-mission checks. Please correct fault before '7; 

GOAL-FLAG := 1; 
end ALERT-USER 

procedure IN-TRANSIT-P is 
hegin 
G~AL-FLAG := 0; 
end IN-TRANSIT-R 

procedure TRANSIT-DONE-P is 
begin 
GOAL-EAG := 1; 
end TRANSIT-DONE-P 

procedure IN-SEARCH-P is - 
begin 
GOAL FLAG := 0 
end INISEARCH-P; 

procedure SEARCH-DONE-P is 

procedure IN-TASK-P is 
begin 
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GOAL-FLAG := 0; 
end IN-TASK-P; 

procedure TASK-DONE-P is 
begin 
GOAL-FLAG := 1; 
end TASK-DONE-P 

procedure IN-RETURN-P is 
begin 

procedure RETURN-DONE-P is 
begin 
seid(OOD, REACH-GOAL, ans => CODE); 
if CODE then 
GOAL-FLAG := 1; 
NEW-LM. 

else 
GOAL-FLAG := 0 
end if; 
end RETURN-DONE-P 

procedure WAIT-FOR-RECOVERY is - ~ ~- 
begin 
GOAL-FLAG := 1; 
end WAILFOR-RECOVERy; 

procedure SURFACE is 
begin 

GOAL-FLAG := 1; 
end SURFACE 

procedure DO_SEARCH_PA'ITERN is 
begin 

end DO-SEARCH-PAmRN; 

procedure HOMING is 
beein 

send(OOD, SURFACE); 

GOAL-FLAG := 1; 

G~ALFLAG := 1; 
end HOMING 

procedure DROP-PACKAGE is 
begin 
G~AL-FLAG := 1; 
end DROP-PACKAGE; 
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procedure GET-GPS-FIX is 

procedure GET-NEXT-WAYPOINT is 
begin 
send(OOD, GET-NEXT-WP); 
GOAL-FLAG := 1; 
end GET-NEXT-WAYPOINT; 

procedure SEND-WAYPOINTS-ANDMODES is 
begin 
send(OOD, EXECUTE-PLAN); 
GOAL-FLAG := 1; 
end SEND-WAYPOINT-AND-MODES; 

procedure REACH-WAYPOWT is 
begin 
send(OOD, REACH-WAYPOINT, ans => CODE); 
if CODE then 
 GOAL^ FLAG := 1: 
PUT-&E("Waypoint obtained! Selecting next waypoint..."); 
get-time; 
else 

end iE 
GOAL-FLAG := 0; 

send(OOD, GET-VEH-POSTURE); 
send(OOD, PLAN); 
end REACH-WAYPOINT; 

send(OOD, GET-VEH-POSTURE); 
send(OOD, PLAN); 
end REACH-WAYPOINT; 

procedure GPS-NEEDED is 
begin 

end GPS-NEEDED; 

procedure UNKNOWN-OBSTACLE P is 

GOAL-FLAG := 0; 

- ~~ 

begin 
GOAL-FLAG := 0; 
end UNKNOWN-OBSTACLE-P 

procedure LOG-NEW-OBSTACLE is 
begin 
GOAL-FLAG := 1; 
end LOG-NEW-OBSTACLE 

procedure LOITER is 
begin 
GOAL-FLAG := 1; 
end LOITER 
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procedure START-LOCAL-REPLANNER is 
hegin 
GGAL-FLAG := 1; 
end START-LOCAL-REPLANNER; 

procedure START-GLOBAL-REPLANNER is 
beein 
G~AL-FLAG := 1; 
end START-GLOBAL-REPLANNER; 

Drocedure POWER-GONE-P is 
I ~ 

begin 
send(OOD, POWER-CHECK, ans => STATUS-W) ;  
GOAL-FLAG := 0; 
end POWER-GONE-P; 

procedure COMPUTER-SYSTEM-PROB-P is 
hegin 
GZAL-FLAG := 0; 
end COMPUTER-SY STEM-PROB-P 

procedure PROPULSION-SYSTEM_PROB-P is 
begin 
GOAL-FLAG := 0; 
end PROPULSION-SYSTEM-PROB-P 

procedure STEERING-SYSTEM-PROB-P is 
beein 
G~AL-FLAG := 0; 
end STEERING-SYSTEM-PROB-P 

procedure DIVING-SY STEM-PROB-P is 
begin 
GOAL-FLAG := 0; 
end DIVING-SYSTEM-PROB-P 

procedure BOUYANCY-SYSTEM-PROB-P is 
begin 
GOAL-FLAG := 0; 
end BOUYANCY SYST!LM-PROB-P 

procedure THRUSTER-SYSTEM-PROS-P is 
begin 
GOAL-FLAG := 0; 
end THRUSTER-SY STEM-PROB-P; 

procedure LEAK-TEST-P is . 
begin 
GOAL-FLAG := 0; 
end LEAK-TEST-P 
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procedure PAYLOAD-PROB-P is 
begin 
GOAL-FLAG := 0; 
end PAYLOAD-PROB-P; 

procedure CLOSE-NETWORK is 
begin 
PUT-LINE("Closing tactical/execution network..."); 
stop-corns; 

PUT-LINE("C1osing down tactical level server..."); 
stop-iris-s; 

end CLOSE-NETWORK, 

procedure PRINT-PROFILE is 
begin 

TOT-SECS := SECONDS(END-TIME) - SECONDS(BEG1N-TIME); 
NEW LINE: 
PUT('For the mission, the total execution time was: "); 
PUT(T0T-S ECS); 
NEW-LINE; 
PUT("and the total control cycles taken was: "); 
PUT(LO0P -COUNT): ,. 

NEWLINE; 
PUT("Yie1ding a control rate of "); 
PUT(FLOAT(LO0P-COUNT)/FLOAT(TOT-SECS)); 
PUT(" commands per second."); 
NEW-LINE; 

end PRINT-PROFILE 

begin 
PRINT-HEADER 
INSTANTIATE ALLES: 
LINK-OBJECTS; 
OPEN-NETWORK, 
goal := get-from-strat-i; 

-- PUT-LINE(''Primitive goal received. Initiating behavior..."); 
LOOP-COUNT := LOOP-COUNT + 1; 
case goal is 

loop 

when 10 =7 READY-VEHICLE-FOR-LAUNCH 
put-~s_i_s(GOAL-~AG); -- Download mission, etc. 
when 11 => SELECT-FIRST-WAYPOINT; 
BEGIN-TIME := CLOCK -- Start mission timer 

put_iris-i-s(GOAL-~AG); 
get-time; 
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put_iris_i_s(GOAL_FLAG); -- send(OOD, power_gone-p) 
when 37 => COMPUTER-SYSTEM-PROB-P 
put_iris_i_s(GOAL_nAG); -- send(OOD, computer-system-prob-p) 
when 38 => PROPULSION-SYSTEM-PROB-P; 
put-~is-i_s(GOAL_FLAG); -- send(OOD, propulsion-system-prob-p) 
when 39 => STEERING-SYSTEM-PROB-P; 
put_iris-i_s(GOAL-FLAG); -- send(OOD, steering-system-prob-p) 
when 40 => DIVWG SYSTEM PROB P: 
put_iris_i-s(GOAL-FG); -- Gnd(06D; diving-system-prob-p) 
when 41 => BOUYANCY-SYSTEM-PROS-P 
put_iris_i_s(GOAL-nAG); -- send(OOD, bouyancy-system-prob-p) 
when 42 => THRUSTER-SYSTEM-PROB-P; 
put_iris_i_s(GOAL_nAG); -- send(OOD, thruster-system-prob-p) 
when 43 => LEAK-TEST-P; 
put-~is_i-s(GOAL_FLAG); -- send(OOD, leak-test-p) 
when 44 => PAYLOAD-PROB-P; 
put_iris_i-s(GOAL_nAG); -- send(OOD, payload-prob-p) 

when others => PUT("Unexpected goal value received: "): 
PUT(g0al); 
NEW-LINE; 

end case; 
goal := get-kom-strat-i; 
end loop; 

END-TIME := CLOCK, 
Eet  time: 
EL~SEINETWORK; 
DELEE-ALLES; 
PRIMPTRAILER: 
PIUNT~PROFILE; 

end TACTICAL3; 
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APPENDIX C. INTER-LEVEL COMMUNICATIONS SOFTWARE 

1. PROLOG-TO-ADA, PROLOG SIDE 

/* This is the Prolog-to-C ''glue'' software 
Date created 30 Nov 92 
Date Revised: 9 Dec 92 

To be run on any workstation. NOTE: to obtain an object file xxx.0, invoke the compiler 
as follows: 

cc -c xxx.c 

where xxx is the file name. The -1m flag must be placed after the name of the source file if 
linkage to the math.h library is desired. */ 

#include <stdio.h> 
#include <time.h> 

ready-vehicle-for-launch-p() /* Perform systems status check and download 
mission parameters. Integers passed to Tactical level represent primitive goals. */ 
I 

int result; 

printf("%sW', "Entered the function ready-vehicle-for-launch-p"); 
start-link(); 
put-iris-i( 10); 
printf('9n"); 
get-iris-i(&result); 
return (result); 

1 
selec-first-waypoint() 

int result; 
I 

pMtf("%sW', "Entered the function select- st-waypoint"); 
put-iris-i( 11); 
printf('W); 
get-iris-i( &result); 
return (result); 

1 
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. -  

alert-user() 
{ 

int result; 

printf(“%sW’, “Entered the function alert-user”); 
put-iri-i( 12); 
!JrintfCW’): 
get-iris-i(&result); 
return (result); 

1 

in-transit-p() [ 
int result; 

printf(“%sW’, “Entered the function in-transit-p”); 
put-iris-i( 13); 
UrintfC W’): 
get-iris-i(&esult); 
return (result); 

) 

transit-done-p() { 
int result; 

pnntf(“%sW’, “Entered the function transit-done-p”); 
put-iri-i( 14); 
PrintfprY); 
get-iri-i(&result); 
return (result); 

I 
in-search-PO { 

int result; 

printf(“%s\n”, “Entered the function in-search-p”); 
put-iri-i( 15); 
printfr W); 
get-iri-i(&result): 
return (result); 

} 

search-done-p() ( 
int result; 

printf(“%s\n”, “Entered the function search-done-p”); 
put-iris-i( 16); 
urintfr‘h”): 
get-iris-i(&esult); 
return (result); 

1 
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in-task-pO { 
int result; 

printf(“%sb”, “Entered the function in-task-p”); 
put-iris-i( 17); 
printf(‘ln”); 
get-iri-i(&result); 
return (result); 

I 
task-done-p0 ( 

int result; 

prin!f(“%sb”, “Entered the function task-done-p”); 
put-iris-i( 18); 

get-iris-i(&result); 
return (result); 

printf(‘W’); 

1 

in-rern-pO ( 
int result; 

printf(‘‘%sW’, “Entered the function in-return-p”); 
put-iris-i( 19); 
printf(‘9n”); 
get-iris-i(&result); 
return (result); 

I 
retum_done-p() ( 

int result; 

printf(“%sW’, “Entered the function returrdone-p”); 
put-iris-i(20); 
printf(‘9n”); 
get-iris-i( &result); 
return (result); 

I 
wait-for-recovery0 { 

int result; 

pMtf(“%sh”, “Entered the function wait-for-recovery”); 
put-irisj(2 1); 
printf(’*\n”); 
get-iri-i(&result); 
/* Delay may be needed to insure server has time to shut down */ 
stop-linko: 
return (result); 

I 
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surface() [ 
int result; 

printf(“%s\n”, “Entered the function surface”); 
put-iris-i(22); 
printf(‘W’); 
get-iri-@result); 
return (result); 

1 
do-search-pattern() [ 

int result; 

printf(“%s\n”, “Entered the function do-search-pattern”); 
put-irisj(23); 
printf(‘W’); 
get-iris-i(&result); 
return (result); 

1 

homing0 { 
int result; 

printf(“%sh”, “Entered the function homing”); 
put-irisj(24); 
printE(‘9n’’); 
get-iris-i(&result); 
return (result); 

} 

drop_packageO { 
int result; 

printf(“%sb”, “Entered the function drop-package”); 
put-iris-i(25); 
printf(‘ W’); 
get-iri-i( &result); 
return (result); 

1 

get_gps-fixO { 
int result; 

printf(“%sW’, “Entered the function get_gps-W); 
put-iri-i(Z6); 
printf(’9n”); 
get-iris-i(&result); 
return (result); 

1 
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get-next-waypoint() ( 
int result; 

printf(“%sW’, “** * Waypoint attained***”); 
printf(“%sW’, “Entered the function get-next-waypoint”); 
put-irisj(27); 
printf(‘9n”); 
get-iris-i(&result); 
return (result); 

I 
send-setpoints-and-modes() [ 

int result; 

printf(“%sW’, “Entered the function send-setpoints-and-modes”); 
put-iris-i(28); 
printf(‘9n”); 
get-iris-i(&result); 
return (result); 

I 
reach-waypoint-p() ( 

int result; 

printf(“%sW’, “Entered the function reach-waypoint-p”); 
vut iris i(29): 
~ri.ifc‘sP); 
get-iris-i(&result); 
return (result); 

1 

gps-needed-pO ( 
int result; 

printf(“%sW’, “Entered the function gps-needed-p”); 
put-iris-i(30); 
print€(%”); 
get-iris-i(&result); 
return (result); 

1 
unknown-obstacle-p() [ 

int result; 

printf(“%s\n”, “Entered the function unknown-obstacle-p”); 
put-irisj(3 1); 
pMtf(-W); 
get-iris-i( &result); 
return (result); 

1 
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lognew-obstacle() [ 
int result; 

printf(“%s\n”, “Entered the function log_new-obstacle”); 
put-irisj(32); 
urintfCW’): 
get-iris-i(&result); 
return (result); 

1 
loiter() { 

int result; 

printf(“%sW’, “Entered the function loiter”); 
put-iris-i(33); 
printf(‘4n”); 
get-iri-i(&result); 
return (result); 

I 
star-local-replanner() ( 

int result; 

prin!f(“%sW’, “Entered the function star-local-replanner”); 
put-iri-i(34); 
printf(%t’); 
get-iris-i(&result); 
return (result); 

1 
starLglobal-replanner() { 

int result; 

printf(“%sW, “Entered the function start~lobd-replanner”); 
uut iris if35): 

prinif(“%sW’, “Entered the function power_gone-p”); 
put-iris-i(36); 
printf(‘9n”); 
get-iris-i(&result); 
return (result); 

1 

computer-system-inop-p() { 
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int result; 

printf(“%s\n”, “Entered the function computer-system-inop-p”); 
put-iris-i(37); 
printf(‘W’); 
get-iris-i( &result); 
return (result): 

1 
propulsion-system-p() { 

int result; 

printf(“%sW’, “Entered the function propulsion-system-p”): 
put-irisj(38); 
prin!f(%“); 
get-iris-i(&result); 
return (result); 

1 
steering-systern-inop-p() { 

int result: 

printf(“%sW’, “Entered the function steering-system-inopq”); 
uut iris i(39k 
p&tf(wQ); ” 

get-iris-i( &result); 
return (result); 

1 
divingsystem-p() { 

int result; 

printf(“%s\n”, “Entered the function diving-system-p”); 
put_iris_i(40); 
printf(‘9n”); 
get-iris-i(&resul t); 
return (result): 

1 

bouyancy-system-pO ( 
int result; 

printf(“%s\n”, “Entered the function bouyancy-system-p”); 
put-irisj(41); 
printf(’ln”); 
get-iri-i(&esult); 
return (result); 

I 
thruster-system-pO { 

int result; 
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. 

printf(“%sW’, “Entered the function thruster-system-p”); 
put-iris-i(42); 
printf(‘9n”); 
get-iris-i(&result); 
return (result); 

1 
leaktestLp0 { 

int result; 

printf(“%sW’, “Entered the function leak-test-p”); 
put_iris-i(43); 
DrintfPSn”): 
get_i&.i(&esdt); 
return (result); 

I 

printf(“%s\n”, “Entered the function payload-Frob-p”); 
put-irisj(44); 
DrintfPW’): 
‘get-i&i(&esult); 
return (result); 

I 

get-time() 
I 

h e - t  now; 
now = time(NULL); 
printf(“%s%s\n”, “ The time is now = I‘, ctime(&now)); 

1 

sm-iris(“gemini“); /* hardwire tactical level host (server) specified here */ 
return(99); 

I 

stop-iris(); 
return( 100); 
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; This program creates a socket and returns the socket. 
; The following function is available. 

; 1. Created by Sehung Kwak 10/10/90 

; usage : connect-to-server(remote-server-host_name, port-number) 
; ; returns a socket 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
#include <sys/types.h> 
#include <sys/socketh> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 

/* 
Return socket 
*/ 

connec t-to-server(remote-server-host-name, port-number) 

char *remote-server-host-name; 
int port-number; 

int sock; 
struct sockaddr-in server; 
struct hostent *hp, *gethostbyname(); 
char buf[ 10241; 

sock = socket(AF-INET, SOCK-STREAM, 0); 
if (sock < 0) { 
perror(“opening stream socket”); 
exit(1); 
} 

server.sin-family = AF-INET; 
hp = gethostbyname(remote-se_ser-host-name); 
if(hp=O) [ 
fprintf(stdm, “%s: unknown hostb”, remote-server-host_name); 
exit(2); 
1 
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bcopy((char *)hp->h-addr, (char *)&server.sin-addr, hp->h-length); 
serversin-port = htons(port-number); 

if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0) { 
perror("connecting stream socket"); - 

i .  exit( 1); 
else 
return( sock); 
1 

1 
. 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename ........ : comm3luelc.c 

; This takes care of socket stream communication interface. 
; Following functions are available. 
; A Sun running this program should be client. 

; 1. Created by Sehung Kwak 10/10/90 
; 2. Modified for C language interface, Sehung Kwak 1/27/92 

; usage : open-stream-c (host-name port-number) ; open stream 
; write-string-c (string) ; write string 
; read-stringc (string, size) ; read string 
; write-char-c (length-one-string) ; write character 
; force-out-c () ; output write buffer 
; read-chw-c () ; read character 
; close-siream-c () ; close stream 

; This file needs c1ient.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
#define TRUE 1 
#define FALSE 0 
#define BUFSIZE 1024 

static int sock; 
static char sbuf[BUFSIZE]; 
static int sptr = 0; 

open-stream-c (host-name, port-num) 
char host-name[l; 
long port-num; 
{ . sock = connect_to-server(host-name,(int) port-nu); 

bzero(sbuf, sizeof sbuf); /* initialize send buffer */ 
sptr = 0; /* initialize send buffer pointer */ 

if (sock >= 0) 

253 



retum(TRUE); 
else 
return(FALSE); 

1 

write-string-c (ps) 
char *ps; 
I 

if (write(sock, ps, strlen(ps)) < 0) [ 
perror("Writing on stream socket"); 
return(FALSE); 
] else 
retum(TRUE); 

force-out-c () 
I 

if (write-string-c(sbuf) == TRUE) [ 
bzero(sbuf, sizeof sbuf); 
sptr = 0; 
return(TRIJE); 
} else 
return(FALSE); 

1 

write-char-c (ps) 
char *ps; 
{ 

sbuf [sptr++] =*ps; 
if (sptr == BUFSIZE) 
force-out-c(); 

1 

read-string-c (str, size) 
char str[]; 
int size; 
I 

if (read(sock, str, size) < 0) { 
perror("Reading stream socket"); 
retum(FALSE); 
) else 
return(TRUE); 

1 
char *read-char-c () 
I 

char onest1[4]; 
bzero(onestr, sizeof onestr); 
if (read(sock, onestr, 1) < 0) [ 
perror("Reading stream socket"); 
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retum('L9'); 
1 else 
retum(onestr); 

1 
- .  close-stream-c() 

{ 
if (close(sock) < 0) 
return(FALSE); 
else 
return(TRUE); 

1 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename .......... : c0nvert.c 

; This program converts a number (float or integer) or a string 
; to a communiction format and also records received data to 
; a number(float or integer) or a string. 

; Communication Format 

TXXXXDDDDDDDD .... 
T : type (one of I, R, C. i.e., integer, float, string) 
XXXX : data size in byte, filled with leading zeros 
DDD ... : actual data (sequence of ASCII characters) 

example: I0003 123 

TXXXXDDD 
T u A N v v v  

; 1. Created by Sehung Kwak 1/27/92 

; usage: float-todata(float, data) ; float --> data 
; integertodata(integer, data) ; integer --> data 
; stringto-data(string,data) ; string --> data 
; data-to-float(data,float*) ; data --> float 
; data-to-integer(data,integer*) ; data --> integer 
; data-to-string(data,string) ; data --> string . 
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#include <stdio.h>; 
.. 
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#define MAX-FLOAT-SIZE 30 
#define MAX-INTEGER-SIZE 30 

void float-to-data(x, data) 
float x; 
char data[]; 
I 

char x-str[MAXFLOAT-SIZE]; 

sprintf(x-str, “%f‘, x); 
sprintf(data, “R%04d%s”, strlen(x-str), x-str); 

1 

void integer-todata(x. data) 
int x; 
char datal]; 
I 

char x-str[MAxTEGER-SIZE]; 

sprintf(x-str, “%d”, x); 
sprintf(data, “I%O4d%s”, strlen(x-str), x-str); 

I 

void shingto-data(str, data) 
char str[], data[]; 
{ 

1 
sprintf(data, “C%O4d%s”, strlen(str), str); 

void data-to-float(data, px) 
char datafl; 
float* px; 
( 

char type; 
int size; 

sscanf(data,”%lc%4d%f”, &type, &size, px); 
1 
void data-to-integer(data, px) 
char datan; 
int* px; 
{ 

char type; 
int size; 

sscanf(data,”%lc%4dd%d”, &type, &size, px); 

. 

. 
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void data-to-string(data, sb) 
char data[], str[]; 
( 

char type; 
int size; 

- .  

sscanf(data, “% lc%4d%s”, &type, &size, st r ) ;  
l 
/ 

; Filename ....... : sun-iris-comms1c.c 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; 1. Created by Sehung Kwak 1/27/92 
; Use one socket for communication. 

; *lOCal-pOrt* 1053 

; usage : start-iris (“<target server ID>”) ; make connection 
; put-iris-s (sting) ; send string data 
; put-iris-f (float) ; send floating point number 
; put-iris-i (integer) ; send integer number 
; get-iris-s (sting) ; get string data 
; get-iris-f (&float) ; get float data (ptr) 
; get-iris-i (&integer) ; get integer data (pa) 
; stop-iris() ; close communication 

; This file needs c0nvert.c and comm-glue1c.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#include <stdio.h>; 

#define TRUE 1 
M e f i e  FALSE 0 
#define LOCAL-PORT 1051 
#define STR-BUFSIZE 1024 
M e f i e  NUM-BUFSIZE 30 

start-iris(host-name) 
char host-name[]; 
{ 

- 

if (open-stream-c(host_name,LOCAL_PORT)) 
retum(TRUE); 
else 
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retum(FALSE); 
I 

stop-iris() 
{ 

I 
retum(close-saeam-c()); 

put-iris-s(str) 
char str[J; 
{ 

char buqSTIBUFSIZE1; 

smngto-data(str,ba; 
wite-stringc(buf); 
force-out-c(); 
retum(TRUE); 

1 

put-iri-f(num-f) 
float num-f; 
I 

char buflNUMBUFSLZE]; 

float-to-data(num-f, bun; 
write-stringc(buf); 
force-out-c(); 
retum(TRUE); 

I 
put-iris-i(num-i) 
int num-i; 
( 

char buf[NUM.-BUFSIZE]; 

bzero(buf, sizeof buf); 
integer-to-data(num-i, buf); 
printf("Int to data is %sW, buf); 

write-swingc(buf); 
retum(TRUE); 

I 

get-iris-s( str) 
char *sk; 
I 

c h a  buflSTR_BUFSIZE]; 
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read-smng-c(buf,STR-BUFSIZE); 
data-to-string(buf, str); 
retum(TRUE); 

1 

get-iris_f(pf) 
float *pE 
I 

char buflNUM-BUFSIZE]; 

read-stringc(buf,NUMBUFSIZE); 
data-to-float(buf, pf); 
retum(TRUE); 

1 
get-iris-i(pi) 
int *pi; 
[ 

char buflNUM-BUFSEE]; 

bzero(buf, sizeof buf); 
read-string-c( buf,NLJM-BUFSIZE); 
data-to-integer(buf, pi); 
retum(TRUE); 

1 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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2. PROLOG-TO-ADA, ADA SIDE 

package C-LIB is 

-- CLIENT comms, supporting Tactical<->Execution level 

procedure start-corn; -- make connection to E-level 
procedure put-float (X : FLOAT); -- send float to E-level 
function get-float return FLOAT; -- receive float from E-level 
procedure put-mode (X : INTEGER); -- send mode to E-level 
procedure stop-comms; -- close connection to E-level 

-- SERVER comms, supporting Strategic<->Tactical level 

_ _  
-- 

-- 

-- 
procedure start-iris-s; -- establish term as server 
procedure put-iris-i-s (X : INTEGER); -- send int to S-level 
function get-from-strat-i return INTEGER;-- receive int from S-level 
procedure stop-iris-s; -- 

-- System clock access function. Better than Ada’s 
_- 

procedure get-time; 

private 

pragma INTERFACE(C, start-comms); 
pragma INTERFACE(C, put-float); 
pragma INTERFACE(C, get-float); 
pragma INTERFACE(C, stop-comms); 
pragma INTERFACE(C, put-mode); 
pragma INTERFACE(C, start-iris-s); 
pragma INTERFACE(C, put-iris-i-s); 
pragma INTERFACE(C, get-from-strat-i); 
pragma INTERFACE(C, stop-iris-s); 
pragma INTERFACE(C, get-time); 

pragma LINK-WITH(“network-sw.0”); -- lump all above files together 

end C-LIB; 

/* Network comms for the Tactical level. The Tactical level must act 
as a server for the Strategic level and a client for the Execution 
level. Code with a filename ending in “s” is server code; those 
tiles ending in “c” are client code. 
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Date: 12 Jan 93 
*/ 

#include <sys/types.h> 
#include <sys/socket.h> 

#include <netdb.h> 
#include <stdio.h> 

#include <string.h> /* sun-iris-comms1c.c */ 

#include <time.h> 

#define TRUE 1 

#define FALSE 0 

#define BUFSIZE 1024 
#define MAXFLOAT-SEE 30 /* c0nvert.c */ 
#define MAX-INTEGER-SIZE 30 /* c0nvert.c */ 
Mefine STR-BUFSIZE 1024 /* sun-iris-commsls.~, sun-iris-comms1c.c */ 
#define NUM-BUFSIZE 30 /* sun-iris-commsls.c, sun-iris-corns1c.c */ 
#define GET-DATA “get-data” /* sun-iris-corns1 S.C, sun-kkcomms1c.c */ 
#define ST-LOCAL-PORT 1051 /* sun-iris-comms1s.c */ 
#define TE-LOCAL-PORT 1052 /* sun-iris-comms1c.c */ 

static int sock-s, socks; 
static char sbuf-s[BUFSIZE]; 
static char sbuf-c[BUFSIZE]; 
static int s p q s  = 0; 
static int sptr-c = 0; 

/* server.c, c1ient.c *I 
/* server.c, c1ient.c Y 

- -  #include <netinet/in.h> /* server.c, client.c */ 
/* server.c, c1ient.c */ 
/* server.c, convert.c, sun-iris-commsls.c, client.c, . sun-iris-comms1c.c */ 

/* comm_glue-l s.c, sun-iris-commsls.c, 
conun_glue-lc.c, sun-iris-comms1c.c */ 

/* comm-glue- ls.c, sun-iris-commsl s.c, 
comm_glue-lc.c, sun-iris-comms1c.c Y 
/* comm_glue-ls.c, comm_glue-1c.c */ 

/* comm_glue-ls.c, comm_glue-1c.c */ 

/* comm_glue-ls.c, com_glue-lc.c */ 
/* comm_glue-ls.c, comm_glue-1c.c */ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Filename ........ : c1ient.c 

; This program creates a socket and returns the socket. 
; The following function is available. 

; 1. Created by Sehung Kwak 10/10/90 

; usage : connect-to-server(remote-server-host-nme, port-number) 
; ; returns a socket 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I* 
Return socket 
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*/ 

connect-to-server(remote-server-host-name, port-number) 

char *remote-server-host-name; 
int port-number; 

( 
int sock; 
struct sockaddr-in server; 
struct hostent *hp, *gethostbyname(); 
char buf[1024]; 

sock = socket(AF-INET, SOCK-STREAM, 0); 
if (sock < 0) { 
perror(“opening stream socket”); 
exit( 1); 
1 

fpMtf(stde&, “96s: unknown hosth”, remote-server-host-name); 
exit(2): 
I 

if (connect(sock, 
(struct sockaddr *)&server, sizeof server) < 0) { 

perror(“connecting stream socket”); 
exit(1); 
) else 
retum(sock); 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Filename ...... . .: server.c 

; This program creates a socket and returns the socket. 
; The following function is available. 

; 1. Created by Sehung Kwak 12/3/91 

; usage : Start-server(port_number) 
; ; returns a socket 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/* 
- -  Returns socket 

*/ 
int star-server(port-number) 
int port-number; /* server port number */ 

I 
int sock; 
struct sockaddr-in server: 
int msgsock; 

sock = socket(AF-INET, SOCK-STREAM, 0); 
if (sock < 0) { 
perror("opening stream socket"); 
exit( 1); 
I 
server.sin-family = AF-WET; 
serversin-addr.s-addr = INADDR-ANY; 
server.sin-port = port-number; 
if (bind(sock, (struct sockaddx *)&server, 
sizeof server) < 0) { 

perrorrbinding stream socket"); 
exit( 1); 

listen(sock,5); 

msgsock = accept(sock, (struct sockaddr *)O,  (int *)O) ;  
if (msgsock == - 1) ( 
perror("accept"); 
exit(2); 
1 else 
retum(msgsock); 

I 

I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename ........ : comm-glue1c.c 

; This takes care of socket stream communication interface. 
; Following functions are available. 
; A Sun running this program should be client. 

; 1. Created by Sehung Kwak 10/10/90 
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; 2. Modified for C language interface, Sehung Kwak 1/27/92 

; usage : open-stream-c (host-name port-number) ; open stream 
; write-strinEc (string) : write string 
: read-strinEc (string, size) ; read string 
; write-char-c (length-one-string) ; mite character 
; force-out-c () ; output write buffer 
; read-chars () ; read character 
: close-stream-c () ; close stream 

; This file needs clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

open-stream-c (host-name, port-num) 
char host-name[]; 
long port-num; 
( 

sock-c = connect_tc-server(host-name,(int) port-num); 

bzero(sbuf-c, sizeof sbuf-c); /* initialize send buffer */ 
sptr-c = 0; /* initialize send buffer pointer */ 

if (sock-c >= 0) 
retum(TRUE); 
else 
retum(FALSE); 

1 
write-stringc @s) 
char *ps; 
I 

if (write(sock-c, ps, strlen(ps)) < 0) { 
perror("Wnting on stream socket"); 
retum(FALSE); 
) else 
return(TRUE); 

} 

force-out-c () 
I 

if (write-stringc(sbuf-c) == TRUE) ( 
bzero(sbuf-c, sizeof sbuf-c); 
sptr-c = 0; 
return(TRW3); 
) else 
retum(FALSE); 
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write-char-c (ps) 
char *ps; 
{ 

sbuf-c[sptr-c++]=*ps; 
if (sptr-c == BUFSIZE) 
force-out-c(): 

I 

read-string-c (str, size) 
char sea; 
int size: 
{ 

if (read(sock-c, str, size) < 0) { 
perror(“Reading stream socket”); 
return(FALSE); 

char *read-char-c () 
I 

char onestr[4]: 
bzero(onestr, sizeof onestr); 
if (read(sock-c, onestr, 1) < 0) { 
perror(“Reading stream socket”); 
return( ‘W); 
} else 
retum(onestr); 

I 

close-stream-c() 
I 

if (close(sock-c) < 0) 
return(FALS E); 
else 
return(TFWE); 

I 

I 

; Filename ........ : comm-glue1s.c 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; This takes care of socket stream communication interface. 
; Following functions are available. 
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A Sun running this program should be server. 

1. Created by Sehung Kwak 12/3/92 

usage : open-stream-s (port-number) ; open write stream 
write-strings (string) ; write string 
read-strings (string, size) ; read string 
write-char-s (length-one-string) ; write character 
force-out-s () ; output write buffer 

; read-char-s () ; read character 
; close-stream-s () ; close stream 

; This fde needs server.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

open-stream-s (port-num) 
long port-num; 
{ 

sock-s = start-server((int) port-num); 

bzero(sbuf-s, sizeof sbuf-s); /* initialize send buffer */ 
sptr-s = 0; /* initialize send buffer pointer */ 

if (sock-s >= 0) 
retum(TRUE); 
else 
retum(FALSE); 

1 

write-strinLs (ps) 
char *ps; 
{ 

if (write(sock-s, ps, strlen(ps)) < 0) ( 
perror("Writing on stream socket"); 
return(FALSE); 
} else 
retum(TRUE); 

1 

force-out-s () 
( 

if (write-strings(sbuf-s) = TRUE) ( 
bzero(sbuf-s, sizeof sbuf-s); 

retum(TRUE); 
) else 

sptr-s = 0; 
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return(FALSE); 
1 

write-char-s (ps) 

1 
1 -  char *ps; 

. sbuf_s[sptr-s++]= *ps; 
if (sptr-s == BUFSIZE) 
force-out-s(); 

1 

read-string-s (str, size) 
char stro; 
int size; 
{ 

if (read(sock-s, sir, size) < 0) { 
perror("Reading stream socket"); 
return(FALSE); 
) else 
retum(TRUE); 

I 
char *read-char-s () 
1 

char onestr[4]; 
bzero(onestr, sizeof onestr); 
if (read(sock-s, onestr, 1) < 0) { 
perror("Reading stream socket"); 
return( V'); 
) else 
return(onestr); 

I 

close-stream-s() 
{ 

if (close(sock-s) < 0) 
return(FALSE); 
else 
return(TRUE); 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename .......... : c0nvert.c 
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; This program converts a number (float or integer) or a string 
to a communiction format and also records received data to 
a number(float or integer) or a saing. 

Communication Format 

TXXXXDDDDDDDD. .. . 
T : type (one of I, R, C. i.e., integer, float, string) 

; X X X X  : data size in byte, filled with leading zeros 
; DDD ... : actual data (sequence of ASCII characters) 

; example: I0003123 

; TXXXXDDD 
.Ivvv\MM 

i 

r 

; 1. Created by Sehung Kwak 1/27/92 

; usage: float-todata(float, data) ; float --> data 
; integer-todata(integer, data) ; integer --> data 
; stringto-data(string,data) ; string --> data 
; data-to-float(data,float*) ; data --> float 
; data-to-integer(data,integer*) ; data --> integer 
; data-to-string(data,string) ; data --> string 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void float-to-data(x, data) 
float x; 
char data[]; 
{ 

char x-str[MAX-ETOAT-SIZE]; 

sprintf(x-str, “%f”, x); 
sprintf(data, “R%04d%s”, strlen(x-sa), x-sa); 

I 

void integer-to-data(x. data) 
int x; 
char datan; 
{ 

char x-str[MAX-INTEGER-SIZE]; 

sprintf(x-str, I‘%#’, x); 
sprintf(data, “1%04d%s”, strlen(x-str), x-str); 

1 
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. 

void string_to-data(str, data) 
char str[], data[]; 
1 

I 
sprintf(data, “C%O4d%s”, strlen(str), str); 

void data-to-float(data, px) 
char datau; 
float* px; 
I 

char type; 
int size; 

sscanf(data,”% lc%4d%f”, &type, &size, px); 
I 
void data-to-integer(data, px) 
char data[]; 
int* px; 
f 

char type; 
int size; 

sscanf(data,”% lc%4d%d”, &type, &size, px); 
1 

void data-to-saing(data, str) 
char datan, str[]; 

char type; 
t 

int size; 

sscanf(data, “%lc%4d%s”, &type, &size, str); 
1 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename ....... : sun-iris-corns1c.c 

; 1. Created by Sehung Kwak 1/27/92 
; Use one socket for communication, 
; 
; *tac-to-ex corns-port* 1052 
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; usage : star-iris (“<target-server>”) ; make connection 
; put-iris-s (string) ; send string data 
; put-iris-f (float) ; send floating point number 
; put-iris-i (integer) ; send integer number 
; get-iris-s (string) ; get string data 
; get-iris-f (&float) ; get float data (ptr) 
; get-iris-i (&integer) ; get integer data (ptr) 
; stop-iris() ; close communication 

; This file needs convert.c and commg1ueIc.c 
.*******r******************************************~*********~********/ 

start-iris(host-name) 
char host-name[]; 
J 

if (open-stream-c(host_name,Tl-LOCALPORT)) 
retum(TRUE); 
else 
return(FALSE); 

1 

int get-ack-c() 
{ 

char buflSTR-BUFSIZE]; 
char str[lO]; 

bzero(buf, sizeof buf); 
read_strin&c(buf,STR-BR_BUFSIZE); 
data-to-string(buf,str); 
if ( ! (strcmp(str,GET-D ATA))) 
return 1; 
else 
return 0 

int send-ack-c() 

I 

( 
char buf[STR-BUFSIZE]; 

strin&to-data(GET-DATA,buf); 
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write-string_c(buf); 
1 

put-iri-s(str) 

I 
. -  char stru; 

char buflSTl-BUFSIZE]; 

stringto-data(str,buf ; 
write-string-c(buf); 
if Nget-ack-cO)) ( 
printf("Error: No acknowledgement W'); 
1 
;etum(TRUE); 

I 

put-iri-f(num-f) 
float num-fi 
I 

char buflNUh-BUFSIZE]; 

float-todata(num-f, buf); 
wrie-string_c(buf); 
if (!(get-ack-cO)) I 
printf("Error: No acknowledgement W'); 
1 
return(TRUE); 

I 
put-iri-i(num-i) 
int num-i; 
{ 

char buf"UM-BUFSIZE]; 

integer-to-data(num-i, buf); 
write-string-c(buf); 
if (!(get-ack-cO)) { 
prinff("Error: No acknowledgement W'); 
1 
&turn(TRUE); 

I 

get-iri-s(str) 
char *str; 
{ 

char buf[STl-BUFSIZE]; 

read-string_c(buf,SIR-BUFSIZE); 
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data-to-string(buf, str); 
send-ack_c(); 
retum(TRUE); 

1 
- 

get-iris-f(pf) 
float *pf; 
I 

char buf"UM-BUFSIZE] ; 

read-shingc(buf,NUM-BUFSIZE); 
data-to_float(buf, pf); 
send-ack_c(); 
retum(TRUE); 

I 
get-iris-i(pi) 
int *pi; 
( 

char buf"UM_BUFSIZE]; 

read-stringc(buf,NUM-BUFSIZE); 
datato-integer(buf, pi); 
send_ack_c(); 
return(TRUE); 

1 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename ....... : sun-iris-comms1s.c 

; 1. Created by Sehung Kwak 12/3/92 
; Use one socket for communication. 

; *local-port* 1053 

; usage : start-iris-s () ; make connection 
; put-iris_s-s (string) ; send string data 
; put-iris-f-s (float) ; send floating point number 
; put-iris-i-s (integer) ; send integer number 
; get-iris-s-s (shing) ; get string data 
; get-iris-f-s (&float) ; get float data (ptr) 
; get-iris-i-s (&integer) ; get integer data (ptr) 
; stop-iris-s() ; close communication 
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. 
. 

; This file needs server.c and comm-glue1s.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

start_iris-s() 
{ 

if (open-stream-s(ST-LOCAL-PORT)) 
retum(TRUE); 
else 
retum(FALSE); 

1 

stop-ili-s() 
I 
1 

put-iris-s-s(str) 
char sen; 
{ 

retum(c1ose-stream-so); 

char bflSTRBUFSIZE]; 

string_todata(str,buf); 
write-string-s(buf); 
force-out-s(); 
return(TRUE); 

1 

put-iris-f-s(num-f) 
float num-t 
{ 

char buf"UM-BUFSIZE]; 

float-todata(num_f, buf); 
write-string_s(buf); 
force-out-s(); 
retum(TRUE); 

1 

put-iris-i-s(num-i) 
int nm-g 

char bflNLJM-BUFSIZE]; 

bzero(buf, sizeof buf); 
integer-to-data(num-i, buf); 
write-shing_s(buf); 
force-out-s(); 
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retum(TRUE); 
1 

get-iris-s-s (sa) 
char *str; 
f 

char bufIS TR-BUFS JZE] ; 

read-string_s(buf,STR-BUFSlZE); 
data-to-string(buf, str); 
retum(TRUE); 

1 

get-iris-f-s(pfj 
float *pf; 
f 

char buflNUM-BUFSIZE]; 

read-strings(buf,NUM-BUFSIZE); 
data-to-float(buf, pf); 
return(TRUE); 

I 
get-iris-i-s(pi) 
int *pi; 
( 

char bufINUM-BUFSIZE]; 

bzero(buf, sizeof bufj; 
read_string-s(buf,NuM_BUFSIZE); 
datato-integer(buf, pi); 
retum(TRUE); 

1 
get-from-strat-i() 
( 

int x; 
get-iris-i-s(&x); 
retum(x); 

I 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; The following are additional “access” routines used to link 
; sunjris-commslc.~ routines to Ada code without resorting to 
; passing of pointers. 

; 1. Created by Ron Byrnes 11/19/92; revised 11/25/92 
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; usage : star-comms() ; avoids need to pass strings between Ada and C 
; put-float(cmd) ; send floating point number 
; get-float () ; extracts value from ptr to avoid passing addresses between Ada and C 
; stop-comms() ; maintains consistent labelling 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void start-comms() 
{ 

1 
void stop-comms() 
I 

1 

void put-float(cmd) 
float cmd; 
{ 

I 
float get-float() 
I 

printf(''Sming comms with iris.hW'); 
start-iris("iris1"); 

printf("Stopping comms with iris.Mn"); 
stop-iris(); 

put-iri-f(cmd); 

float temp; 
get-iris-f(&temp); 
retum(temp); 

1 
void put-mode(cmd) 
int cmd; 
I 

1 

get-timeO 
( 

put-iris-s("TRANSIT"); /* At this time, sim has only one mode */ 

time-t now; 
now = time(NULL); 
printf("%s%sW', "The time is now = ", ctime(&now)); 

I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3. ADA-TO-C, C SIDE 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

; Filename ....._.. : comm-glue1s.c 

; This takes care of socket stream communication interface. 
; Following functions are available. 
; An Iris running this program should be server. 

; 1. Created by Sehung Kwak 12/3/92 

usage : open-stream-s (port-number) ; open write stream 
write-strings (string) ; write string 
read-strings (string, size) ; read string 
write-char-s (length-one-string) ; write character 
force-out-s () ; output write buffer 
read-char-s () ; read character 
close-stream-s () ; close stream 

; This file needs serve1.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#define TRUE 1 
M e f i e  FALSE 0 
#define BUFSJZE 1024 

static int sock; 
static char sbuf[BUFSIZE]; 
static int sptr = 0 

open-stream-s (port-num) 
long port-num; 
{ 

sock = start-server((int) port-num); 

bzero(sbuf, sizeof sbuf); /* initialize send buffer */ 
sptr = 0; /* initialize send buffer pointer *I 

if (sock >= 0) 
retum(TRuE); 
else 
retum(FALSE); 
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write-string-s (ps) 
char *ps; 

if (write(sock, ps, strlen(ps)) < 0) [ 
perror("Writing on stream socket"); 

1 else 
retum(TRUE); 

. return(FALS E); 

I 

force-out-s () 
I 

if (write-strings(sbt6) = TRUE) ( 
bzero(sbuf, sizeof sbuf); 
sptr = 0; 
return(TRUE); 
] else 
retum(FALSE); 

I 

write-char-s (ps) 
char *ps; 
{ 

sbuf[sptr++]= *ps; 
if (sptr == BUFSIZE) 
force-out-s(); 

read-string-s (str, size) 
char stro; 
int size; 
( 

if (read(sock, str, size) < 0) [ 
perror("Reading stream socket"); 
return(FALSE); 
1 else 
retum(TRUE); 

1 
char *read-char-s 0 
( 

char onestr[4]; 
bzero(onestr, sizeof onestr); 
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if (read(sock, onestr, 1) < 0) { 
perror(“Reading stream socket”); 
return( ‘W’); 
) else 
return(onestr); 

close-stream-s() 
( 

if (close(sock) < 0) 
return(FALSE); 
else 
return(TRUE); 

I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

;Filename .......... : c0nvert.c 

; This program converts a number (float or integer) or a string 
; to a communiction format and also records received data to 
; a number(float or integer) or a string. 

; Communication Format 

; TXXXXDDDDDDDD .... 
; T : type (one of I, R, C. i.e., integer, float, string) 
; XXXX : data size in byte, filled with leading zeros 
; DDD ... : actual data (sequence of ASCII characters) 

; example: I0003123 

; TXXXXDDD 
.MMMM 

; 1. Created by Sehung Kwak 1/27/92 

; usage: float-to-data(float, data) ; float --> data 
; integer-to-data(integer, data) ; integer --> data 
; stringto-data(string,data) ; string --> data 
; data-to-float(data,float*) ; data -+ float 
; data-to-integer(data,integer*) ; data --z integer 
; data-to-string(data,string) ; data --> string 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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int size; 

sscanf(data,”%lc%4d%d”, &type, &size, px); 
I 

/* 
Returns socket 
*I 
int start-server@ort-number) 

int port-number, /* server port number */ 

{ 
int sock; 
struct sockad&-in server; 
int msgsock; 

void data-to-string(data, str) 
char data[], str[]; 
I 

char type; 
int size; 

sscanf(data, “%lc%4d%s”, &type, &size, str); 
1 

; Filename ........ : server.c 

; This program creates a socket and returns the socket. 
; The following function is available. 

; 1. Created by Sehung Kwak 12/3/91 

; usage : start-server(port-nurnber) 
; ; returns a socket 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
#include <sys/types.h> 
#include <sys/socketh> 
#include aetinet/in.h> 
#include aetdb.h> 
#include <stdio.h> 
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sock = socket(AF-INET, SOCK-STREAM, 0); 
if (sock < 0) { 
perror("opening stream socket"); 
exit( 1); 
1 
serversin-family = AF-INET: 
server.sin-addr.s-addr = INADDR-ANY; 
server.sin-port = port-number; 
if (bind(sock, (struct sockaddr *)&server, 
sizeof server) < 0) { 

perrorr'binding stream socket"); 
exit(1); 
I 
listen( sock,5); 

msgsock = accept(sock, 
(siruct sockaddr *)O, (int *)O) ;  

if (msgsock = -1) ( 
perror("accept"); 
exit(2); 
) else 
retum(msgsock); 

I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; Filename ....... : sun-iris-comms1s.c 

; 1. Created by Sehung Kwak 12/3/92 
; Use one socket for communication. 

; *local-port* 1052 

: usage : star-iris-s () ; make connection 
; put-iris-s-s (string) ; send string data 
; put-iris-f-s (float) ; send floating point number 
; put-iris-i-s (integer) ; send integer number 
; get-iris-s-s (string) ; get smng data 
; get-iris-f-s (&float) ; get float data (ptr) 
; get-iris& (&integer) ; get integer data (ptr) 
; stop-iris-s() ; close communication 

; This file needs server.c and comm_gluels.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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#include <stdio.h> 
#include <string.hz 

#define TRIJE 1 . ~ 

#define FALSE 0 
#define LOCAL-PORT 1052 
#define STR-BUFSIZE 1024 
#define NUM -BUFSIZE 30 
#define GET-DATA "get-data" 

star-iris-s() 
I 

printf("Listening for Tactical level ...b W'); 
if (open-stream-s(LOCAL-PORT)) 
retum(TRUE); 
else 
return(FALSE); 

stop-iris-s() 
I 
I 

retum(c1ose-stream-s()): 

int get-ack-s() 
I 

char buflSTR-BUFSIZE]; 
char str[lO]; 

bzero(buf, sizeof buf); 
read_strings(buf,STBUFSIZE); 
data-to-shing(buf,str); 
if (!(strcmp(str,GET-DATA))) 
return 1; 
else 
return 0 

1 
int send-ack-so 
( 

char buf[STR-BUFSIZE]; 

stringto-data(GET-DATA,buf); 
write-strings(buf): 

I 
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put-iris-s-s(str) 
char str[]; 
{ 

char buf[SlX-BUFSIZE]; 

. stringtopdata( str, buf); 
write-strings(buf7; 
if (!(get-ack-sO)) { . printf("Error: No acknowledgement W'); 

I 
return(TRUE); 
) 

put-iri-f-s(num-f) 
float num-f; 
I 

char buf[NUM-BUFS IZE] ; 

float-to-data(num-f, buf); 
write-string-s(bufj; 
if (!(get-ack-sO)) { 
printf("Err0r: No acknowledgement W); 

return(TRUE); 
I 
put-iris-i-s(num-i) 
int num-k 
I 

char buf[NUM-BUFSIZE]; 

integer-to-data(num-i, buf); 
write string dbuf): -- \ -  

if (!(&t-ack-s())) { 
printf("Error: No acknowledgement W'); 
1 
;etum(TRUE); 

1 

get-iris-s-s(str) 
char *str; 
t 

char buf[STR-BUFSIZE]; 

read_strings(buf,STR_BUFSIZE); 
data-to-string(buf, str); 

retum(TRUE); 

" 

, send-ack-so; 

I 
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get-iris-fApf) 
float *pf; 

char buflNUM-BUFSIZE]; 

readstrings( buf,NUMBUFSIZE); 
dati-to-float(buf, pf); 
send-ack-s(); 
retum(TRUE); 

I 
get-iris-i-s(pi) 
int *pi; 
I 

char buflNUM-BUFSIZE]; 

read-st l ings(buf ,NUM-B~SI~);  
data-to-integer(buf, pi); 
send-ack-s(); 
retum(TRUE); 

1 

get-from-strat-i() 
t 

int x; 
get-iri-i-s( &x); 
return(x); 

1 
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APPENDIX D. GLOSSARY OF TERMINOLOGY FOR AUTONOMOUS 
VEHICLE SOFTWARE ARCHITECTURES 

c 

Autonomous Vehicle: a self-contained mobile robot with the capacity to sense a dynamic 

and unstructured environment, plan an intelligent response to that input, and act in a way 

that is compatible with the accomplishment of a mission without human intervention. 

Behavior: an algorithm designed specifically to generate the numeric input required by a 

feedback control system which will, in turn, produce a change in the underlying physical 

plant consistent with the desired primitive goal which activated the behavior. The term task 

is a frequently used synonym. 

Doctrine: the part of the RBM Strategic level containing the logic required to solve prob- 

lems not unique to the particular mission at hand. Doctrine is in general vehicle dependent. 

Execution Level: the lowest level of the Rational Behavior Model containing all the soft- 

ware required to meet hard real-time deadlines while ensuring basic vehicle stability and 

safety. 

Goal: a result toward which effort, provided by an external entity, is directed. The problem, 

prior to decomposition, is the root goal. The set of goals not further decomposed are called 

primitive goals, and all other subgoals are called intermediate goals. 

Goal Tree: a graphical representation of AND/OR goal decomposition, with the root node 

representing the root goal, the leaf nodes representing the primitive goals, all other nodes 

representing intermediate goals subject to further decomposition, and the connecting arcs 
* 



representing the logical relationship between subgoals and the goal from which they were 

decomposed. 

Layer of Control: the realization of a single behavior or competence of the underlying sys- 

tem. 

Level of Control: a distinct set of computational entities characterized by a shared concep- 

tual abstraction, of which temporal, spatial, and command hierarchies are the most com- 

mon. 

Mission Model: a database comprising the information necessary to uniquely identify each 

segment or phase of the mission and the terminating conditions for each phase. 

Mission Specification: the part of the RBM Strategic level containing the rule set embody- 

ing mission specific knowledge. 

Problem Decomposition: the successive simplification of a root goal, resulting in interme- 

diate and primitive goals which may be placed in a tree structure to represent the orderly 

search for a problem solution. 

Rational Behavior Model-Backward (RBM-B): a form of RBM characterized by a back- 

ward-chaining inference mechanism at the strategic level employing goal decomposition 

and an AND/OR goal tree as the basis for its search. 

Rational Behavior Model-Forward (RBM-F): a form of RBM characterized by a forward- 

to organize the sequence of allowable state transitions. 

t 

chaining inference mechanism at the Strategic level employing a state transition diagram 

# 
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Software Architecture: a structural plan encompassing the conceptual design and organiza- 

tion of software. The architecture includes, but is not limited to, a description of the abstrac- 

tion mechanisms, division of responsibility, and specification of external interfaces through 

which the software entities communicate with each other and the external world. Each soft- 

ware entity, also called a module, is an independent conceptual unit within a software sys- 

tem. 

State Transition Diagram with Path Priorities: models the time-dependent behavior of a 

system containing state transition conditions which may not be mutually exclusive. Con- 

flicts in determining the next state are resolved through the use of preassigned, numerical 

path priorities. 

World Model: the set of data reflecting the characteristics of the environment external to 

the vehicle and upon which the control software bases its decisions. 
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