
AUV Workbench: Integrated 3D for

Interoperable Mission Rehearsal, Reality and Replay

Jeffrey Weekley, Don Brutzman, Anthony Healey, Duane Davis and Daryl Lee
Naval Postgraduate School, Monterey California

jdweekley@nps.navy.mil brutzman@nps.navy.mil healey@nps.navy.mil

Overview

Autonomous Underwater Vehicles (AUVs) are in operation and under study around the world. As
techniques are being developed for practical use, different vehicles and tools are proliferating. Each
vehicle requires dedicated tools, broad knowledge and troubleshooting skills to plan and analyze
missions. Executing these missions is often fraught with operational challenges as well. Multiple systems
or multi-national operations further complicate these maneuvers. Current tools, data archives and
equipment do not interoperate and integration of competing systems is difficult already.

Practical strategies are now possible for achieving both control and data interoperability in multi-vehicular
and multi-national operations. The use of Extensible Markup Language (XML) and the open architecture
described in the Extensible Modeling & Simulation Framework (XMSF) facilitates interoperability and
integration into real-world Joint Command & Control, Communications, Computers and Intelligence (C4I)
Systems, models and simulations, and mission planning and analysis tools.

Customized XML languages and related technologies may be used to facilitate interoperability between
dissimilar AUVs to extract and integrate mission data into C4I systems. XML makes data archive
maintenance easier, as XML documents can be accessed via an http server, and XML is directly
transformable by extensible stylesheets into formats suitable for humans and machines. An example
XML-based mission language for the command and control of AUVs is presented. It discusses XML
technology and how XML is a viable means of achieving interoperability. An example of a mission profile
using existing software is further presented. Integrating XML for AUV mission planning, rehearsal,
experimentation and visualization provides compelling and reusable examples.

In particular, example applications for multi-vehicular command and control, mission planning and
analysis, preliminary and post mission visualization using web-based Extensible 3D (X3D) Graphics is
presented. X3D is the International Standards Organization (ISO) draft specification for 3D interactive
graphics for the Web. It greatly extends the power of 3D tools already available via the Virtual Reality
Modeling Language (VRML), because it is XML. These tools are free to use, inherently interoperable and
scaleable world-wide. Preliminary investigations regarding the binary encoding of X3D and XML are also
presented for streaming over noisy bandwidth-constrained networks, such as acoustic modem channels.

XML for Loosely Coupled Data and Interoperability
The key to interoperability is structured data interchange. Currently, each AUV system operates on its
own, with a proprietary data format for collected data and no command task language for mission
planning sharable among robots. The application of structured data methodologies using the Extensible
Markup Language (XML) allows organizations and systems to exchange and process battlespace
information cooperatively. [Neushul 2003] Since XML data is self-describing and can be transformed
using XML-based tools to fit any particular format, which can be machine or human readable, it is said to
be loosely coupled. Data that is tightly coupled with its application (such as the data contained in this
document) cannot be read or modified by other programs without great effort. This tight coupling then
requires that many applications maintain relationships with many others, a practice that has remained
unsustainable across domains and systems. Thus, tightly coupled data reinforces the “stovepipe”
approach to systems engineering.

1

XML Basics
XML and related technologies are extensive and not easily summarized. The World Wide Web
Consortium’s “XML in 10 Points” is summarized here and gives a good overview. Some of the salient
points are summarized here. [XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points]

Figure 1 XML in 10 Points

XML as a Common Ground for AUVs
Since XML provides formatted, self-describing, structured data, which can in turn be validated and
translated into other types of data for manipulation and display, it is a good solution to the varied data
formats encountered in the world of AUVs. Consider this: if different AUV platforms must interoperate,
each with its own set of software and data requirements, N2 relationships must be maintained. An
Application Program Interface (API) is needed for each one of those relationships. APIs are difficult to
maintain given the dynamics of technology and competitive market forces. Each time software systems
change, each API which was tuned to interface with it must be updated. Clearly, this “stovepipe”
approach does not scale well.

• XML is for structuring data - XML is a simple set of rules that allow you to create tags and
attributes which describe the data contained therein. XML avoids common pitfalls in language
design: it is extensible, platform-independent, and it supports internationalization and
localization. An address book for example, might contain the following:

<name>
 <first>John</first>
 <last>Doe</last>
</name>

• XML looks a bit like HTML - XML uses the tags only to delimit pieces of data, and leaves the
interpretation of the data completely to the application that reads it.

• XML is text, but isn't meant to be read - Like HTML, XML is not meant to be read, but isn’t
completely inscrutible, like compiled formats. Furthermore, there is no allowance for missing
tags or malformed documents. XML parsers do not repair or interpret XML documents.

• XML is verbose by design - Since XML is a text format and it uses tags to delimit the data,
XML files are nearly always larger than comparable binary formats. Since many patterns in
XML are repeated, it seems suitable for later, binary compression. This is discussed in the
section on Cross-Format Schema Protocol (XFSP).

• XML is a family of technologies - The XML “Family” is a growing set of modules that offer
useful services to accomplish important and frequently demanded tasks. These include:
XLink, Xpointe, Cascading Style Sheets, Extensible Style Sheets (XSL), Extensible
Stylesheet Language Transformation (XSLT) and Document Object Model (DOM). It is not
necessary to be adept at all of these technologies, but they all play in concert to make XML a
powerful tool.

• XML is new, but not that new - XML is based upon the SGML standard which has been
around since the 1980’s.

• XML leads HTML to XHTML - XHTML is the XML-compliant version of HTML.
• XML is modular - Through the namespace mechanism, XML allows you to define a new

document format by combining and reusing other formats.
• XML is the basis for RDF and the Semantic Web - W3C's Resource Description Framework

(RDF) is an XML text format that supports resource description and metadata applications.
When the data is self-describing, other technologies can ‘crawl’ through the data and
discover, combine and reformat data in interesting ways.

XML is license-free, platform-independent and well-supported - XML is license free and therefore
not susceptible to many of the pitfalls of commercial software. There is an ever-growing, world-wide
expertise in its design and implementation.

2

XML provides a possible solution to this impediment to interoperability. By being extensible and modular
(via namespace), XML for AUVs can provide a common ground. Each system then simply has to map
itself into and out from one XML-based format. To support five disparate UAV systems, you then only
need to track ten relationships, two each for each system (Input and Output). Furthermore, since AUV
mission planning, command and control, and post mission analysis share many commonalities, a AUV
Tactical Markup Language would be well-suited as a starting place for all AUVs. It might need little to no
modification to work well with existing systems. Future systems could be constructed to “fit”, making
interoperability even easier.

According to Tim Berners-Lee’s keynote address at the WWW 2003 Symposium in Budapest, Hungary
May 2003, there are three stages to new users adopting XML. The first stage is “what the heck is this
stuff, and why is it useful for anything?” Next, the user decides he will use XML, but he doesn’t have to
understand or like it. Finally, the user picks up his laptop and tells everyone, yelling, “Look at this! The
whole world is here on my laptop!” The purpose was to demonstrate the potential of XML, open standards
and web-based technologies in the challenging domain of AUVs.

AUV Tactical Markup Language
The first step in constructing a Common XML-Based Mission and Data Formatting Language using XML
is defining a tag set. A tag set is the set of elements and attributes used to describe what is trying to
communicated or described. To make a language common and interoperable, tags must come from a
central XML registry that allows common access. XML registries are a vital component in the
implementation of shared data exchanges. The United States Department of Defense (DoD) XML
Registry constitutes guidance in the generation and use of XML among DoD communities of interest and
is the authoritative source for registered XML data and metadata components. [See
http://diides.ncr.disa.mil/xmlreg/user/index.cfm] Researching the DoD XML Registry resulted in the
realization that only some of the necessary tags for a common mission and data formatting language
exist.

A preliminary set of XML elements and attributes describing a mission was also developed based on the
command language for the Naval Postgraduate School’s (NPS) AUV Aries. “Namespaces are technical
mechanisms that allow overlapping XML to be tagged with distinguishing labels.” (From DoD Metadata
Registry and Clearinghouse) Some tags were chosen based on already existing tags in the DoD XML
Registry. However, many of the necessary tags had not already been defined in other Namespaces. As a
result, a proposed namespace specifically for AUVs was developed. In addition to the tagset, a XML
Schema Document was developed to validate mission-tasking orders. Finally, as an experimental test, an
XSLT template was developed to transform an XML document into a text file to be inputted into the NPS
AUV Workbench, a virtual simulation of AUV missions. Using XML and related technologies, generating
virtually any type of data file is possible. Follow on work in this area includes the refinement of this
language to be able to command all types of AUVs and refinement of the AUV Workbench to allow for
input and output of the data in this tactical markup language. [Hawkins and Van Luevan 2003]

The Schema Document for the AUV Tactical Markup Language
The power of XML was greatly enhanced by the development of the Schema. From the W3C, “XML
Schema: Structures specifies the XML Schema definition language, which offers facilities for describing
the structure and constraining the contents of XML 1.0 documents, including those which exploit the XML
Namespace facility.” [See XML Schema Part 1: Structures, http://www.w3.org/TR/xmlschema-1]

Simply put, a schema is a set of rules that a document follows, which software may need to read
before processing and displaying a document. Valid XML differs from well formed XML in its relationship
to a schema. Well-formed XML is designed for use without a schema, whereas valid XML explicitly
requires it.

Once written, a schema allows the user to check whether an XML document is valid. Valid XML
documents employ features that can significantly improve the usability of a document, including: linking
mechanisms, entities and attributes. Most XML Web sites are likely to be composed of valid XML
documents. Using a schema gives creators the freedom to structure their web sites and data display so
that use much greater feature sets than HTML has traditionally allowed. A sample of the Schema for the

3

AUV Tactical Markup Language appears in Figure 2. The entire proposed Namespace is available by
request.

Figure 2 Exemplar Schema Document for AUV Tactical Markup Language (Hawkins and Van

Luevan, 2003)

The tag, “<xs:restriction base="xs:decimal">” gives a clue as to the power of XML. There are many ways
to describe a heading. Each one is valid, but mixing them leads to trouble. Having the data defined by this
tag disallows non-decimal entries in this case. For instance, giving a compass heading such as “West”
would cause an error. While this is a gross example, there are many ways to describe position and
heading and confusion over format can require human in the loop review. Effectively, the use of a well-
written Schema solves the problem of “Garbage In/Garbage Out”.

This schema for the AUV Tactical Markup Language is a working document and can be extended (the X
in XML is extensible) such that design considerations, desired data and AUV-specific information can be
included by designating additional Namespaces.

Cross-Format Schema Protocol (XFSP)
XML documents are verbose by design. Transmitting these documents by common AUV methods would
be cumbersome and probably impossible using acoustic modems in noisy environments. Cross-Format
Schema Protocol (XFSP) has been developed as a general approach to binary serialization of XML
documents. Elements and attributes are replaced via a tokenization scheme which carefully preserves
valid XML document structure. XFSP uses XML schema as the basis for determining key document
parameters such as legal elements, attributes and data types. Originally motivated by the flexible
definition of networking protocols, binary serialization of XML via XFSP appears suitable both for
message streams and document-storage streams. An open-source XFSP software implementation
written in Java demonstrates the viability of the XFSP approach for XML document serialization and de-
serialization. [See http://www.movesinstitute.org/Theses/Serinthesis.pdf]

As an exemplar, you can compare the file formats in Figure 3. The first column represents X3D and can
be regarded as typical for any XML document. [Serin 2003] The second column represents Virtual Reality
Modeling Language (file extension .wrl). The third column is binary compressed X3D and the last column
represents binary compression of X3D subsequently zipped using GNU zip (gzip). Compression using
X3D, XFSP and gzip is significant. [Brutzman et al, 2003]

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by Barbara Van
Leuvan (Naval Postgraduate School) -->
- <!--This schema describes the AUV mission scripting. Refer to the mission.script.Help file
for a description of the commands. -->

- <xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema
elementFormDefault="qualified" attributeFormDefault="unqualified">
-<xs:annotation>

<xs:documentation>Start of defining data types</xs:documentation>
</xs:annotation>
- <xs:simpleType name="absoluteHeadingType">
- <xs:annotation>

<xs:documentation>Defines valid absolute heading
values</xs:documentation>

</xs:annotation>
- <xs:restriction base="xs:decimal">

<xs:minInclusive value="0" />
<xs:maxInclusive value="359.9" />
</xs:restriction>
</xs:simpleType>

4

129

111

84

34 33
29

0

20

40

60

80

100

120

140

x3d wrl b3d zip_x3d zip_wrl b3z

File Formats
Si

ze
 in

 K
B

yt
e

Serialization of XML
The XSFP algorithm for binary serialization (compression) of XML is quite straight forward. Roughly, the
process is:

1. Parse the XML schema
document.

2. Create a look-up table for
attributes and elements.

3. Assign unique token
numbers to the elements
and attributes.

4. Walk through the XML
document tree and put each
element and attribute into
the output stream by
replacing their tag names
with numbers.

5. Preserves the content in
binary form as compact
XML.

A simple address book example:

<name>
 <first>John</first>
 <last>Doe</last>
</name>

Assigning unique numbers to the attributes and elements produces the following table:

Tag Name Start Tag Number End Tag Number Data Type
name 11 20 SFString
first 21 30 SFString
last 31 40 SFString

Figure 5 Example Serialization of XML Tags

Then the serialized version can be generated:

 <11>
 <21>John<30>
 <31>Doe<40>
 <20>

While the size is not significantly reduced in this example, repetitive, long tags and even tags in series
can be replaced by tokens in this manner. This greatly reduces the overall size of the document.

De-serialization of XML
Since the Schema has been tokenized and both the sender and the receiver have the schema’s
equivalent tag tokens, the process is easily reversed.

1. Read tag numbers from the stream.
2. Retrieve element or attribute associated with that number.
3. Read the data.
4. Create the elements, attributes and bind data to them.
5. Rebuild the XML tree.

Figure 4 Size Comparison for Files using Binary
XML Compression (XFSP)

5

6. Retrieve data from the tree when needed.

The document is then available as a valid, fully realized XML document. It can be processed and
translated to fit the needs of the client.

Forward Error Correction (FEC) with Hamming Codes
With the serialization and compression of XML using tokens, it is then possible to add another layer of
data assurance known as Forward Error Correction (FEC) using Hamming Codes. [Hamming 1997]

Forward Error Correction (FEC) increases the ability of a receiving station to correct a transmission error,
thus increasing the throughput of a data link operating in a noisy environment by avoiding retranmission.
The transmitting station must append information to the data in the form of error correction bits, but the
increase in frame length may be modest relative to the cost of retransmission or detection.

Application-related communications will be performed as web-service requests. Binary XML compression
of messages and data streams will show greater compression performance than is possible with gzip
while retaining self-check schema-validation capabilities of XML. NPS further expects to allow optional
addition of Hamming-code forward error correction (FEC) to all binary XML messaging, allowing receiver-
side error detection and correction without retransmission. When combined with improved XML
interoperability, such capabilities can be considered superior to the majority of existing machine-to-
machine tactical communication encodings used by fleet systems.

The serialization of XML makes implementing Hamming Codes for AUVs much more feasible. Including
Hamming Codes in the transmission of AUV telemetry, Command and Control (C2) information and even
sonar imagery can greatly increase the reliability and reduce retransmission of AUV data.

The AUV Workbench
Another impediment to the effective use of multiple AUVs is the complexity of the mission planning and
analysis tools. This complexity is necessary, but each vehicle shares much of the same requirements for
mission planning, rehearsal and replay and therefore each of the software tools used for these activities
share commonalities. For instance, all mission planning tools must plot waypoints in one form or another.
All must have some way for analyzing the data gathered on a mission. For an individual operator, it is
impractical to learn all of these tools. For organizations, it may not be feasible to retain a cadre of experts,
one for each tool in order to be able to field multiple vehicles. This limits the ability to tactically deploy
multiple AUVs.

A common mission planning and analysis tool is proposed as one possible solution. The AUV Workbench
is such a tool. (See Figure 8 and Figure 9) It is Java-based, componentized and can be customized.
Custom buttons to launch separate applications can be placed on the right side of the window, mission
scripts in XML or plain text can be loaded and viewed in 2D and 3D views in the right panel, as well as
simplified text in the upper left pane. The graphical views and the mission script are currently linked
dynamically, if the text is modified, the change is portrayed in the Mission Viewer. Other functionalities
that are inherent in Java’s Graphical User Interfaces (GUIs) are included in the workbench: the ability to
redraw panels, input/output, tabular design, etc.

AUV Workbench Organization Overview
The AUV workbench consists of four main control threads. These threads communicate with each other
either directly or over the network for required interaction. The individual threads are responsible for four
distinct functions: mission execution; virtual world dynamics modeling and feedback; mission planning
and generation; and mission visualization.

The mission execution thread runs the software from the actual AUV. It is a mirror copy of the code on
board the vehicle. Utilization of the actual AUV software facilitates the development of control equations
and algorithms, and enables the realistic rehearsal and fine tuning of missions in a benign lab
environment prior to attempting their execution in open water. By querying the mathematical model of the
virtual world for telemetry data rather than onboard sensors, the AUV software can create for itself the

6

illusion that it is operating in the water and the software will behave accordingly. The AUV Workbench
currently contains two versions of the AUV execution software (with the primary differences being
implementation programming language and useable command language options). They are compiled C
code and Java. While these were both developed to run on vehicles operated by NPS, their behavior can
be adapted to other vehicles by adjusting the control constants and by adding, deleting or changing
control equations. The vehicle control algorithms can be tested and visualized with various mission
scripts, against known hydrodynamics models. Any effort to provide precision control for an AUV requires
an accurate estimation of both the vehicles physical and hydrodynamic parameters. Here a vehicle
model for controlled steering behaviors was developed and the hydrodynamic parameters were
calculated from actual data obtained from operations. [Johnson 2001]

The virtual world dynamics thread implements the AUV hydrodynamics mathematical model. When
passed a telemetry string from the AUV execution thread, the model is applied, and then a follow-on
telemetry string is generated to pass back to the AUV. Additionally, a Distributed Interactive Simulation
(DIS) packet is broadcast over the network to drive the visualization thread of the workbench (as well as
any other DIS-enabled visualization application that may be on the network). In addition to
hydrodynamics modeling, the dynamics thread contains classes that are utilized to model the vehicle’s
onboard sensors. Sonar data (or that from any other onboard sensor) can therefore be derived and
encapsulated within the telemetry string and DIS packets to allow for the realistic feedback to the AUV
execution software, and accurate mission visualization by the human operator. As with the execution
software, the hydrodynamics mathematical model and sensor models currently in use were developed to
model the vehicles operated by NPS, but can be arbitrarily adapted to other vehicles simply by modifying
the control constants.

The visualization portion of the workbench contains a 3D viewer that utilized X3D or VRML models of the
AUV and its virtual environment. By reading and interpreting the DIS packets as the come across the
network, the viewer automatically animates the vehicle. It provides visual feedback on control settings,
sensor effectiveness and utilization.

The final portion of the workbench provides a means of authoring and testing individual missions
symbolically using the Graphical User Interface. Missions generated by the workbench take the form of a
generic XML-based AUV Script Command Language (the schema currently supports mission scripting,
telemetry, sensor archiving and reporting, and inter-vehicle communication). Once a mission has been
generated, it is a fairly simple matter to use XSLT to convert it to any of a number of AUV command
formats that are capable of running on specific vehicles. To date, transformations have been developed
to convert automatically this language to command formats for two vehicles currently or previously
operated by the NPS. Additionally, this generic language can be run natively by one of the two versions
of execution software packaged with the AUV Workbench.

The vehicle execution code is shown running in the lover left pane of the Workbench (Figure 6). Code
sets for various vehicles can be implemented here, so that the vehicle control algorithms can be tested
and visualized with various mission scripts, against known hydrodynamics models. Any effort to provide
precision control for an AUV requires and accurate estimation of both the vehicles physical and
hydrodynamic properties. Here, a vehicle model for controlled steering behaviors was developed and the
hydrodynamic parameters were calculated from actual data obtained from operations. [Johnson 2001]

7

Figure 6 The AUV Workbench Graphical User Interface (GUI)

Mission Planning
Many AUVs share commonalities which allow for the development of a common tool for mission planning.
Waypoints, speed, heading, depth, and mission duration are some common features of almost every AUV
mission. There has been extensive study in what constitutes effective coverage for mine field clearance
and it will not be discussed. However, there are not only common features within the mission plan, but
there are also commonly found mission plans. “Mowing the Lawn” is a typical mission track and is often
repeated regularly, with only minor changes made for local conditions. It has been difficult in the past to
plan a mission for one vehicle, and then apply that exact same mission plan to another vehicle to allow for
true comparison and experimentation. The missions must be approximated due to the differences in the
planning tools. A common tool that “styles” each mission script to its appropriate vehicle would allow for
experimentation and validation of archetypal missions across various vehicles.

Figure 7 shows a sample mission script, using XML tags, that could be applied to various vehicles for
experimentation, without manual translation.

8

Figure 7 Sample Mission Planning Script, comparing XML and original plain text format

The AUV Workbench currently supports a simple, text-based mission script, as shown in Figure 8, but it
also supports the use of XML-based mission scripts. It can also be extended to include custom
applications that can be launched in a separate process by adding buttons to the right of the panels. This
becomes a very convenient way for users to bundle applications that they commonly use with AUV
mission planning.

Figure 8 The AUV Workbench – 2D Mission Planning

Mission Simulation
Experimental AUVs are the result of many years of effort. Other AUVs are expensive. None of them are
trivial or insignificant assets. It is important, especially when doing research into new tactics and
techniques, to be able to test and simulate. The AUV Workbench is valuable in this regard. A user can
test, simulate and visualize missions, new control algorithms and even new vehicles in a controlled
environment, safe from the rigors of the underwater environment. It allows systems and software to be
thoroughly tested before they are implemented onboard an AUV. The networking capability allows even
remote viewing of mission simulations by using the Distributed Interactive Simulation (DIS) protocol. [See
Distributed Interactive Simulation Working Group of the Web 3D Consortium
http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml/]

<?xml version="1.0" encoding="utf-8"?>
<auv-mission vehicle="aries">
 <mission>
 <position x="12" y="80" depth="5"/>
 <propeller rpm="700"/>
 <thrusters/>
 <standoff range="0.75"/>
 <waypoint x="110" y="80" depth="15"/>
 <hover/>
 <heading value="90"/>
 <wait time="10"/>
 <waypoint x="110" y="95"/>
 <hover/>
 <heading value="180"/>
 <wait absolute="false" time="10"/>
 <waypoint x="20" y="95" depth="5"/>
 <hover/>
 <heading value="270"/>
 <wait time="10"/>
 <hover x="12" y="80" depth="5"/>
 <heading value="0"/>
 <wait time="10"/>
 <propeller rpm="0"/>
 <thrusters on="false"/>
 </mission>
</auv-mission>

mission.script.beachtank3, feet

position 12 80 5
speed 700
thrusters-on

standoff-distance .75

waypoint 110 80 15
hover
course 90
wait 10

waypoint 110 95 15
hover
course 180
wait 10

waypoint 20 95 5
hover
course 270
wait 10

hover 12 80 5
course 0
wait 10

speed 0
thrusters-off

9

Figure 9 AUV Workbench - 3D Mission Visualization

Network Support for Distributed Simulations

Because the AUV Workbench uses the Distributed Interactive Simulation (DIS) Protocol to generate
network traffic, the missions it generates can be visualized across a local
or wide area network. DIS is the Institute of Electrical and Electronics
Engineers, Inc., (IEEE) recommended practice for networked simulations.
[See http://standards.ieee.org/catalog/olis/compsim.html] DIS is packet-
oriented and is a natural match for UDP/Multicast/Broadcast over IP.

From the DIS-Java-VRML Working Group of the Web 3D Consortium, "The
primary mission of DIS is to define an infrastructure for linking simulations
of various types at multiple locations to create realistic, complex, virtual
"worlds" for the simulation of highly interactive activities. This infrastructure
brings together systems built for separate purposes, technologies from
different eras, products from various vendors, and platforms from various
services and permits them to interoperate. DIS exercises are intended to
support a mixture of virtual entities (human-in-the-loop simulators), live
entities (operational platforms and test and evaluation systems), and
constructive entities (wargames and other automated simulations). The
DIS infrastructure provides interface standards, communications
architectures, management structures, fidelity indices, technical forums,
and other elements necessary to transform heterogeneous simulations
into unified seamless synthetic environments. These synthetic
environments support design and prototyping, education and training,
test and evaluation, emergency preparedness and contingency
response, and readiness and warfighting. [See http://www.web3d.org/WorkingGroups/vrtp/dis-java-
vrml/AnnotatedReferences.html#DIS]

The AUV Workbench produces standard data packets for DIS, called Entity State Protocol Data Units
(ESPDUs). These ESPDUs contain an entity’s position (in x,y,z coordinates), velocity, acceleration,
angular velocity, angular acceleration, and orientation. They also contain “articulation parameters”, which
handles things such as thruster orientation on an AUV. The Aries AUV model was created using X3D-
Edit. [See http://www.web3d.org/TaskGroups/x3d/translation/README.X3D-Edit.html]. Figure 10 shows

Figure 10 ESPDU Example

10

an example of the ESPDU fields found in the ESPDU transform node of X3D . This node accepts
network-routed values to drive the model through the virtual world.

Since DIS is an IEEE standard, anyone can buy the standard and write an implementation. Some
commercial implementations exists, but a free Java implementation from NPS is available. [See
http://web.nps.navy.mil/~brutzman/vrtp/dis-java-vrml]

The ESPDUs for a given entity each have a unique identifier called out in the header of the packet. The
object or model in the virtual world can then “listen” for its unique identifier and is driven around the virtual
world based on the entity state communicated in the data packet. The protocol has safeguards for lossy
networks, such as a five-second dead reckoning and virtual world course correction for temporary periods
when no packets have been received. The header information is encoded from the field values shown in
Figure 10.

Server-Side Support

As AUVs and other data collectors become more ubiquitous, it will be increasingly challenging to manage
all these data. On recent exercises such as Millennium Challenge ’03, the data collection was done by
handing an operator a diskette with the mission data. It was then processed by a technician and uploaded
to a local computer. This process, while robust, was labor intensive.

With XML-based mission results, this process can be automated fairly easily. In the AUV Workbench, the
results are gathered from multiple sources and simply pushed up via the web to a server. Because these
files contain sufficient meta-data, the server can automatically sort, file and even validate the information
based on a Schema. From this web archive, mission results can be presented in easily understood ways,
such as HTML pages and X3D replay of missions. Large scale mission repositories can be made
available for research and tactical exploitation.

Real World Results
Currently, there are no data-rich AUV mission archives widely available on the World Wide Web. The data
are ephemeral. Archival information is often limited to MATLAB® generated plots and HTML pages with
imagery, but none of the actual mission data. This limits the ability of others to scrutinize and analyze the
data. Adopting a common AUV Tactical Mission Language would allow for the auto-generation of web-
based archives. (Figure 12)

This web-based archive could be viewed in a web browser, the data analyzed either by machine or by
humans in 2D or 3D; it could be transformed via XSLT to other data formats and even imported into other
mission planning tools for further experimentation. Of course, it could also be obscured and encrypted, by
any means that is commonly available for other web-based information.

Web-based Replay of Missions

Figure 11 is an example of one web-based mission replay, available in the SAVAGE Model Archive at the
Naval Postgraduate School (NPS). There are over 800 model components and models available there,
including many AUVs and underwater mines. These models are typically formatted such that they can be
automatically inserted into a computer generated scene. As such, they can greatly aid in the analysis by
creating visual cues for the analyst. [See http://www.stl.nps.navy.mil/~brutzman/Savage/contents.html]

11

Figure 12 Various AUV Mission Results in a Web-based Archive

Related Efforts
The SAVAGE project is a long-term research program seeking to push the frontier of Web-based 3D
scenario authoring and visualization. In addition to the numerous models and case-study examples
previously described, directions for the work include:

• Expanding the palette of models and events that can be inserted into a scenario, including
representation of control measures and other non-physical concepts in the battlespace.

• Creating scenarios of greater complexity depicting the interplay of represented land, air, sea, and
littoral objects and operations. Include the interaction of operations with control measures.

• Creating branching flows in the scenario script to present decision points that engage the user in
the unfolding scenario.

• Investigating assignment of behaviors to scenario objects; for example, from XML libraries of pre-
scripted actions (see Lacy and Pearman, 2000) with adaptation mechanisms to the current
situation.

• Developing techniques for rapidly generating battlespace terrain, to include representation of
built-up areas and vegetation cover, for use in the Web3D environment.

• Automating extraction of scenario information from doctrinal operations orders and plans.
• Integrating Web3D graphics into an overarching Web-based Modeling and Simulation framework.

The SAVAGE Model Archive and related tools have proven to be a flexible and powerful base for
modeling and simulation visualization. [Blais et al. 2001 and 2002]

12

XML-based Tactical Chat (XTC)

Text-based communications over Internet Protocol (IP) or chat has been around for many years. It is
widely adopted by most Internet users and has proven to be useful in tactical situations. There are
several popular, but proprietary tools for chat. None are currently officially supported by the US Navy,
because of security issues and licensing concerns. XML Tactical Chat (XTC) over comes some of these
restrictions because it complies with the principles of Open Standards. It is free to use, open source
software that bridges multiple platforms and protocols. It can be inspected, modified and improved without
the encumbrances of commercial software and since it is XML-based, the messages themselves are
readable by machines and humans alike. Unlike commercial chat clients, it doesn’t rely on specialized
servers. It operates on any web server and can cross network boundaries using standard protocols. It is
also client agnostic, meaning that XSLTs can be performed to suit any specific client application. It
supports individual or group messaging, and can be used to transmit binary (imagery) as well as plain
text.

Agents can also use XTC to interact with agent-based software. This allows for an element of Artificial
Intelligence to be interjected into the tactical chat environment. For instance, in an information-rich,
tactical environment, agents could be assigned to watch targets of interest and when these targets show
a change of intention (moving off a station, for instance), an agent could send out a tactical chat message
to the analyst. This makes it possible for the analyst to track many more targets than otherwise possible.

Extensible Modeling and Simulation Framework (XMSF)

The Extensible Modeling and Simulation Framework is defined as a composable set of standards, profiles
and recommended practices for web-based modeling & simulation (M&S). XML-based markup
languages, Internet technologies and Web Services will enable a new generation of distributed M&S
applications to emerge, develop and interoperate. XMSF integrates several high-level requirements
derived from years of experience with M&S frameworks, and the challenges of their effective deployment
across diverse networks and systems.

XMSF must enable simulations to interact directly and scalably over a highly distributed network,
achieved through compatibility between a web framework and networking technologies. XMSF must be
equally usable by human and software agents. Clearly XMSF must support composable, reusable model
components. XMSF use must not be constrained by proprietary technology or legally encumbering
patents, since such barriers discourage the free, open, ad hoc development of interconnected tactical
models and simulations. [See http://www.movesinstitute.org/xmsf/xmsf.html and
http://netlab.gmu.edu/xmsf]

13

WHAT IS XMSF?

• XMSF provides the technical basis for transformational interoperability via XML interchange,
profiles, and recommended practices for web-based modeling & simulation.

• Broad technical interoperability is provided by open standards, XML-based markup languages,
Internet technologies, and cross-platform Web services.

• Supports diverse distributed modeling and simulation applications. Also enables simulations to
interact directly and scale appropriately over a distributed network through composable and
reusable model components.

• Employs mainstream practices of enterprise-wide software development.
• Provides support for all types and domains of modeling and simulation (constructive, live, virtual,

and analytical).
• Excellent support for ISO Extensible 3D (X3D) Graphics Specification with industry-academic-

government activity in multiple standards consortia

WHAT ARE THE ADVANTAGES OF XMSF?

• Supports Open Standards in Web, Internet, and XML technologies. Web services allow self
validating syntax and semantics to achieve cross-cutting interoperability in modeling and
simulation.

• Development and acceptance of common data and metadata standards provides semantic
consistency among systems and services.

• Profiles are specification suites based on international standards, which define common
capabilities for content production user/application support.

• Data-driven conversion capabilities and application ubiquity provides both best business case
and best technical case on a DoD-wide scale.

As with other efforts, XMSF uses best business practices from the World Wide Web, strong institutional
support and cutting edge technology to solve some of the grand challenges of modeling and simulation.
[Brutzman and Zyda 2002]

Conclusion
Interoperability through open-standards, loosely coupled data and web-technologies is crucial to the
success of multiple vehicular and multi-national operations. Open source applications such as the AUV
Workbench benefit from collaborative efforts, across international and technological boundaries. It is
componentized and scaleable to meet changing needs. The user, not the developer, sets the
requirements under these conditions.

Through the use of X3D, users can rehearse, replay and create virtual reality. This ability to “see” the
vehicle, when it would otherwise be obscured by the depths to the ocean during replay and to test new
ideas through simulation is critical to success. Any failure, while on a real mission, can be catastrophic.
While simulation plays a limited role in mission planning across most defense-related activities, its
applicability to AUVs and their operation in the harsh underwater environment is clear.

The related efforts touched upon here reveal a larger strategy: when open source, open standards, combine with
best e-business practices, every effort then becomes related, synergies are created and tasks that once seem
daunting, become achievable.

14

References

Blais, C.L., Brutzman, D., Harney, J.W., & Weekley, J. (2002a). “Web-based 3D reconstruction of
scenarios for limited objective experiments”, Proceedings of the 2002 Summer Computer Simulation
Conference, San Diego, 17-19 July. Available at
http://www.movesinstitute.org/Publications/S192_Blais.pdf

Brutzman, D. and McGregor, D., Naval Postgraduate School, and Hudson, A., Yumetech Inc., “XML
Binary Serialization using Cross-Format Schema Protocol (XFSP) and XML Compression Considerations
for Extensible 3D (X3D) Graphics”, Binary Interchange Workshop of the W3C, 2003. Available at
http://www.w3.org/2003/08/binary-interchange-workshop/40-
BrutzmanXmlBinarySerializationUsingXfspW3cWorkshopSeptember2003.pdf

Brutzman, D and Zyda, M., “Extensible Modeling and Simulation Framework (XMSF) Challenges for Web-
Based Modeling and Simulation”
http://www.movesinstitute.org/xmsf/XmsfWorkshopSymposiumReportOctober2002.pdf

Distributed Interactive Simulation Working Group of the Web 3D Consortium
www.web3d.org/WorkingGroups/vrtp/dis-java-vrml

Hamming, R., The Art of Doing Science and Engineering, Learning to Learn, Gordon and Breach, 1997

Hawkins, D. and Van Leuvan B., “An XML-based mission command language for autonomous
underwater vehicles (AUVs)”, Master’s Thesis, Naval Postgraduate School, Monterey, CA June 2003

Neushul, J., “Interoperability, data control and battlespace visualization using XML, XSLT and X3D”,
Master’s Thesis, Naval Postgraduate School, Monterey, CA 03 September, 2003. Available at
http://www.movesinstitute.org/Theses/Neushulthesis.pdf

Johnson, J., “Parameter Identification of the Aries AUV”, Master’s Thesis, Naval Postgraduate School,
2001. Available at http://stinet.dtic.mil/cgi-
bin/fulcrum_main.pl?database=ft_u2&searchid=0&keyfieldvalue=ADA397498&filename=%2Ffulcrum%2F
data%2FTR_fulltext%2Fdoc%2FADA397498.pdf

Serin, E., “Design and Test of the Cross-Format Schema Protocol (XFSP) for Networked Virtual
Environment”, Master’s Thesis, Naval Postgraduate School, Monterey, CA March 2003

XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points

XML Schema Part 1: Structures, http://www.w3.org/TR/xmlschema-1

15

	Text3: 2004 Mine Countermeasures & Demining Conference: Asia-Pacific Issues & Mine Countermeasures (MCM) in Wet Environments, Australian Defence Force Academy, Canberra Australia, 9-11 February 2004.

