
1

Figure 1. Phoenix AUV testing in Moss Landing
Harbor, California.

The Phoenix Autonomous Underwater Vehicle

Don Brutzman, Tony Healey, Dave Marco and Bob McGhee
Center for Autonomous Underwater Vehicle Research

Code UW/Br, Naval Postgraduate School
Monterey California 93943-5000 USA

brutzman@nps.navy.mil

Abstract. The Phoenix autonomous underwater collaboration with other scientists interested in either
vehicle (AUV) is a robot for student research in robot or virtual world. Repeated validation of
shallow-water sensing and control (Figure 1). Phoenix simulation extensions through real-world testing
is neutrally buoyant at 387 pounds (176 kg) with a hull remains essential. Details are provided on process
length of 7.2 feet (2.2 m). Multiple propellers, coordination, reactive behaviors, navigation, real-time
thrusters, plane surfaces and sonars make this robot sonar classification, path replanning around detected
highly controllable. The underwater environment obstacles, networking, sonar and hydrodynamics
provides numerous difficulties for robot builders: modeling, and distributable computer graphics
submerged hydrodynamics characteristics are complex rendering. Finally in-water experimental results are
and coupled in six spatial degrees of freedom, sonar is presented and evaluated.
problematic, visual ranges are short and power
endurance is limited. Numerous Phoenix contributions
include artificial intelligence (AI) implementations for
multisensor underwater navigation and a working
three-layer software architecture for control.
Specifically we have implemented the execution,
tactical and strategic levels of the Rational Behavior
Model (RBM) robot architecture. These three layers
correspond to hard-real-time reactive control,
soft-real-time sensor-based interaction, and long-term
planning respectively. Operational software
functionality is patterned after jobs performed by crew
members on naval ships. Results from simple missions
are now available.

In general, a critical bottleneck exists in AUV
design and development. It is tremendously difficult
to observe, communicate with and test underwater
robots because they operate in a remote and hazardous
environment where physical dynamics and sensing
modalities are counterintuitive. Simulation-based
design using an underwater virtual world has been a
crucial advantage permitting rapid development of
disparate software and hardware modules. A second
architecture for an underwater virtual world is also
presented which can comprehensively model all
necessary functional characteristics of the real world in
real time. This virtual world is designed from the
perspective of the robot, enabling realistic AUV
evaluation and testing in the laboratory. 3D real-time
graphics are our window into the virtual world,
enabling multiple observers to visualize complex This work describes software architectures for an
interactions. autonomous underwater robot and for a corresponding

Networking considerations are crucial within and underwater virtual world, emphasizing the importance
outside the robot. A networked architecture enables of 3D real-time visualization in all aspects of the
multiple robot processes and multiple world design process. Recent work using the Phoenix AUV
components to operate collectively in real time. is notable for the successful implementation and
Networking also permits world-wide observation and integration of numerous software modules within

1 INTRODUCTION

2

Figure 2. Phoenix AUV shown in test tank
(Torsiello 94).

multiple software layers. The three-layer software Chapter Organization. Section 2 presents
architecture used is the Rational Behavior Model motivations for artificial intelligence (AI) approaches
(RBM), consisting of reactive real-time control in underwater robotics. Section 3 describes robot
(execution level), near-real-time sensor analysis and hardware for Phoenix. Sections 4 through 7 examine
operation (tactical level), and long-term mission the Rational Behavior Model (RBM) software
planning and mission control (strategic level) architecture, detailing the execution, tactical and
(Byrnes 96) (Marco 96b). In effect a higher robot strategic levels. Section 8 describes robot networking.
software layer also exists: an off-line mission assistant Sections 9 and 10 discuss virtual world design criteria
that uses rule-based constraints and means-ends and visualizing control algorithms. Section 11
analysis to help human supervisors specify mission presents AUV-virtual world communications which
details, followed by automatic generation of strategic permit real-time physics-based response in the
level source code. Results for simultaneous operation laboratory. Sections 12 and 13 discuss interactive 3D
of the three onboard robot software layers (running an computer graphics and sonar visualization. Section 14
autogenerated mission) have been verified by virtual evaluates experimental results. Section 15 points out
world rehearsal and in-water testing (Davis 96a, 96b). areas for future work. The chapter closes with

Theoretical development stresses a scalable conclusions, references, and pointers to a repository for
distributed network approach, interoperability between software and documentation.
models, physics-based reproduction of real-world
response, and compatibility with open systems
standards. Multiple component models are networked Untethered underwater robots are normally called
to provide interactive real-time response for robot and Autonomous Underwater Vehicles (AUVs), not
human users. Logical network connectivity of physical because they are intended to carry people but rather
interactions is provided using standard sockets and the because they are designed to intelligently and
IEEE standard Distributed Interactive Simulation independently convey sensors and payloads. AUVs
(DIS) protocol (IEEE 95). Implementation of the must accomplish complex tasks and diverse missions,
underwater virtual world and autonomous robot are all while maintaining stable physical control with six
tested using the actual Phoenix AUV (Figure 2). spatial degrees of freedom (i.e. posture, meaning

In order support repeatability of our results, already-severe power and propulsion endurance
documentation and source code are available constraints. Laser sensors are usable to approximately
electronically (Brutzman 96b, 96c). Current work 100 m range and provide good range and bearing data,
includes model validation as well as adapting but remain expensive, hard to tune and subject to
hydrodynamics and controls coefficients for other turbidity interference. Typically little or no
submersibles. Ongoing work also includes making 3D communication with distant human supervisors is
graphics and networking compatible with the Virtual possible. When compared to indoor, ground, airborne
Reality Modeling Language (VRML 2.0), to permit or space environments, the underwater domain
Internet-portable rendering and interaction via any typically imposes the most restrictive physical control
computer connected to the World Wide Web. and sensor limitations upon a robot. Underwater robot

2 MOTIVATION

3D position plus 3D orientation).
The underwater environment is highly challenging.

Hydrodynamics forces are surprisingly cross-coupled
between various axes because of asymmetric vehicle
geometry and the nonlinear drag "added mass" of
water fluid carried along with moving vehicles. Active
sonar returns provide precise range but poor bearing
accuracy, and can be subject to frequent dropouts.
Sonar range maxima are highly frequency-dependent.
At moderate ranges (beyond several hundred meters)
sonar paths can bend significantly due to continuous
refraction from sound speed variation, which is caused
by changes in water temperature, salinity and pressure
(i.e. depth). Vision is only possible for short ranges
(tens of meters at best) and is often obscured if water
is turbid. Underwater vision also requires powerful
lighting, which is an unacceptable power drain due to

3

� Complex Hydrodynamics
� coupled in six spatial degrees of freedom
� accompanying "added mass" of water
� instability can be severe or fatal

� Sonar
� accurate ranges but bearings poor
� numerous nonlinear factors affect

reverberation and attenuation
� sonar path bending at long ranges due to

sound speed profile (SSP) effects
� Vision and Laser
� range limited by turbidity
� lighting requires excessive power

� Endurance typically a few hours
� limited power available
� constrains all other equipment

� Navigation
� ocean currents vary with time, location
� acoustic navigation requires calibrated

prepositioned transponder field
� GPS and inertial methods possible

� Communications
� tether is an unacceptable encumbrance
� acoustic limited in bandwidth, range
� optical extremely limited range

Figure 3. Environmental constraints for underwater robots
are severe.

considerations remain pertinent as worst-case is performed piecemeal and incrementally. For
examples relative to other environments (Figure 3). example, a narrow problem might be identified as

A large gap exists between the projections of theory important. Mission drives design. A well-defined goal
and the actual practice of underwater robot design. provides priorities that can be understood by a large
Despite numerous remotely operated vehicles (ROVs) research group, clear criteria for making difficult
and a rich field of autonomous robot research results, design tradeoffs, and a finish line: success metrics are
few complete AUVs exist and their capabilities are defined. We have chosen shallow-water minefield
limited. Cost, inaccessibility and scope of AUV design mapping as our driving application. At the 1995
restrict the number and reach of players involved. Symposium on Autonomous Vehicles for Mine
Interactions and interdependencies between hardware Countermeasures (MCM) (Bottoms 95), consensus was
and software problems are poorly understood. reached that all technical components exist which are
Equipment reliability and underwater electrical needed to build effective MCM AUVs. Our motivating
connections are constantly challenging. Testing is goal is to demonstrate such a vehicle. We intend to
difficult, tedious, infrequent and potentially hazardous. demonstrate that there are no fundamental technical
Meaningful evaluation of results is hampered by impediments to mapping shallow-water minefields
overall problem complexity, sensor inadequacies and using affordable underwater robots. We are
human inability to directly observe the robot in situ. integrating component technologies necessary for
Potential loss of an autonomous underwater robot is underwater autonomy in a working system, and are
considered intolerable due to tremendous investments making good progress toward reaching that goal.
in time and resources, the likelihood that any failure Related efforts. Over a dozen other research
will become catastrophic, and difficulty of underwater groups are active in underwater robotics. The
recovery. Massachusetts Institute of Technology (MIT) Sea

Underwater robot progress is slow and painstaking Grant has deployed several Odyssey-class AUVs
for other reasons as well. By necessity most research notable for open-ocean and under-ice oceanographic

suitable for solution by a particular AI paradigm and
then examined in great detail. Conjectures and
theories are used to create an implementation which is
tested by building a model or simulation specifically
suited to the problem in question. Test success or
failure is used to interpret validity of conclusions.
Unfortunately, integration of the design process or
even final results into a working robot is often difficult
or impossible. Lack of integrated testing prevents
complete verification of conclusions.

AUV design must provide autonomy, stability and
reliability with little tolerance for error. Control
systems require particular attention since closed-form
solutions for many hydrodynamics control problems
are unknown. AI methodologies are thus essential for
numerous critical robot software components.
Historically, the interaction complexity and emergent
behavior of multiple interacting AI processes has been
poorly understood, incompletely tested and difficult to
formally specify (Shank 91). We are happy to report
that these problems can be overcome. Our three-layer
robot software architecture, in combination with a
physically and temporally realistic virtual world, has
enabled effective research, design and implementation
of an autonomous underwater robot.

The charter of the Naval Postgraduate School
(NPS) Center for AUV Research group is to support
graduate student thesis research. Certainly there is no
shortage of problems that underwater robotics
researchers might work on. We believe that having a
clear and compelling objective is fundamentally

4

Figure 4. Exterior view of NPS Phoenix AUV.

Figure 5. Internal view of NPS Phoenix AUV.

exploration leading to the possibility of autonomous meter and a depth pressure cell. Five rotational gyros
oceanographic sampling networks (AOSNs) mounted internally are used to measure angles and
(Curtin 93). The Florida Atlantic University (FAU) rates for roll, pitch and yaw respectively. Small
ocean engineering department has built a series of cross-body thruster tunnels were locally designed and
vehicles which include fuzzy logic controllers and built for the Phoenix AUV. An in-line bidirectional
special sensing techniques (Smith 94). The Woods propeller inside each thruster can provide up to 2 lbf
Hole Oceanographic Institute (WHOI) Deep (8.9 N). Detailed schematics and specifications of all
Submergence Lab (DSL) has specialized in long-term Phoenix AUV hardware components are presented in
bottom monitoring, acoustic communications and (Torsiello 94).
remotely teleoperated task-level supervision of
manipulators (Sayers 96). An excellent introductory
text on underwater robot design and control is
(Yuh 95). Annual AUV technical symposia
are sponsored in alternate years by the
IEEE Oceanic Engineering Society (OES)
(http://auvibm1.tamu.edu/oes) and the Autonomous
Undersea Systems Institute (AUSI)
(http://www.cdps.maine.edu/AUSI).

Important problem domain for AI. Despite many
handicaps, the numerous challenges of operating in the
underwater environment force designers to build robots
that are truly robust, autonomous, mobile and stable.
This fits well with a motivating philosophy of Hans
Moravec:

.. solving the day to day problems of developing a
mobile organism steers one in the direction of
general intelligence... Mobile robotics may or may
not be the fastest way to arrive at general human
competence in machines, but I believe it is one of
the surest roads. (Moravec 83)

3 HARDWARE
Detailed knowledge regarding robot capabilities

and requirements are necessary prerequisites for
designing and implementing robot software.
Overview descriptions of the Phoenix AUV and related
research appear in (Brutzman, Compton 91). Both an
external view and internal vehicle component
arrangements are shown in Figures 4 and 5.

Designed for research, the Phoenix AUV has four
paired plane surfaces (eight fins total) and
bidirectional twin propellers. The hull is made of
pressed and welded aluminum. The vehicle is
ballasted to be neutrally buoyant at 387 lb (176 kg)
with a hull length of 7.2 ft (2.2 m). Design depth is
very shallow at 20 ft (6.1 m). Two pairs of sealed
lead-acid gel batteries provides vehicle endurance of
90-120 minutes. Since battery electrical discharge
produces hydrogen gas, hydrogen absorber pellets
reduce the potential hazard of explosion. Twin
propellers provide 5 pounds of force (lbf) (22.5 N) with
resulting speeds up to 2 knots (~1 m/sec). A
free-flooding (vented to water) fiberglass sonar dome
supports two forward-looking sonar transducers, a
downward-looking sonar altimeter, a water speed flow

The primary computer for low-level hardware
control is a GesPac 68030 running the OS-9 operating
system. A significant recent hardware improvement
was addition of a Sun Sparc 5 "Voyager" laptop
workstation, with the display monitor removed to save
space. Also connected is a paddlewheel speed sensor,
depth sensor, DiveTracker acoustic navigation system
(Flagg 94), Geographic Positioning System (GPS),
Differential GPS (DGPS) and inertial navigation
system (INS) equipment (Bachmann 96), as well as
Ethernet local-area network (LAN) connections
between onboard computers and (optionally) to
external networks. Twin sonars have 1 cm resolution
out to 30 m maximum range, with the ST725
(725 KHz) having a 1(wide by 24(vertical beam, and
the ST1000 (1 MHz) a 1(conical beam. Each sonar is
steered mechanically in 0.9(increments.

4 SOFTWARE OVERVIEW
The Phoenix AUV is primarily designed for

research on autonomous dynamic control, sensing and
AI. Software control of the vehicle is provided at a
low level corresponding to maneuvering control of
plane surfaces and propellers, as well as at a high level

Strategic

Tactical

Execution

RBM
level Emphasis

Manned
Submarine

Mission
Plan Logic

Hardware
Control

Sequencing
Behaviors

Commanding
Officer

Watchstanders

Officer of Deck,
Watch Officers

5

Figure 6. Rational Behavior Model (RBM)
software architecture (Holden 95).

corresponding to strategic planning and tactical strategic level. This architectural relationship is
coordination. Sensors are also controlled via execution illustrated in Figure 6 (Holden 95).
level microprocessor-hardware interfaces, although
some sensor functions may be optionally commanded
by the intermediate tactical level, such as steering
individual sonar transducer heading motors during
classification.

Due to the large variety of critical tasks an
autonomous underwater robot must perform, a robust
multilevel software architecture is essential.
Underwater robot software architectures are a
particular challenge because they include a many of
the hardest problems in robotics, control and AI over
short, medium and long time scales.

Rational Behavior Model (RBM). The software
architecture used by the Phoenix AUV is the Rational
Behavior Model (RBM) (Byrnes 93, 96). The Rational
Behavior Model (RBM) is a trilevel multiparadigm Human analogies are particularly useful for naval
software architecture for the control of autonomous officers working on this project who already know how
vehicles. Execution, tactical and strategic levels to drive ships, submarines and aircraft, since they
correspond roughly to direct interaction with vehicle provide a well-understood partitioning of duties and a
hardware and environment, intermediate clearly defined task lexicon. The naval analogies used
computational processing of symbolic goals, and here merely express common and essential robotics
high-level planning, respectively. The three levels of requirements using terminology familiar to the many
RBM correspond to levels of software abstraction officer students who have worked on Phoenix. This
which best match the functionality of associated tasks. approach permits them to intuitively apply at-sea
Temporal requirements range from hard-real-time experience and domain knowledge. The RBM
requirements at the execution level, where precise paradigm continues to serve well as a formal robot
control of vehicle sensors and propulsion is necessary architecture which scalably composes numerous
to prevent mission failure or vehicle damage, to critical processes having dissimilar temporal and
soft-real-time long-term planning at the strategic level. functional specifications.

RBM provides an overall structure for the large RBM three levels summarized. Execution level
variety of Phoenix AUV software components. A software integration includes physical device control,
particular advantage of RBM is that the three levels of sense-decide-act, reactive behaviors, connectivity, a
RBM can be informally compared to the mission script language, and stand-alone robustness in
watchstanding organization of a submarine crew (i.e. case of loss of higher levels. Tactical level software
a manned AUV). Watchstanders operating vehicle includes Officer of the Deck (OOD) coordination of
sensors, the propulsion plant and diving station parallel tactical processes, telemetry vector state
controls correspond to the execution level. Precise variable updates as a form of shared memory, sonar
real-time control is needed at this level. The Officer control, sonar analysis and classification, path
Of the Deck (OOD) is represented in the tactical level, planning, DiveTracker acoustic navigation,
carrying out Commanding Officer (CO) orders by DiveTracker acoustic communications,
sending individual commands capable of being carried DGPS/GPS/INS navigation, and fail-safe mission abort
out by watchstanders at the execution level. Due to the if strategic level commands are lost. Strategic level
diversity of tactical tasks and the complexity of some software integration includes cross-language message
orders from the CO, the OOD has assistants at the passing, linking dissimilar binary executables, and
tactical level to assist in their decomposition. These several functionally equivalent strategic level
departments (navigation, sonar, path replanner etc.) variations: missions prescribed by Prolog rules, static
permit the OOD to concentrate on sequencing and mission scripts or an off-line mission generation expert
coordinating overall vehicle operation rather than system. There are numerous three-level robot
exhaustively directing every detail. Finally the CO is architectures and many are similar to RBM.
responsible for mission generation and successful Operating Systems and Compilers. Interestingly
completion. CO tasks include mission-related enough, operating system and compiler considerations
planning and decision making, all performed at the have been most notable for their incompatibilities

rather than their power. Aside from multitasking and

6

interprocess communications, we have not yet found it development of software in all three software levels,
necessary (or desirable) to take advantage of real-time independently and in concert, first in the virtual world
operating system constructs. The execution level and then in the real world.
resides on a GesPac 68030 under OS-9 written in Declaring that combined models create a virtual
Kernighan and Richie (K&R) C, a precursor to world rather than a simulation is not an overstatement.
ANSI C. The tactical and strategic levels currently From the robots perspective, the virtual world can
reside on the Voyager Sparc 5 laptop under Solaris effectively duplicate the real world if robot
Unix, written in ANSI C and Prolog respectively. hardware/software response is identical in each
Additionally, tactical and execution software can domain. In effect, this is a type of Turing test from the
identically compile under SGI Irix 5.3 Unix in robot's perspective. Such a concept is controversial,
ANSI C. Compilation of single version source files perhaps especially among reactive behavior-based
across a variety operating system architectures and approaches which assume world models are
language variants is achieved through use of #ifdef unavoidably overcomplicated and use "the world is its
and Makefile constructs (Brutzman 96c). This own best model" (Brooks 86). In our case the
prevents "versionitis" or multiple file versions which challenges of the underwater environment eliminate
inevitably lead to programmer confusion, incompatible relying on world availability throughout robot
source code interoperability and wasted effort. We are development. Development of a virtual world
continuing this interoperability trend by porting to the architecture that can realistically support the robot
well-supported public domain compiler g++ architecture has produced a new paradigm for robot
(GNU ANSI C/C++). software development (Brutzman 92a, 93, 94).

Hierarchical versus reactive. Only a few years
ago, robot architecture designers seemed preoccupied
with bipolar arguments between hierarchical and Disaster and divergence. In 1994 the execution
reactive approaches. Hierarchical stereotypes included level was the only software which effectively existed
phrases like deliberative, symbolic, structured, inside the Phoenix AUV. A second networked version
"top down," goal-driven, explicit focus of attention, of execution level was adapted to run in conjunction
backward inferencing, world models, planning, search with developmental tactical routines and the
techniques, strictly defined goals, rigid, unresponsive underwater virtual world. A disastrous hydrogen
in unpredicted situations, computation-intensive, and explosion occurred in 1994 which required over a year
highly sophisticated performance. Reactive stereotypes to repair. During this reconstruction period many
included phrases like subsumptive, "bottom up," changes and enhancements were made to the AUV
sensor-driven, layered, forward inferencing, robust software. Unfortunately the two versions of execution
subsuming behaviors, avoid both dynamic planning level software grew far apart as they progressed, with
and world models, behave somewhat randomly, the in-water version emphasizing new hardware
succeed without massive computations using interfaces (Healey, Marco 95) and the virtual world
well-considered behaviors, difficulty scaling up, version emphasizing increased functionality
elusive stability and nondeterministic performance. (Brutzman 94).
RBM is a hybrid architecture that is hierarchical at the Two versions into one. The top priority for 1995
top layer, reactive at the bottom layer and a mixture in efforts was to merge the two different versions of the
between. Real-time responsiveness varies execution level. The in-water code was painstakingly
correspondingly at each level. From our experience reintegrated with the virtual world version, one
with Phoenix it appears clear that a three-layer hybrid function at a time. This approach permitted frequent
architecture is essential for a robot that must meet a testing in the virtual world as well as continuous
broad range of timing requirements. Similar execution level accessibility to other tactical level work
three-layer hybrid architectures now appear to be the which proceeded in parallel. Laboratory bench tests
norm for many mobile robots. were also conducted to ensure that software functions

World models. Numerous Phoenix AUV theses and controlled the proper hardware and direction of
source code implementations have been handicapped rotation of moving components was correct. A single
by inadequate end-to-end hardware and software version of the combined execution level source code
functionality within the vehicle. Such constraints are had to run on different computer architectures, using
common for AUVs. Availability of networked different compilers, and with different physical and
hydrodynamics and sonar models for integrated logical interfaces. The new source code also had to
simulation during robot development have been run identically in the real world and the virtual world,
invaluable for development of robot control all without error. This effort was successful (Burns 96)
algorithms. This approach has permitted realistic (Brutzman 96a).

5 EXECUTION LEVEL

7

HELP Provide keywords list

WAIT # Wait/run for # seconds

WAITUNTIL # Wait/run until clock time

QUIT do not execute any more

RPM # [##] Prop ordered rpm values

COURSE # Set new ordered course

TURN # Change ordered course #

RUDDER # Force rudder to # degrees

DEPTH # Set new ordered depth

PLANES # Force planes to #

THRUSTERS-ON Enable vertical and
lateral thruster control

NOTHRUSTER Disable thruster control

ROTATE # open loop rotation
control

NOROTATE disable open loop rotate

LATERAL # open loop lateral control

GPS-FIX Proceed to shallow depth,
take GPS fix

GPS-FIX-COMPLETE Surface GPS fix complete

GYRO-ERROR # Degrees of gyro error
[GYRO + ERROR = TRUE]

LOCATION-LAB Vehicle is operating in
lab using virtual world.

LOCATION-WATER Vehicle is operating in
water w/o virtual world.

POSITION # ## [###] reset dead reckon
i.e. navigation fix.

ORIENTATION # ## ### (phi, theta, psi)

POSTURE #a #b #c #d #e #f
 (x, y, z, phi, theta, psi)

OCEANCURRENT #x #y [#z]

TRACE verbose print statements

STANDOFF # Change standoff distance
 for WAYPOINT-FOLLOW,

HOVER

WAYPOINT #X #Y [#Z]

HOVER [#X #Y] [#Z] [#orientation]
[#standoff-distance]

Figure 7. Mission script language (from file
mission.script.HELP) (Brutzman 94).

Telemetry state vector. The execution level runs in interface to sensor and hydrodynamics models when
a tight sense-decide-act loop and provides real-time operating in the virtual world.
control of vehicle sensors and effectors. Sensor data
and effector orders are recorded in a telemetry state
vector. This state vector is updated at the closed loop
repetition rate, typically 6-10 Hz. The state vector is
used for mission data recording, sharing critical
parameters among all tactical processes, and providing
a data-passing communications mechanism which
permits identical operation in the real world and the
virtual world (described later). State vector
parameters, message-passing semantics and relation to
flow of control are described in detail in
(Brutzman 94).

Vehicle control. As current AUV research
indicates, a great variety of control modes are possible
when controlling vehicle posture and movement. A
primary goal for the execution level is to provide
robust open-loop and closed-loop control using
propellers, cross-body thrusters and fin surfaces.
Direct open-loop control of all these effectors is
available, singly or in combination. Closed-loop
control is available for course, depth and position,
either in waypoint-follow mode or hover mode.
Waypoint-follow mode relies on propellers and plane
surfaces, which works well while transiting but poorly
when stationary. Hover mode relies on propellers for
short-range longitudinal motion, and thrusters for
lateral/vertical/rotational motion. Hover mode allows
precise station keeping in position, heading and depth,
at least while dead-reckon position and ocean current
set/drift estimates are accurate.

Mission script language. In keeping with our goal
to make vehicle control understandable, we have
implemented execution level functionality using a
series of script commands. Each command consists of
a keyword followed by a variable number of
parameters. The mission script language controls
operating modes and state flags in the execution level.
A subset of the mission script language appears in
Figure 7.

Commands can originate from tactical level
processes, a prepared mission script file or a human
operator. Each command is designed to be
unambiguous and readable either by the robot or by
people. Prescripted missions and tactical
communications are intelligible because they sound
similar to OOD orders and ship control party
communications aboard ship. We believe this
approach has general applicability for most AUVs.
Another feature is text-to-speech conversion in the
virtual world, simplifying human monitoring of
mission progress. Overall execution level functionality
also includes plotting telemetry results, replaying Officer of the Deck (OOD) Coordination. Of the
recorded mission telemetry data, and acting as network three levels of the RBM architecture, the tactical level

6 TACTICAL LEVEL

Strategic Level
Commanding Officer

(Voyager)

OOD

Sonar ReplannerNavigation

Execution Level
watchstanders

(GesPac)

Tactical Level
(Voyager)

ST725
sonarGPS ST1000

sonar

pipes, sockets

serial port

8

Figure 8. Interprocess communications (IPC)
(Campbell 96).

was the last developed onboard Phoenix. Creation of The Phoenix is designed for precision navigation
an OOD module is crucial. The OOD controls the requiring position accuracy of 1 m. The standard
flow of information between other levels and within deviation of the position available from GPS is
the tactical level, yet cannot become overburdened by approximately 60 m, with DGPS being accurate within
unnecessary details. By forking parallel processes, the 2 m. The DiveTracker short baseline acoustic ranges
OOD creates several departments which are available have a geometry-dependent standard deviation within
to assist in processing commands and sensor data. 20 cm (with an occasional range out to 33 cm) which
Reuse of execution level functions and data structures can cause a transiting position uncertainty of 1-3 m.
reduces the amount of unique code needed by the Using raw positions results in fix-to-fix position
tactical level. A modular interface design permitted uncertainty, control chattering and hydrodynamic
the departments and OOD to be developed stability problems for Phoenix. Kalman filtering
simultaneously. Figure 8 shows interprocess corrects these difficulties.
communications (IPC) from OOD to strategic level, Kalman filtering is a method for recursively
execution level and other tactical level processes updating an estimate of the state of a system by
(Leonhardt 96). processing a succession of measurements. The

Properly implementing IPC is crucial. Forked Unix sum of actual ocean current, errors in reported speed
processes have duplicate variable stores but do not and heading errors. The ocean current values
share memory. Thus state variable changes in the produced can thus change with the vehicle heading,
parent (OOD) and children processes (navigation, but the root mean squared value of the currents will
sonar, replanner) must be performed individually for converge to a steady state number. This number can
each process. We use standard Unix pipes for this be resolved to X/Y or set/drift (polar) components for
communication since the tactical level is always within dead reckoning use. As with most processes at the
a single processor (Stevens 95). BSD-compliant tactical level, the algorithmic basis for this approach is
sockets are used for communications to the execution similar to techniques used by human navigators.
level since that operates on a different processor (or By monitoring the difference between a motion
even on a different network). Separate communication model and measurements, the Kalman filter can
channels are used for updating state vectors and determine if it has possibly lost track or received a bad
exchanging orders/ acknowledgements. measurement. If the difference is briefly too high, then

Navigation. The navigation module is a parallel the measurement is ignored. If the difference is too
forked process of the tactical level. It uses an high for longer than 15 seconds, then it is assumed
Asynchronous Discrete Kalman Filter to filter GPS that the filter has lost track. Upon loss of track, the
satellite navigation data received from a Motorola tactical level is informed and the OOD surfaces to gain
8-channel GPS/DGPS unit and ranges received from a a GPS fix and reset the filter state and parameters.
commercial short baseline sonar range system This GPS-FIX procedure is designed to work equally
(DiveTracker). well in hover and waypoint control. Full navigator

Phoenix implementation uses a model-based
movement estimator for state, combined with
measurements, to produce the most probable estimate
of the vehicle's position. A discrete Kalman filter is
used to process measurements, and the use of acoustic
range data requires an Extended Kalman Filter mode
of operation due to the nonlinearity of range
measurements (Bachmann 96).

Accurate and efficient navigation from point to
point also requires the knowledge of the local ocean
currents to prevent undershooting the intercept course
towards the desired location. If a vehicle fix
determines that the vehicle is not where the motion
model predicts, then the likely causes are ocean current
or AUV speed/heading errors. Using a non-zero mean
movement model (where input vehicle speed is
assumed truth) results in the filter solving for both an
updated position data and estimates of ocean current.
Estimated ocean currents are actually the combined

details are in (McClarin 96) (Bachmann 96).

9

Real-time Sonar Classification. Real-time sonar and is treated as a spurious return. We have developed
classification and run-time collision avoidance are more robust imminent collision avoidance algorithms
essential for AUV autonomy and survivability. An off- independent of near-real-time sonar classification
line sonar classification expert system was originally using the second steerable sonar. Using multiple
written using the CLIPS expert system shell noninterfering sonars permits employing search
(Brutzman 92b, 92c). Successful development of rules techniques that are otherwise mutually exclusive when
was originally dependent on the support of the expert sharing a single sonar transducer head. The collision
system rule-matching engine. Once the expert system avoidance sonar (usually the ST725) is directly
was developed, translation to C was practical and the controlled by the execution level for reliability and
optimized sonar classifier is now capable of running in rapid response.
real time to meet robot sensing requirements Path Planning and Replanning. Path planning is
(Campbell 96). a tactical function. The strategic level contains the

The sonar module initializes sonar transducer commanding officer (CO) and controls the overall
parameters for maximum range scale, orientation mission plan. The CO decides (in general terms)
change step size and transmitter power settings. Three where the ship will operate. Meanwhile, achieving the
modes are available: "transit search," "sonar search," ordered track is the responsibility of the tactical level
and "rotate search." The transit search consists of a Officer of the Deck (OOD). To determine a safe route
60(sonar scan in front of the AUV. This search is to the location the CO has requested, the OOD tells the
primarily conducted for collision avoidance. The other tactical-level replanning department the desired
two modes are conducted in a search area to detect, location and the ship's present position. The sonar
localize and classify any unknown objects. Sonar department (via the OOD) provides the replanning
search and rotate search are 360(searches. Sonar department with the current physical environment, i.e.
search is performed by mechanically rotating the sonar where all the "circled" obstacles are. The replanning
head, whereas rotate search is accomplished with the department takes this data and provides the OOD with
sonar head fixed while the full Phoenix body performs the best path to the CO's ordered location after adding
a 360(rotation. a safety distance around any obstacles. If a new

Sonar processing begins with filtering, obstacle is found by sonar while the ship is transiting,
thresholding and smoothing of the raw sonar data to the OOD will call upon the replanning department to
produce a return bearing and range. The returns are check the path. Replanning does not constantly
then fitted to line segments using parametric process data but rather is called when the OOD needs
regression. Line segments are started when a sliding it.
window locates four returns that form an acceptable As a final step, smooth motion planning algorithms
line. Points are subsequently added based on distance are applied to the output of the circle world path
from the line segment and whether the new resultant replanner in order to provide precise control of
line segment is acceptable. Completed line segments Phoenix and allow for rapid travel around obstacles
are then combined based on proximity and without slowing into hover mode (Brutzman 92c)
orientation. (Kanayama 95) (Leonhardt 96) (Davis 96a). Hover

To remove the directionality effects of sonar scan mode is inefficient when transiting waypoints, since it
rotation, comparison of line segments is performed by requires Phoenix to stop and maintain posture at a
first using the segment that is more clockwise relative given location. Given the turning radius of a vehicle,
to the AUV. Once objects and line segments are smooth motion planning allows the vehicle to go from
formed, heuristic rules are applied to classify the one point to another along a path that does not require
objects. The last part of the classification process is to the vehicle to perform instantaneous changes in
relay object information in a manner suitable for path direction. Thus the vehicle does not need to rotate in
planning purposes. A circle representation is used place when negotiating around obstacles. Replanner
with the center at the centroid of the object. details are in (Leonhardt 96). Figure 9 illustrates the
Particularly long line segments (i.e. walls) are end-to-end process of detecting, classifying, localizing
converted to a set of small adjacent circles. This and avoiding a sonar obstacle.
methodology works. Additional experimental results
are needed to ensure that system coefficients are
properly tuned for current Phoenix sonars.

Imminent collision avoidance is achieved with a
simple relative bearing and range check for all valid
returns that contribute to any line segment. If a return
does not contribute to a line segment it is not evaluated

Phoenix

1 active sonar range/bearing returns
1 line fits using parametric regression
1 build polygon and classify obstacle
1 safe standoff circle around polygon
1 replan path around circled obstacles
1 superimpose smooth path planning

Start Point Recovery Point

INITIALIZE VEHICLE

abort initialize: abort entire mission

TRANSIT

waypoint process abort: abort entire mission
setpoints system failure: abort entire mission
GPS failure: abort entire mission/ignore
Obstacle log failure: abort entire mission/ignore

SEARCH
no target - skip to next transit
sonar failure - abort entire mission

DO TASK
abort task - abort entire mission

SEARCH

DO TASK

TRANSIT

TRANSIT

10

Figure 9. Obstacle detection, classification, localization
and avoidance.

� Symbolic computation only, contains mission-
independent doctrine predicates and current
mission guidance predicates

� No storage of internal vehicle or external world
state variables

� Rule-based implementation, incorporating rule
set, inference engine and working memory
(if required)

� Non-interruptible, not event driven
� Directs tactical level via asynchronous message

passing
� Messages may be either commands or queries

requiring Boolean responses
� Operates in discrete (Boolean) domain

independently of clock time
� Building blocks: goals
� Abstraction mechanism: goal decomposition

(backwards chaining) and rule partitioning
(forward chaining); both are based on
goal-driven reasoning

Figure 10. RBM characteristics for strategic level
(Byrnes 96).

Figure 11. Strategic level representation of minefield
search mission (Holden 95).

7 STRATEGIC LEVEL
Prolog. The RBM strategic level is typically

written in Prolog, a language for predicate logic. The
strategic level implements a planning capability by
sequencing mission phases and backtracking when
necessary to provide appropriate guidance to the
tactical level as portions of the mission succeed or fail.
Strategic level design criteria follow in Figure 10.

Manually produced early versions of the strategic
level worked properly but became large and complex.
Strategic level code was streamlined by separating
mission-independent doctrine from mission-specific
guidance. With practice the strategic level Prolog code
is relatively simple to read, produce and run. An
example strategic level mission follows in Figure 11,
where TASK might be a combination of GPS fix, drop
marker, radio report, return home, etc.

double boxes are
composite templates

label

parameter values (if any)

tactic/strategy name

failed
predecessor

successful
predecessor

failure

success
exception
(not used)

11

Figure 12. Template for tactic and strategy composition.

Mission Generation Expert System. The strategic recovery phase (Byrnes 96). Since there may be
level can also take the form of a deterministic finite multiple phase sequence solutions for a mission, each
automata (DFA). A mission controller initiates the solution generated by the system is the next solution
phase associated with the current DFA node upon found as opposed to an optimal solution. In addition,
arrival, transitioning to a new node when the current missions generated through means-ends analysis are
node's phase completes successfully (or aborts because linear and proceed phase-by-phase to the end. In any
of a time out). A representative mission phase case, users are allowed to choose among the candidate
template appears in Figure 12. Individual tactic solutions generated (Davis 96a, 96b).
predecessors and successors can be composed using More complicated missions can take full advantage
this template to create missions of arbitrary complexity of this strategic level DFA structure. They are
(Davis 96a, 96b). specified phase-by-phase using the second piece of the

Advantages of the strategic level DFA structure are are possible because there are multiple ways to plan.
twofold. First, an arbitrary mission can be modeled Backwards chaining can be unambiguously
simply as a set of phases that are executed in an order implemented using forward chaining, forward
defined by the transitions of the DFA. Second, chaining can be unambiguously implemented using
mission control using the Prolog search engine is backwards chaining, and both can be implemented
powerful enough that complex behavior can be using fully enumerated decision graphs. Use of C++

implemented without needing computationally has become possible because improved understanding
intensive mathematical calculations. Arithmetic is and tighter constraints on mission primitives has
confined to the tactical level, conceptual mission eliminated the need for the full functionality of the
planning is confined to the strategic level. Prolog search engine. Nevertheless such

Since a prime motivation for Phoenix is shallow simplifications were only possible following extended
water counter-mine operations, the mission generation experimentation using Prolog code.
process must be substantially simpler than writing Extensive testing of autogenerated Prolog and C++

Prolog programs if typical human operators are to code has been conducted in the virtual world, and
deploy the AUV. One solution to this problem successful in-water testing has been conducted at the
combines a graphical user interface for mission Phoenix AUV test tank, Moss Landing Harbor and the
planning and specification together with a goal-driven NPS swimming pool. Further in-water tests are
expert system for strategic level code generation. planned. Accomplishing our goal of simplifying

There are three aspects to the AUV Mission mission generation is indicated by a significant
Generation Expert System. The first is a mission reduction in the time required for mission coding
planning tool, which specifies vehicle launch and (minutes when using the expert system as opposed to
recovery positions and what the mission is supposed to hours without it). Finally, syntactic programming
accomplish. Means-ends analysis then computes a errors have been completely eliminated by the source
sequence of phases which can accomplish the desired code autogeneration system and logical programming
mission. Failure of any single phase will cause a errors have been substantially reduced.
mission to either abort or follow an alternate failure-

Mission Generation Expert System, the mission
specification tool. This tool allows an experienced
user who understands the DFA structure of the
strategic level to define missions one phase at a time.
Regardless of whether the mission planning tool or the
mission specification tool is used, the system
automatically checks input for correctness and logic
and will not allow specification of an invalid mission
(Leonhardt 96) (Holden 95) (Davis 96a, 96b).

The final aspect of this system is the code
generation facility. By using specified phases, either
the mission planning or mission specification tool, and
templates for valid phase types (e.g. hover, search etc.)
the system can generate executable code in either
Prolog or C++. Earlier theses demonstrated that the
strategic level can be equivalently instantiated using
either the Prolog backwards chaining engine or the
CLIPS forward chaining engine. Alternate languages

12

Figure 13. Underwater virtual world for an AUV
(Brutzman 94).

8 ROBOT NETWORKING
Perhaps surprisingly for a small robot, networking

is a major consideration. Within the Phoenix AUV is
an Internet-connectable local-area network (LAN).
This enables network communications between and
within the three software levels, external connectivity
in laboratory via tether cable, and (optionally) external
connectivity during harbor testing. Remote connection
of the LAN to the campus Internet backbone is
achieved using multiple wireless bridge boxes.
Multicast Backbone (MBone) connectivity permits
local or world-wide transmission of audio, video and
DIS streams (Macedonia 94). World Wide Web links
to online software documentation, multiple research
group accounts and properly networked LANs with
group access around campus further strengthened this
software development collaboration. Ease of use and
remote access translate into significant productivity
gains and regular discovery of new capabilities. We
expect to someday extend this approach underwater by
developing Internet Protocol over Sea Water (IP/SW)
connectivity (Brutzman 95a). Other network
considerations are elaborated in Section 11 as part of
virtual world connectivity.

9 VIRTUAL WORLD
The harsh environment in which an AUV must

operate calls for extra precautions in its design to
prevent damage to or loss of the vehicle. We have
developed a medium-scale virtual environment which
enables meaningful end-to-end testing of robot
software and hardware in the laboratory (Figure 13).
As noted in earlier work on the virtual world: The objective of the underwater virtual world is to

It is tremendously difficult to observe,
communicate with and test underwater robots,
because they operate in a remote and hazardous
environment where physical dynamics and
sensing modalities are counterintuitive. An
underwater virtual world can comprehensively
model all necessary functional characteristics of
the real world in real time. This virtual world
is designed from the perspective of the robot,
enabling realistic AUV evaluation and testing
in the laboratory. 3D real-time graphics are
our window into the virtual world, enabling
multiple observers to visualize complex
interactions. A networked architecture enables
multiple world components to operate
collectively in real time, and also permits
world-wide observation and collaboration with
other scientists interested in the robot and
virtual world. (Brutzman 94)

reproduce real-world robot behavior with complete
fidelity in the laboratory. Many questions pertain.
What is the software architecture required to build an
underwater virtual world for an autonomous
underwater vehicle? How can an underwater robot be
connected to a virtual world so seamlessly that
operation in the real world or a virtual world is
transparent to the robot? How can 3D real-time
interactive computer graphics support wide-scale
general access to virtual worlds? Specifically, how can
computer graphics be used to build windows into an
underwater virtual world that are responsive, accurate,
distributable, represent objects in openly standardized
formats, and provide portability to multiple computer
architectures? Overview answers to these questions
are provided here. Detailed analyses and example
solutions are presented in (Brutzman 94). In effect,
the virtual world requires a separate software
architecture for networked world models that
complements the robot software architecture.

The real world is a big place. Virtual worlds must
similarly be comprehensive and diverse if they are to

-50

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350
time t (seconds)

NPS AUV telemetry 8Thu Nov 3 14:01:34 1994

t vs psi (azimuth: z axis) [deg]
t vs psi_dot (azimuth rate) [deg/sec]
t vs r (yaw rate) [deg/sec]
t vs v (sway) [ft/sec]
t vs delta_rudder [deg]
t vs ordered heading [deg]

13

Figure 14. Detailed hydrodynamics and control
visualization is essential.

Figure 15. Representative time-series behavior plot.

permit credible reproductions of real-world behavior. planes/rudders/propellers simultaneously when such
A variety of software components have been shown operation does not provoke mutual interference. Most
necessary. In every case, 3D real-time visualization Phoenix control code has been developed and tested in
has been a crucial tool in developing AUV software. conjunction with the construction of a real-time six
Ways to scale up and arbitrarily extend the underwater degree-of-freedom hydrodynamics model. Design,
virtual world to include very large numbers of users, tuning and optimization of control algorithms in
models and information resources are also isolation and in concert is the subject of active research
incorporated in this work. (Healey 93, 96) (Fossen 94) (Marco 96a) and remains

Virtual world capabilities were utilized for testing an important area for future work. Control algorithm
and verification throughout the software development robustness is a particularly important topic since
process. Use of this tool allows a number of potentially fatal nonlinear instabilities are possible and
programmers to work independently and in concert. vehicle reliability is paramount.
Virtual world capabilities have been incrementally Typical efforts at hydrodynamic development are
improved to match increased vehicle software based on mental interpretation of multiple time-series
capabilities, such as hydrodynamics and controller such as Figure 15. Dozens of two-dimensional
response rendering (Figure 14). Scientific time-series plots are necessary for quantitative
visualization techniques have provided further performance analysis, but this approach remains
significant benefits (Brutzman 95b). notoriously difficult to use when attempting to

10 VISUALIZING CONTROL ALGORITHMS
Designing an AUV is complex. Many capabilities

are required for an underwater mobile robot to act
capably and independently. Stable physical control,
motion control, sensing, path planning, mission
planning, replanning and failure recovery are example An example challenging scenario for an AUV is
software components that must be solved individually evaluating vehicle control stability when transitioning
for tractability. The diversity and dissimilarity of these from stable submerged control to intentional surface
many component subproblems precludes use of a broaching in Figures 16 and 17. This scenario
single monolithic solution paradigm. exercises the real-time buoyancy model developed in

Vehicle control algorithms are implemented using (Bacon 95). Real-time 3D observation of such scenes
either thrusters (hovering modes), planes/rudders/ is an essential tool when developing and testing
propellers (cruise modes) or all effectors in algorithmic models.
combination. Control algorithms for the following
behaviors are included: depth control, heading
control, open-loop rotation, open-loop lateral motion,
waypoint following and hovering. Control algorithms
are permitted to operate both thrusters and

mentally integrate and visualize all aspects of vehicle
behavior. The successes of individual control
algorithms created as part of this effort were highly
dependent on 2D and 3D visualization techniques.
Complete derivations of the full hydrodynamics model
and corresponding control equations are in
(Brutzman 94, 96c).

14

Figure 16. Evaluating control response while broaching.

Figure 17. Evaluating control response after broaching.

11 AUV-VIRTUAL WORLD
COMMUNICATIONS

Since RBM is a multilevel architecture, and virtual world are essential if rapid real-time 10 Hz
communications between levels must be formally robot response is to be maintained. The telemetry
defined. Communications between robot and virtual record is a concise and complete way to support all of
world must also be clearly specified. Defining these data communications requirements. Figure 18
communications includes establishing a physical path shows in detail how the flow of control proceeds and
for data transfer as well as defining the syntax and the telemetry vector is modified during each
protocol of exchanged messages. Our design sense-decide-act cycle.
objectives include reliability and clarity so that Robot execution software is designed to operate
messages are easily created and easily understood, both in the virtual world and in the real world. While
either by software processes or by people. Details sensing in the virtual world, distributed hydrodynamics
follow in order to illustrate the precise relationships and sonar models fill in pertinent telemetry vector
between robot, virtual world and graphics-based user slots. While sensing in the real world, actual sensors
viewing windows. and their corresponding interfaces fill in pertinent

Two kinds of messages are defined for use between telemetry vector slots. In either case, the remainder of
robot and virtual world. The first is the telemetry the robot execution program which deals with tactical
vector, which is a list of all vehicle state variables communications, command parsing, dynamic control,
pertinent to hydrodynamic and sensor control. interpretation etc. is unaffected. While operating in
Telemetry vectors are passed as a string type. The the virtual world, robot propulsion and sensor
second kind of messages allowed are free-format commands are communicated via the same telemetry
commands. Free-format command messages are also vector. While operating in the real world, robot

string types, starting with a predefined keyword and
followed by entries which may optionally have
significance depending on the initial keyword.
Messages with unrecognized keywords are treated as
comments. These two kinds of messages (telemetry
and commands) can be used for any communication
necessary among robot-related entities. Employment
of string types facilitates data transfer between
different architectures, data transfer via network
sockets, and file storage. String types also ensure that
all communications are readable by both robot and
human, a trait that is particularly useful during
debugging. An open format for command messages
permits any user or new application to communicate
with little difficulty.

Within the AUV, the basic communications flow
between execution level and tactical level is
straightforward. All telemetry vectors are sent from
the execution level to the tactical level, providing a
steady stream of time-sensitive, rapidly updated
information. The tactical level may send commands to
the execution level as desired, and the execution level
may return informational messages between telemetry
vectors as appropriate. Nonadaptive tactical level
functionality can also be provided by carrying out
prescripted mission command files. Telemetry vector
records and command messages are logged in separate
mission output files for post-mission analysis and
replay.

The telemetry vector serves several essential
purposes. In addition to providing a steady stream of
information from the execution level to the tactical
level, the telemetry vector also serves as the data
transfer mechanism between execution level and
virtual world. Efficient communications between robot

begin new timestep

all sensor values are now known,
update the current telemetry vector in execution level

 Vehicle
 Telemetry Vector Virtual World Real World

� world models determine
expected hydrodynamics
and sonar response

� calculate corresponding
inertial, electromechanical
and sonar sensor values

� update telemetry vector

� execution level queries
various physical hardware
sensor devices

� actual values returned for
inertial, electromechanical
and sonar sensors

� update telemetry vector

partial vehicle
telemetry vector

with current
sensor values and
previous orders

Tactical and strategic levels receive telemetry vector
with sensor updates from execution level

Tactical level or mission.script decide on actions and
provide commands to execution level as appropriate

Execution level decides on vehicle control response
and updates propulsion/sensor orders in telemetry vector

Record complete telemetry vector
for current timestep in mission.output file

partial vehicle
telemetry vector
with outdated

sensor values and
current orders

� execution level sends
partial telemetry vector
to virtual world via a
communications socket

� execution level sends
orders to various
physical hardware
propulsion controllers

Repeat next execution cycle

complete vehicle
telemetry vector

 auv posture: body-frame world-frame ordered ordered sensed
time position, orientation velocities velocities rudders, planes, sonar sonar

propellers, thrusters bearings values
 t, x,y,z,1,�,5, u,v,w,p,q,r, x,y,z,1,�,5, - - - - - - - - - -

.

Sense

Decide

Act

77 77 77 77

7777

77

telemetry
vector

sensed values are updated by virtual sensors or by actual sensors

ordered values are changed by tactical level orders, mission script & execution level control

execution level updates clock each timestep and sends orders to virtual world or hardware

15

Figure 18. Data flow via the telemetry vector during each
sense-decide-act cycle.

Figure 19. Telemetry vector modifications during each
sense-decide-act cycle.

propulsion and sensor commands are sent directly to
hardware interfaces for propellers, thrusters, planes,
rudders, sonar steering motors, etc. Again almost all
parts of the robot execution program are completely
unaffected by this difference. This networked
architecture is essentially transparent to the robot,
permitting identical AUV operation in the real world
or virtual world.

The telemetry vector is therefore a key data transfer (Foley, van Dam 90). Rendered scenes need to be
mechanism. Telemetry vector updates also define the realistic, rapidly rendered, permit user interaction, and
communication protocol between execution level and capable of running on both low end and high end
virtual world. As might be expected, this works well workstations. Graphics programmers must have a
because the execution level program follows the wide range of tools to permit interactive
common robotics cyclic paradigm of sense-decide-act. experimentation and scientific visualization of
Figure 19 provides an overview of the telemetry vector real-world datasets (Thalmann 90). The ability to read
update sequence as an alternate means of portraying multiple data formats is also important when using
the validity of this approach. Given the perhaps-worst- scientific and oceanographic datasets. Scientific data
case computational complexity of underwater world format compatibility can be provided by a number of
models, this networked virtual world software data function libraries which are open, portable,
architecture for real-time performance in the reasonably well standardized and usually independent
laboratory also appears applicable to other robot of graphics tools (Fortner 92). Viewer programs need
domains. to be capable of examining high-bandwidth

12 INTERACTIVE 3D GRAPHICS
Several important requirements are needed for the

creation of object-oriented graphics viewers for
visualizing a large-scale virtual world. Open
standards, portability and versatility are emphasized
over platform-specific performance considerations in
order to support scaling up to very large numbers of
users, platform types and information sources. The
OpenInventor graphics toolkit and scene description
language has all of the functionality needed. The
potential integration of network connections to
logically extend graphics programs is also examined.
Open standards, portability and versatility are
emphasized over platform-specific performance
considerations in order to support scaling up to very
large numbers of users, platform types and information
sources.

A good graphics toolkit for building a virtual world
viewer has many requirements to fill

information streams and large archived scientific
databases. Thus the ability to preprocess massive
datasets into useful, storable, retrievable graphics
objects will be particularly important as we attempt to

16

Figure 20. Local viewpoint of active sonar in test tank.

scale up to meet the sophistication and detail of the However, sound waves can be bent by variations in
real world. Adequate standardization of computer depth, temperature and salinity. A variety of problems
graphics and portability across other platforms is also including ambient noise, multipath arrival, fading,
desirable but has been historically elusive. shadow layers, masking and other effects can make

OpenInventor is an object-oriented 3D graphics sonar use difficult. Since active sonar typically
toolkit for graphics applications design (Strauss 92). provides good range values with approximate bearing
Based on the Open GL graphics library, OpenInventor values, algorithms for sonar recognition are much
provides high-level extensions to the C++ (or C) different than vision algorithms. In the short sonar
programming language and a scene description ranges used by Phoenix, simple error probabilities and
language. It is designed to permit graphics linear geometric sonar relationships are adequate.
programmers to focus on what to draw rather that how Figure 20 shows the perspective gained by observing
to draw it, creating scene objects that are collected in AUV sonar from an "over the shoulder" perspective,
a scene database for viewpoint-independent rendering. one of several vantage points needed when developing

The ability to store graphics objects as readable, sonar classification algorithms.
editable files is especially appealing for the creation of
large-scale virtual worlds. Since the performance of
computer graphics is highly dependent on the
computational complexity of scenes to be rendered, it
is inevitable that truly large-scale world scene
databases will eventually overload viewing graphics
workstations. Such overload will occur regardless of
the efficiency of viewpoint culling algorithms and
graphics pipeline optimizations, unless partitionable
and networked scene databases are used. Furthermore,
since populating a virtual world is a task that needs to
be open and accessible to large numbers of people, an
open graphics data standard is needed for virtual world
construction. The ability to selectively load graphics
objects and scenes from files is an important
distribution mechanism which can take advantage of
Web connectivity.

Ubiquitous portability for analytic, hypermedia, Since sonar is the most effective detection sensor
network, multicast and graphics tools is therefore an used by underwater vehicles, sonar visualization is
essential feature for virtual world model builders. A particularly important when designing and evaluating
superior alternative is now available using the Virtual robot software. Sonar parameters pertinent to
Reality Modeling Language (VRML) specification visualization and rendering include sound speed
(Carey 96). VRML is the Web standard for interactive profile (SSP), highly-variable sound wave path
3D representation. VRML scene description files are propagation, and sound pressure level (SPL)
the best approach for object definitions in a large-scale attenuation. Several questions are prominent.
virtual world (Brutzman 96d). How can a general sonar model be networked to

13 SONAR VISUALIZATION
Sensor differences distinguish underwater robots techniques be applied to outputs of the sonar model to

from ground, air and space-based robots. Since the render numerous interacting physical effects varying in
oceans are generally opaque to visible light at three spatial dimensions and time? Initial
moderate-to-long ranges, vision-based video systems investigations indicate that this area may yield
are ordinarily of use only at short distances and are significant results. The high dimensionality of sonar
unreliable in turbid water. Vision systems also usually data is best served by scientific visualization
require intense light sources which deplete precious techniques.
energy reserves. In comparison to underwater Sonar sensing is crucially important (Stewart 92).
computer vision, active and passive sonar (acoustic Previously only a single geometric sonar model was
detection) has long been a preferred sensing method available for Phoenix, derived by hand to model the
due to the long propagation ranges of sound waves AUV test tank (Figure 21). Although effective in a
underwater. small regular volume, this approach was too limited

provide real-time response despite high computational
complexity? How can scientific visualization

and did not permit easy addition of artificial targets or

17

Figure 21. Manually derived geometric sonar model for
AUV test tank (Brutzman 94).

Figure 22. Phoenix AUV maneuvering to enter a docking
tube using onboard sonar (Davis 96a, 96b).

obstacles. We adapted the computational geometry of both hydrodynamics and sonar models in the virtual
routines included in the OpenInventor interactive 3D world. Recent results include precise vehicle
graphics library to shoot rays into the scene database to maneuvering and rendezvous with a docking tube
produce a general geometric sonar model. Now the (Davis 96a, 96b) (Figure 23). Much more
same scene database (made up of OpenInventor and experimental testing awaits.
VRML files) can be used for both virtual world
visualization and real-time 3D sonar ray intersection
calculations (Figure 22) (Davis 96a) (Brutzman 96b).

14 EXPERIMENTAL TEST RESULTS
Once Phoenix functionality was correct in the hydrodynamically stable. We intend to examine

virtual world, test tank experiments were conducted to whether the Phoenix hull form can stably approach
fine tune hardware and properly move the AUV and neutralize a moored mine-like object. Figure 24 is
through the water. Diving, forward, backward, lateral a notional diagram that shows how sonar can be used
and rotational movement checks were all performed to carefully approach a target broadside, keep station
during these test tank experiments. However, the against the ocean current, take confirming video, and
calibration of speeds during these movements could attach a beacon or neutralizing device using a simple
not be tested due to the relatively small size of the test one- or two-degree-of-freedom effector. For low sea
tank (6m x 6m x 2m deep). states, we see few limiting factors in this approach.

The next vehicle tests were performed in the
relatively calm sea water harbor in Moss Landing
California. A variety of logistical problems were
overcome but a seemingly endless series of minor
hardware failures then thwarted each attempt to run a
complete minefield search. Although a complete
mission was never accomplished beginning to end, all
components of the mission were individually exercised.
We now believe that the functionality and logic of the
AUV software is correct (Brutzman 96b). Remaining
tests include repeated mission testing, verification of
aggregate software behavior under a variety of
scenarios, tuning of control constants, and validation

15 FUTURE WORK
An underwater vehicle which can transit through

waypoints and hover in the presence of currents
enables a variety of capabilities which are not possible
for vehicles that must retain forward way to remain

sonar

video camera
confirmation

sonar tracking
for

relative navigation

ocean currents

manipulator
and charge

precise positioning
with

thrusters & screws

18

Figure 23. A mobile stable AUV might precisely place an
explosive charge on an underwater mine.

Phoenix is only directly controllable in five degrees 3D graphics rendering is an essential capability for
of freedom since roll is unconstrained. Pitch effective AUV development. The networked software
stabilization is straightforward using vertical thrusters. architecture and various results described here
Testing will determine whether roll stabilization is also demonstrate that a real-time physically based
necessary, perhaps by using an additional thruster. We underwater virtual world is feasible. It enables
are further interested in development of automatic repeated testing of all aspects of underwater vehicle
diagnostics that reconfigure control algorithms to control, stability, sensing, autonomy and reliability.
handle equipment faults. We also intend to explore Graphics viewer requirements include scientific
local measurement of cross-body ocean current flow visualization and portability across multiple platforms.
using acoustic doppler current profilers (ADCPs), in The use of multicast DIS messages, Web access and
order to permit precise maneuvering in the midst of VRML scene descriptions that include dynamic
highly varying flow fields and high sea states. Finally, behaviors promise the possibility of scaling to very
future work on underwater virtual world networked large numbers of participants. Network connectivity
graphics includes compatibility with common Web allows us to use the global Internet as a direct
browsers using the Virtual Reality Modeling Language extension of our desktop computers, permitting global
(VRML) (Brutzman 96d). collaboration on a routine basis.

16 CONCLUSIONS
The underwater environment is extremely

challenging for robots. Counterintuitive
hydrodynamics response, poor visual capabilities,
complex sonar interactions, communications
inaccessibility and power endurance are significant
design constraints. Robot builders must provide stable
control and reliable operation at all times due to the
unacceptably high cost of failure. A variety of AI
processes must be used for planning, sensing and other
complex tasks.

Systems integration is significant due to the many
sensors and effectors required for nontrivial operation.
The Phoenix AUV demonstrates that a three-layer
robot architecture can be effective at combined system
control over time scales ranging from hard-real-time
sense-decide-act response to temporally unconstrained
mission planning.

Using an underwater virtual world for interactive

After years of effort, the RBM architecture is fully
instantiated onboard the Phoenix AUV and is being
successfully tested and refined by in-water testing. A
networked underwater virtual world has been crucial
to this development project. Experimental results
indicate we are close to demonstrating that affordable
underwater robots can operate autonomously in
challenging environments.

19

17 REFERENCES

Bachmann, E.R., McGhee, R.B., Whalen, R.H., Steven,
R., Walker, R.G., Clynch, J.R., Healey, A.J. and Yun,
X.P., "Evaluation of an Integrated GPS/INS System for
Shallow-Water AUV Navigation (SANS)," Proceedings of
the IEEE Oceanic Engineering Society Conference
AUV 96, Monterey California, June 3-6 1996,
pp. 268-275.

Bacon, Daniel Keith Jr., Integration of a Submarine into
NPSNET, Master's Thesis, Naval Postgraduate School,
Monterey California, September 1995. Available via
http://www-npsnet.cs.nps.navy.mil/npsnet

Bottoms, Al, chair and editor, Symposium on Autonomous
Vehicles for Mine Countermeasures, Naval Postgraduate
School, Monterey California, April 1995.

Brooks, Rodney A., "A Robust Layered Control System for
a Mobile Robot," IEEE Journal of Robotics and
Automation, vol. RA-2 no. 1, March 1986, pp. 14-23.

Brutzman, Donald P. and Compton, Mark A., "AUV
Research at the Naval Postgraduate School," Sea
Technology, vol. 32 no. 12, December 1991, pp. 35-40.

Brutzman, Donald P., "From virtual world to reality:
designing an autonomous underwater robot," American
Association for Artificial Intelligence (AAAI) Fall
Symposium on Applications of Artificial Intelligence to
Real-World Autonomous Mobile Robots, Cambridge
Massachusetts, October 23-25 1992, pp. 18-22. Available
at ftp://taurus.cs.nps.navy.mil/pub/auv/aaai92ws.ps.Z

Brutzman, Donald P., Compton, Mark A. and Kanayama,
Yutaka, "Autonomous Sonar Classification using Expert
Systems," Proceedings of the IEEE Oceanic Engineering
Society Conference OCEANS 92, Newport Rhode Island,
October 26-29 1992, pp. 554-559. Available at
ftp://taurus.cs.nps.navy.mil/pub/auv/oceans92.ps.Z

Brutzman, Donald P., NPS AUV Integrated Simulator,
Master's Thesis, Naval Postgraduate School, Monterey
California, March 1992. Includes video appendix.

Brutzman, Donald P., "Beyond intelligent vacuum
cleaners," American Association for Artificial Intelligence
(AAAI) Fall Symposium on Applications of Artificial
Intelligence for Instantiating Real-World Agents,
Raleigh North Carolina, October 22-24 1993, pp. 23-25.
Available at
ftp://taurus.cs.nps.navy.mil/pub/auv/aaai93ws.ps.Z

Brutzman, Donald P., A Virtual World for an Autonomous
Underwater Vehicle, Ph.D. Dissertation, Naval
Postgraduate School, Monterey California,
December 1994. Includes video appendix. Available at
http://www.stl.nps.navy.mil/~brutzman/dissertation

Brutzman, Don and Reimers, Stephen, "Internet Protocol
over Seawater (IP/SW): Towards Interoperable
Underwater Networks," Ninth International Symposium on
Unmanned Untethered Submersible Technology (UUST)
95, University of New Hampshire, Durham
New Hampshire, September 25-27 1995. Available at
ftp://taurus.cs.nps.navy.mil/pub/auv/ipoversw.ps

Brutzman, Don, "Virtual World Visualization for an
Autonomous Underwater Vehicle," Proceedings of the
IEEE Oceanic Engineering Society Conference
OCEANS 95, San Diego California, October 12-15 1995,
pp. 1592-1600. Available at
ftp://taurus.cs.nps.navy.mil/pub/auv/oceans95.ps.Z

Brutzman, Don, "Tutorial: Virtual World for an
Autonomous Underwater Vehicle (AUV)," IEEE Oceanic
Engineering Society Conference OCEANS 96,
Fort Lauderdale Florida, September 23-26 1996.
Available at
http:/www.stl.nps.navy.mil/~auv/uvw_tutorial.html

Brutzman, Don, Burns, Mike, Campbell, Mike, Davis,
Duane, Healey, Tony, Holden, Mike, Leonhardt, Brad,
Marco, Dave, McClarin, Dave, McGhee, Bob and Whalen,
Russ, "NPS Phoenix AUV Software Integration and
In-Water Testing," Proceedings of the IEEE Oceanic
Engineering Society Conference AUV 96, Monterey
California, June 3-6 1996, pp. 99-108. Available at
ftp://taurus.cs.nps.navy.mil/pub/auv/auv96.ps

Brutzman, Don, "Graphics Internetworking: Bottlenecks
and Breakthroughs," chapter, Digital Illusion, Clark
Dodsworth editor, Addison-Wesley, Reading
Massachusetts, to appear 1996. Available at http://
www.stl.nps.navy.mil/~brutzman/breakthroughs.html

Brutzman, Don, NPS Phoenix AUV Software Reference,
November 1996. Available at http://
www.stl.nps.navy.mil/~auv/software_reference.html

Burns, Mike, An Experimental Evaluation and
Modification of Simulator-based Vehicle Control
Software for the Phoenix Autonomous Underwater Vehicle
(AUV), Master's Thesis, Naval Postgraduate School,
Monterey California, April 1996. Available at
http://www.cs.nps.navy.mil/research/auv

Byrnes, Ronald Benton Jr., The Rational Behavior Model:
A Multi-Paradigm, Tri-Level Software Architecture for the
Control of Autonomous Vehicles, Ph.D. Dissertation,
Naval Postgraduate School, Monterey California,
March 1993.

Byrnes, Ronald B., Healey, Anthony J., McGhee, Robert
B., Nelson, Michael L., Kwak, Se-Hung and Brutzman,
Donald P., "The Rational Behavior Software Architecture
for Intelligent Ships," Naval Engineers' Journal,
March 96, pp. 43-55.

20

Campbell, Michael Scott, Real-Time Sonar Classification
for Autonomous Underwater Vehicles, Master's Thesis,
Naval Postgraduate School, Monterey California,
March 1996.

Carey, Rikk, Marrin, Chris and Bell, Gavin, "The Virtual
Reality Modeling Language (VRML) Version 2.0
Specification," International Standards Organization/
International Electrotechnical Commission (ISO/IEC) draft
standard 14772, August 4 1996. Available via the VRML
Repository at http://www.sdsc.edu/vrml

Curtin, Thomas B., Bellingham, James G., Catipovic,
Josko and Webb, Doug, "Autonomous oceanographic
sampling networks," Oceanography, vol. 6, 1993,
pp. 86-94. Additional information at http://
web.mit.edu/afs/athena/org/s/seagrant/www/auv.htm

Davis, Duane, Precision Maneuvering and Control of the
Phoenix Autonomous Underwater Vehicle for Entering a CS4313 Lecture Notes, Naval Postgraduate School,
Recovery Tube, Master's Thesis, Naval Postgraduate
School, Monterey California, September 1996. Includes
video appendix. Available via Leonhardt, Bradley J., Mission Planning and Mission
http://www.cs.nps.navy.mil/research/auv Control Software for the Phoenix Autonomous Underwater

Davis, D., Brutzman, D., Leonhardt, B., McGhee, R.,
"Operational Mission Planning and Mission Control for
the Phoenix Autonomous Underwater Vehicle," IEEE
Journal of Oceanic Engineering, in review, 1996.

Flagg, Marco, "Submersible Computer for Divers, "MBone Provides Audio and Video Across the Internet,"
Autonomous Applications," Sea Technology, vol. 35 no. 2, IEEE COMPUTER, vol. 27 no. 4, April 1994, pp. 30-36.
February 1994, pp. 33-37. Available at

Foley, James D, van Dam, Andries, Feiner, Steven K. and
Hughes, John F., Computer Graphics: Principles and Marco, D. B. and Healey, A. J., "Local-Area Navigation
Practice, second edition, Addison-Wesley, Reading
Massachusetts, 1990. Predictive Control," IEEE Symposium on Autonomous

Fortner, Brand, The Data Handbook: A Guide to June 3-6 1996, pp. 67-77.
Understanding the Organization and Visualization of
Technical Data, Spyglass Inc., Champaign Illinois, 1992.

Fossen, Thor I., Guidance and Control of Ocean Vehicles,
John Wiley & Sons, Chichester England, 1994.

Healey, A.J. and Lienard, D., "Multivariable Sliding Mode
Control for Autonomous Diving and Steering of Filtering of Navigation Data for the Phoenix Autonomous
Unmanned Underwater Vehicles," IEEE Journal of Underwater Vehicle, Master's Thesis, Naval Postgraduate
Oceanic Engineering, vol. 18 no. 3, July 1993,
pp. 327-339.

Healey, A.J., Marco, D.B., McGhee, R.B., Brutzman, D.P. Proceedings of the IEEE, vol. 71 no. 7, July 1983,
and Cristi, R., "Evaluation of the NPS Phoenix pp. 872-884.
Autonomous Underwater Vehicle Hybrid Control System,"
Proceedings of the American Controls Conference (ACC)
95, San Francisco California, June 1995.

Healey, A. J., Marco, R.B. and McGhee, R.B.,
"Autonomous Underwater Vehicle Control Coordination
Using a Tri-Level Hybrid Software Architecture,"
Proceedings of the IEEE Robotics and Automation
Conference, Minneapolis Minnesota, April 1996.

Holden, Michael J., Ada Implementation of Concurrent
Execution for Multiple Tasks in the Strategic and Tactical
Levels of the Rational Behavior Model for the NPS AUV,
Master's Thesis, Naval Postgraduate School, Monterey
California, September 1995.

IEEE Standard for Distributed Interactive Simulation
(DIS) -- Communication Service and Profiles, IEEE
Standard P1278.1, Institute of Electrical and Electronic
Engineers, New York, 1995. Information available at
http://www.sc.ist.ucf.edu/~STDS

Kanayama, Yutaka, "Introduction to Motion Planning,"

Monterey California, March 1995.

Vehicle (AUV): Implementation and Experimental Study,
Master's Thesis, Naval Postgraduate School, Monterey
California, March 1996. Available at
http://www.cs.nps.navy.mil/research/auv

Macedonia, Michael R. and Brutzman, Donald P.,

ftp://taurus.cs.nps.navy.mil/pub/i3la/mbone.html

Using Sonar Feature Extraction and Model-Based

Underwater Vehicle Technology, Monterey California,

Marco, D. B., Healey, A. J. and McGhee, R.B.,
"Autonomous Underwater Vehicles: Hybrid Control of
Mission and Motion," Autonomous Robots, vol. 3, 1996,
pp. 169-186.

McClarin, David W., Discrete Multi-Mode Kalman

School, Monterey California, March 1996.

Moravec, Hans, "The Stanford Cart and the CMU Rover,"

21

Sayers, Craig P., Yoerger, Dana R., Paul, Richard P. and
Lisiewicz, John S., "A Manipulator Work Package for
Teleoperation from Unmanned Untethered Vehicles -
Current Feasibility and Future Applications,"
International Advanced Robotics Programme (IARP) on
Subsea Robotics, Toulon France, March 27-29 1996.
Additional information at http://www.dsl.whoi.edu

Shank, Roger C., "Where's the AI?," AI Magazine,
vol. 12 no. 4, Winter 1991, pp. 38-49.

Smith, Samuel M. and Dunn, Stanley E., "The Ocean
Voyager II: An AUV Designed for Coastal
Oceanography," Proceedings of the IEEE Oceanic
Engineering Society Conference Autonomous Underwater
Vehicles (AUV) 94, Cambridge Massachusetts,
July 19-20 1994, pp. 139-147. Additional information
available at http://www.oe.fau.edu/AMS

Stevens, Richard W., Advanced Programming in the Unix
Environment, Addison-Wesley, Reading Massachusetts,
1992. BCS-9306252 and the Naval Postgraduate School

Stewart, W. Kenneth, "Visualization resources and
strategies for remote subsea exploration," The Visual
Computer, Springer-Verlag, vol. 8 no. 5-6, June 1992,
pp. 361-379.

Strauss, Paul S. and Carey, Rikk, "An Object-Oriented 3D
Graphics Toolkit," COMPUTER GRAPHICS,
vol. 26 no. 2, July 1992, pp. 341-349.

Thalmann, Daniel, editor, Scientific Visualization and
Graphics Simulation, John Wiley & Sons, Chichester
Great Britain, 1990.

Torsiello, Kevin, Acoustic Positioning of the NPS
Autonomous Underwater Vehicle (AUV II) During Hover
Conditions, Engineer's Thesis, Naval Postgraduate School,
Monterey California, March 1994.

Yuh, Junku, editor, Underwater Robotic Vehicles: Design
and Control, TSI Press, Albuquerque New Mexico, 1995.

18 SOFTWARE AND DOCUMENTATION
All source code, support files and compiled

executable programs are available via the Internet
(Brutzman 96a). This software reference includes
help files, Phoenix software, 3D graphics viewer,
hydrodynamics, sonar modeling, networking and
Multicast Backbone (MBone) resources. AUV
dynamics software is parameterizable for other
vehicles and all work is in the public domain.
Available at http://www.stl.nps.navy.mil/~auv

Acknowledgements. The authors thank Mike Zyda
and Yutaka Kanayama for help and advice during
the conduct of this research. We are also grateful to
approximately eight dozen colleagues and students
of the NPS Center for AUV Research who have
made valuable contributions to Phoenix. Financial
support for this ongoing work has been provided by
the National Science Foundation under Grant

Research Initiation Program.

To appear: AI-Based Mobile Robots, Kortenkamp,
David, Bonasso, Peter and Murphy, Robin, editors,
MIT/AAAI Press, Cambridge Massachusetts, 1997.

This chapter is available online at
http://www.stl.nps.navy.mil/~auv/aimr.html and
http://www.stl.nps.navy.mil/~auv/aimr.ps

