
Proceedings of the 14th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH,
August 2005

1

AUTOMATED PARSING AND CONVERSION OF VEHICLE-SPECIFIC
DATA INTO AUTONOMOUS VEHICLE CONTROL LANGUAGE (AVCL)

USING CONTEXT-FREE GRAMMARS AND XML DATA BINDING

Duane T. Davis, Naval Postgraduate School
Watkins Annex Room 265

1 University Circle
Monterey, CA 93943

(831) 656-3733
dtdavis@nps.navy.mil

ABSTRACT

Numerous languages and data formats are utilized for
autonomous underwater vehicle (AUV) operations.
In particular, missions are generally written and data
archived using vehicle-specific languages and
formats. Development of an unmanned vehicle (UV)
ontology and automated conversion of vehicle-
specific information into a data format constrained by
this ontology can prove useful by enabling the
development of planning and analysis tools for
arbitrary vehicles and enabling facilitating
interoperability between dissimilar vehicles.
Implementation of this ontology using the Extensible
Markup Language (XML) is the obvious choice, in
part because of the ease with which it can be
transformed to other formats using the Extensible
Stylesheet Language for Transformations (XSLT).
Additionally, consistent mappings of output
telemetry to XML files permits results to be self-
documenting and self-validating. Nevertheless,
automated conversion of vehicle-specific data to a
common XML format can be problematic
necessitating the development of conversion
methodologies suited to this task.

Although tools such as the Extensible Stylesheet
Language for Transformations (XSLT) do not exist
for arbitrary data formats, a similar methodology can
be developed and implemented. The key to a
potential solution to this problem is recognizing that
vehicle-specific languages and formats can be
defined using context-free grammars (CFG).
Specifically a set of productions rules in Chomsky
Normal Form (CNF) is developed that completely
defines both the structure and semantics of a vehicle-
specific data format. The Cocke-Younger-Kasami
(CYK) algorithm is then utilized to generate a parse
tree for a vehicle-specific data file. The parse tree
contains all of the implicit information corresponding
to the grammar provided by an XML document. The
implementation of routines to generate an XML data

object corresponding to the common format is now a
relatively simple matter that is analogous to the use
of XSLT to convert from XML to vehicle-specific
formats.

This paper provides a brief discussion of a Naval
Postgraduate School-developed, XML-based
common autonomous vehicle data model—the
Autonomous Vehicle Control Language (AVCL)—
which is used as the basis for vehicle-independent
mission planning and rehearsal in the Naval
Postgraduate School (NPS) Autonomous Unmanned
Vehicle Workbench (AUVW). Additionally,
implementation results for the automated conversion
of four vehicle-specific data formats to this common
data model are presented.

1. INTRODUCTION

Significant research in recent years has investigated
methodologies and protocols to foster coordinated
operations among unmanned vehicles (UV).
However, much of this research has assumed that the
vehicles involved are inherently compatible. That is,
either the multi-vehicle system consists solely of one
type of vehicle, or all vehicles use the same language
for mission specification and/or inter-vehicle
communication. Unfortunately, this is unrealistic
given current inventories of legacy vehicles and the
parallel development of vehicles by various
commercial, academic, and government entities.

Ongoing research at the Naval Postgraduate School
(NPS) is attempting to address the issue of dissimilar
vehicle compatibility through the use of a common
ontology for UV tasking, communications and
mission results. In the context of this research,
ontology refers to a formal description of a
vocabulary, including word meanings, assumptions
and relationships, that can be used to describe and
represent an area of knowledge [4], in this case UV
operations. In addition to the ontology itself,

2

methods are being developed to foster automated
translations between vehicle-specific data formats
and an ontology-compliant format. In this way, an
UV tasking ontology can be used to facilitate
coordination between vehicles that are not designed
or programmed to work together. Similarly, this
ontology can be used as the basis for planning and
data analysis tools.

For reasons discussed in [7] and expanded in [17] and
[14], the UV ontology is being developed as a
schema-governed Extensible Markup Language
(XML) tagset [19]. XML is well-suited to this role
for a number of reasons. First, an XML document
can be easily understood and processed by both
humans and computers. This facilitates task
development, monitoring of mission progress, and
interpretation of mission results by human operators
as well as programmatic parsing and interpretation by
computer. Additionally, the structure and content of
an XML document can be rigorously defined through
the use of an XML schema [20][21] or a Data Type
Document (DTD) [19]. This strict content
governance facilitates mapping to and from other
data formats, makes document validity and
correctness easily verifiable, and even serves as the
basis for compression algorithms that make
transmission of XML content over noisy and
bandwidth-limited communications paths feasible.
Finally, XML lends itself to automatic translation to
different data formats through the use of the
Extensible Stylesheet Language for Transformations
(XSLT) [18] and XML data binding [16].

XSLT is a declarative programming language that is
used to transform one XML document into another
text-based format. Primarily defined for
transforming one XML document into another [18],
XSLT is by no means limited to this application. As
demonstrated in [15], it can be used effectively to
convert XML documents into virtually any text-based
format containing the same information, or derivable
information, as the original XML document. Among
the increasingly common uses of XSLT is the
transfer of data between applications requiring
different formats [10], a process that is semantically
identical to transforming an UV-ontology constrained
XML document to a vehicle-specific format.

XML data binding is another tool that proves useful
in processing schema- or DTD-governed XML
documents. While general XML parsers such as the
Simple Application Programmer’s Interface (API) for
XML (SAX) [13] and the Document Object Model
(DOM) [22] are appropriate in many instances, they
can be somewhat cumbersome because of the general

nature of the APIs. XML data binding, on the other
hand, uses an XML schema or DTD to automatically
generate high-level programming language code
(Java implementations are the most common) that is
specific to a particular type of document. This makes
loading, manipulating and generating schema-
compliant documents significantly simpler than
would be the case using SAX or DOM. With XML
data binding, ontology-compliant UV data can be
programmatically generated and transformed to
vehicle-specific formats as required in a relatively
straightforward manner.

While the preceding discussion clearly indicates the
utility of XML, XSLT and XML data binding in
converting from an UV ontology to vehicle-specific
data formats, it does not address the reverse
transformation—a significantly more difficult
problem. The fact of the matter is that vehicle-
specific data formats are not, in general, XML.
Nevertheless, use of an XML-based common data
model as an intermediary between different vehicle-
specific formats requires a mechanism for converting
non-XML vehicle-specific data into XML.

A simple observation that vehicle-specific data
formats, while not schema-governed XML, are still
rigorously defined lexically, semantically, and
structurally provides the basis for a methodology for
the automatic parsing and conversion of vehicle-
specific data to ontology-compliant XML.
Implementation of this methodology involves
definition of vehicle-specific formats using context-
free grammars (CFG). Once defined in this manner,
there are a number of well-known algorithms that can
be used to generate parse trees for arbitrary vehicle-
specific data, thereby providing a data structure
capable of supporting automated translation into
ontology-compliant XML.

The implementation of this methodology in the NPS
Autonomous and Unmanned Vehicle Workbench
(AUVW) [6][11] will be the focus of the remainder
of this paper. Section 2 will consist of a brief
discussion of the UV ontology into which vehicle-
specific data formats will be translated, the
Autonomous Vehicle Command Language (AVCL).
Section 3 will provide a mathematical overview of
CFGs and their use in defining vehicle-specific data
formats, while section 4 will describe the use of
CFGs in the AUVW for the generation and
translation of parse trees. Finally, section 5 will give
a brief description of the CFG definitions,
translations and results for four vehicle-specific data
formats currently implemented in the AUVW.

3

2. AUTONOMOUS VEHICLE
COMMAND LANGUAGE (AVCL)

Before specifically covering CFG-based translations
it is appropriate to briefly discuss the structure and
semantics of the proposed data model into which
vehicle-specific data is to be translated—the
Autonomous Vehicle Control Language (AVCL).
AVCL is an exemplar ontology encapsulating data
requirements for the operations of arbitrary UVs.
Structurally speaking, the schema is divided into
three parts: mission results, communication and
mission preparation. The mission results portion of
the schema is utilized to record synchronous data
such as telemetry and control orders as well as
asynchronous data including contacts and messages
sent or received. The communications portion is
used to format messages sent to or received from an
UV. Finally, AVCL’s mission preparation
vocabulary is used to define the mission
requirements. This mission preparation portion of
AVCL will be the primary focus of the remainder of
this paper, however the methods discussed are
equally applicable to the other portions of the
ontology.

The overall structure of the mission preparation
element of an AVCL document is shown graphically
in Figure 1. This element includes child elements for
the units of measure that are used throughout the rest
of the document, the origin of the Cartesian
coordinate system in geographic coordinates (if
required), and the configuration and capability
requirements of the vehicle for which the mission is
intended. Finally, the element contains the actual
description of the mission (i.e. what the vehicle is
required to do).

Mission requirements can be specified in one of two
ways. An example of the first method, mission
specification as a sequence of task-level script
commands, is shown in Figure 2. The simplest task-
level commands reset vehicle state parameters (e.g.
commanded depth, rudder deflection, etc.) and will
generally execute in a single vehicle control loop.
More complex task-level commands, waypoints for
example, will require an indeterminate amount of
time to complete. Missions specified in this way will
proceed sequentially with individual commands
executed one at a time in the order that they are
specified. Conceptually simple, this method of
mission specification is appropriate for many current
commercial and research UVs including NPS’
Acoustic Radio Interactive Exploratory Server
(ARIES) AUV, the Naval Oceanographic Office

(NAVO) Seahorse AUV and the Hydroid Remote
Environmental Monitoring Units (REMUS) AUV.

Figure 1: Mission preparation element structure in an
Autonomous Vehicle Control Language (AVCL) document.

Figure 2: A scripted mission for an autonomous underwater
vehicle (AUV) written with AVCL.

The second method of AVCL mission specification is
via a set of goals and constraints that are to be
completed in the course of the mission. The overall
format consists of a finite state machine (FSM) where
each node represents a single high-level goal. FSM
links determine which goal is to be accomplished
upon the completion (or failure) of the currently
executing goal. The AVCL element representing an
individual goal (Figure 3) includes a description of
the goal itself, the location or operating area and

<UUVCommandScript/>
 <Position>
 <XYPosition x="0.0" y="0.0"/>
 <Depth value="0.0"/>
 </Position>
 <Thrusters value="false"/>
 <Waypoint>
 <XYPosition x="100.0" y="100.0"/>
 <Depth value="45"/>
 <SetPropeller>
 <AllPropellers value="100.0"/>
 </SetPropeller>
 </Waypoint>
 <Waypoint>
 <XYPosition x="500.0" y="100.0"/>
 <!-- use prior depth! -->
 </Waypoint>
 <Waypoint>
 <XYPosition x="500.0" y="200.0"/>
 <Depth value="25"/>
 </Waypoint>
 <Waypoint>
 <XYPosition x="0.0" y="0.0"/>
 </Waypoint>
 <MakeDepth value="0.0"/>
 <Quit/>
</UUVCommandScript>

4

circumstances under which reports are to be made.
Attributes of the current goal are used to reference
the goal to be attempted upon completion
(nextOnSucceed) or failure (nextOnFail). Missions
specified in this method are appropriate for vehicles
such as the Naval Undersea Warfare Center (NUWC)
UUV-21 AUV and other vehicles using more
advanced hierarchical and hybrid control
architectures.

Figure 3: AVCL declarative mission goal element format.

3. DEFINITION OF VEHICLE-
SPECIFIC DATA FORMATS USING
CONTEXT-FREE GRAMMARS (CFG)

As stated in the previous section, vehicle-specific
data formats are by necessity rigorously defined both
structurally and semantically. In fact, vehicle-
specific data formats take the form of specific
context-free languages (CFL) [3]. Mathematically
speaking, a CFL is the set of strings derivable from a
CFG [8]. The implication of the previous statement
is that there exists a CFG corresponding to any
vehicle-specific data format in which we might be
interested. It stands to reason that the CFG can be

used to both generate and parse instances of the
vehicle-specific data format.

A CFG is commonly defined as a set of productions
or rules of the form

α→A

where A is a variable, α is a sequence of variables
and terminal symbols (the tokens that make up the
alphabet of the language) plus null (ε), and the
production symbol (→) indicates that the variable
A can be expanded into α .

A CFG can be formally specified with four
components: V, T, P, and S, where V is the set of
variables, T the set of terminal symbols, P the set of
productions, and S the set of available start symbols
(a non-empty subset of V) [8]. As a simple example,
the productions

()→P and ()PP →

can be used to construct all strings of balanced
parentheses (i.e., strings of the form “((()))”). An
appropriate CFG can therefore be fully defined as

{ } { } { } { }()AAAAAG ,)((),,)(,, →→= .

Simplicity of the preceding example notwithstanding,
CFGs can a powerful tool for recursively defining a
variety of complex languages. In fact, CFG
production rules of the form described above provide
the basic building blocks of the XML DTD [19] and
can be used to define high-level programming
languages [8].

While CFGs are expressively powerful in their basic
form, there are a number of potential issues that can
complicate their application. The most obvious is
that there are a number of CFGs that can be used to
generate a specific CFL. For instance we could
generate the same CFL as the example by replacing
the productions in the grammar (G) with

{ })(,,),(→→→→ CBBCAAA .

Further, it is easy to define a mathematically correct
grammar (i.e. one that correctly generates the CFL)
that has unreachable or redundant rules that make its
use unnecessarily complex. Finally, many CFGs are
ambiguous, meaning that there are multiple ways to
apply the productions to derive a given string. It is

5

therefore, often advantageous to constrain the form of
the production rules of the CFG by defining it in
accordance with a normal form.

In general a normal form is a way of defining the
format and characteristics of the productions of a
CFG. Commonly utilized normal forms used in the
definition of CFGs are Chomsky Normal Form
(CNF), Greibach Normal Form (GNF) and Backus-
Naur Form (BNF) [8]. Because the parsing
algorithm implemented in the AUVW requires CFGs
defined in CNF, the remainder of this section will
consist of a discussion of this normal form and its
practical use in defining CFGs capable of generating
UV-specific documents.

The productions of a CFG defined in CNF have three
significant characteristics:

1. No useless symbols (i.e., variables or terminal
symbols that do not appear in any terminal-string
derivation beginning with the start symbol).

2. No ε productions (i.e., those of the form
ε→A) .

3. All productions must be of the form

 BCA → or
aA →

where A, B and C are variables and a is a
terminal symbol.

It can be proven that for any CFL not containing the
empty string (ε), there exists a CNF CFG capable of
generating that CFL [8]. Defining CFGs in CNF
addresses a number of the potential pitfalls of CFG
definition (although ambiguity, in particular, can still
be an issue), and provides a convenient form for
application of the Cocke-Younger-Kasami (CFK)
parsing algorithm that will be discussed in the next
section.

From a practical standpoint, defining a CFG to
generate a particular vehicle-specific data format
involves determining the terminal symbols and
writing the productions. Terminal symbols may
consist solely of numbers as in the ARIES AUV
control language [12] or can consist of keywords,
symbols and numbers [9]. Production definition can
be fairly arbitrary. Nevertheless, since the production
rules ultimately determine the structure of the
resultant parse tree, the AUVW CFG definitions
attempt to utilize production rules that generate

homogeneous constructs at their particular derivation
level (e.g., position, command or mission) as
demonstrated by the following productions which
were utilized in the CFG definition corresponding to
the AUV mission programming language described
in [5].

 COMMAND → WAYPT_TOKEN + POSIT_3D
 POSIT_3D → LAT_LONG + DOUBLE
 LAT_LONG → DOUBLE + DOUBLE

Similar production rules are developed for different
commands that reuse variables such as
“LAT_LONG” and “POSIT_3D” when feasible.

Programmatic implementation of individual CFGs in
the AUVW is accomplished through a CFG-specific
dictionary class that lexically maps tokens to their
production rule, and a CFG-specific parser class that
defines the set of binary production rules of the
grammar. Both of these classes inherit from abstract
classes that implement the CYK parsing algorithm
(described in the next section). Actual parsing in the
AUVW is therefore CFG-independent, and arbitrary
languages can be implemented quickly. All that is
required is to define a suitable CFG through extended
dictionary and parser classes.

4. CONTEXT-FREE LANGUAGE
(CFL) PARSING AND
TRANSFORMATION

Utilization of CFGs defined as described in the
previous section to transform vehicle-specific
instance documents is implemented in the AUVW
using a two-step process. First, a parse tree is
generated for the instance document using the CFG
productions. Second, the parse tree is traversed and
templates applied at individual nodes to generate an
XML data bound Java object using the Java
Architecture for XML Binding (JAXB) [16]. The
second step of this process is analogous to the use of
XSLT in that both traverse a document tree in a
predictable manner and generate output based on the
contents of the tree. These methods differ, however,
in their traversal and generation methodologies. In
the case of XSLT, the document tree is traversed in
an arbitrary fashion and allows multiple visits to
individual nodes but generates the output document
serially. The CFG-based method described here, on
the other hand, traverses the tree in depth-first order
and visits each node only once, but generates the
output document in an arbitrary fashion.

6

CFG parsing in the AUVW is accomplished using the
CYK algorithm. This algorithm utilizes dynamic
programming [2] to parse CFL instances in a bottom
up fashion. When utilizing CFGs specified in CNF,
the CYK algorithm can be expected to generate a
binary parse tree (similar to the one shown in Figure
4 which corresponds to a waypoint command
derivable from the sample productions in the
preceding section) in ()3nO time based on the
length of the input string [8]. As shown in Figure 5,
the algorithm simply recognizes string membership
in the CFL corresponding to the CFG and does not
generate a parse tree. However, replacing the
Boolean array with an array of partial parse trees is
all that is required to fully implement a parser. Upon
completion of the algorithm, the array elements
P[1, n, x] will contain valid parse trees (if the
grammar is unambiguous, at most one will be non-
null).

Figure 4: A Cocke-Younger-Kasami (CYK) algorithm
generated parse tree corresponding to an AUV waypoint
command as defined in [5] and the context-free grammar
(CFG) productions example of section 3.

Following generation of a parse tree corresponding to
a vehicle-specific CFL instance, it is possible to
generate AVCL based on the parse tree structure and
content. XSLT utilizes a template-based approach to
generate output based on an XML content tree, and a
similar approach is utilized here to generate AVCL
based on the parse tree. As previously stated, the tree
is processed in depth-first order. Templates are
applied at each node that define actions to take based
on the content of that particular node. Actions in
most cases will include recursively processing the
current node’s left and then right child, and will in
some cases include the generation of output.

As an example, upon arriving at the “COMMAND”
node depicted in Figure 4, output can be generated.
Since the structure of the parse tree is deterministic,
upon reaching this node, further traversal in this case
not necessary, so the node’s children are not

recursively processed. All of the information
required to generate the corresponding AVCL is in a
known location relative to the current node. For
instance, the type of command is specified by the left
child of the current node, and given that it is a
“Waypoint” command, the latitude is specified by the
left child of the left child of the right child of the
current node.

Figure 5: The CYK algorithm for recognizing string
membership in a context-free language (CFL) [8].

A parse tree of the form shown in Figure 6, on the
other hand, will probably not generate output upon
reaching the “COMMAND_LIST” node. Rather, it
will recursively process the left child and then the
right child. While processing the left child, output
will be generated that corresponds to the type of
command represented. When processing the right
child no output will be generated until its left and
right children are recursively processed.

Still other cases might require the generation of
output as well as recursive processing of the current
node’s left and/or right child. Additionally, nodes
may include state information that must be
maintained during traversal of the rest of the tree. An
example is provided by the REMUS AUV language’s
reuse of program elements through references. Upon
encountering a reference, the template must cache the
relevant data for use when the reference is invoked in
other portions of the program.

Let the input string be a sequence of n letters
a1…an

Let V1…Vr be the set of CFG symbols (V)

Let S be the set of indices of V corresponding
to CFG start symbols

Let P[n, n, r] be a Boolean array initialized
to false

For i = 1 to n

 For each unit production Vj → ai

 P[i, 1, j] = true

For i = 2 to n – Length of span

 For j = 1 to n – i + 1 – Start of span

 For k = 1 to i – 1 – Partition of span

 For each production VA → VBVC

 if P[j, k, B] = true and

 P[j + k, i – k, C] == true

 then P[j, i, A] = true

if P[1, n, x] is true (x is an element of S)

 then the string is a member of the CFL

 else the string is not a member of the CFL

7

Figure 6: A partial parse tree of a vehicle-specific CFL
instance suitable for recursive translation into AVCL.

A noteworthy characteristic of the depth-first
traversal is that the instance document is processed in
order. For vehicle-specific data formats along the
lines of those used in the ARIES or Seahorse AUVs,
the corresponding AVCL will be generated in the
same order. However, the sequence and structure of
the AVCL corresponding to instances of more
complex data formats may differ significantly from
the vehicle-specific document. Since the parse-tree
traversal is fixed, AVCL generation must be arbitrary
(i.e. it must be possible to generate the AVCL
document in any order). This is accomplished
through the use of XML data binding. Since the
entire document is maintained in memory throughout
the generation process, it is a fairly simple matter to
access or modify existing data, add new data, and
move or copy existing data from one location in the
document to another.

5. IMPLEMENTATION AND
RESULTS

To date CFGs have been developed and implemented
in the AUVW for the vehicle-specific mission
programming languages of four AUVs: NPS ARIES,
NPS Phoenix, NAVO Seahorse and Hydroid
REMUS. Missions specified in any of these
languages are translatable into task-level missions in
AVCL.

The ARIES AUV

Of the implemented data formats, the simplest is used
to task the NPS ARIES AUV. ARIES mission files
consist of individual waypoint commands that are to
be achieved sequentially in the order specified. Each
waypoint is specified with 11 double-precision
floating point numbers. Waypoint parameters
include Cartesian coordinate position of the
waypoint, depth below the surface or altitude above
the bottom to use during transit, left and right
propeller speed, maximum time to allow for reaching

the waypoint and a binary flag indicating whether or
not a global positioning system (GPS) fix is to be
obtained during transit. [12]

Because ARIES’ data consists entirely of numbers,
only one production rule mapping variables to
terminals is required:

numberDOUBLE →

This and 14 binary productions fully define the
ARIES mission specification language. Resultant
parse tree nodes corresponding to an ARIES
waypoint often translate directly into a single AVCL
waypoint script command. In some circumstances,
most notably when different left and right propeller
settings are ordered or a GPS fix is required during
transit, additional AVCL task-level commands are
required prior to the waypoint command as depicted
in the example of Figure 7.

Figure 7: An AVCL task-level command sequence
corresponding to an ARIES AUV waypoint command with
dissimilar left and right propeller settings and an enroute
global positioning system (GPS) fix.

The Phoenix AUV

The second vehicle-specific data format implemented
in the AUVW is a script-based mission specification
described in [5]. The language was utilized in the
NPS Phoenix AUV and is still an available option in
the AUVW. Translation of Phoenix missions into
AVCL requires a larger subset of the AVCL task-
level command set and includes a number of
commands that are not directly representable in
AVCL.

A Phoenix AUV mission takes the form of a series of
script commands. Each command consists of a
keyword and zero or more numerical or text
parameters. In some instances, different tokens can
be used for the same keyword (e.g., “thrusters” and
“thrusters-on” can be used interchangeably). This is

<SetPropeller>
 <PortPropeller value="75.0"/>
</SetPropeller>
<SetPropeller>
 <StarboardPropelelr value="50.0"/>
</SetPropeller>
<GpsFix>
 <StartGpsFix/>
</GpsFix>
<Waypoint>
 <XYPosition x="500.0" y="200.0"/>
 <Altitude value="25"/>
 <Standoff value="10"/>
 <TimeOut value="125"/>
</Waypoint>

8

dealt with in the dictionary class by mapping each of
the various forms of a keyword to the same
production rule. Additionally, many commands can
have varying numbers of parameters. In each case,
the number of parameters determines what each
parameter represents. For instance, the command

WAYPOINT 100 500 15 10

orders the vehicle to transit to the waypoint specified
by the Cartesian coordinate (100, 500) at a depth of
15 meters and to proceed to the next command upon
reaching a standoff distance of ten meters. The
command

WAYPOINT 100 500 15

on the other hand, specifies the same waypoint and
transit depth, but does not specify a standoff distance
(in this case, the most recently specified standoff
distance applies). It is not possible, however, to
specify a waypoint with a Cartesian coordinate and
standoff distance without also specifying a transit
depth.

Terminal tokens in the Phoenix command language
can take the form of keywords, numbers or literal
string tokens. Keywords for parameterless
commands (e.g., gpsfix) are all mapped to the same
rule:

keywordCOMMAND →

This greatly simplifies the CFG, however it requires
actual interpretation of the keyword when the parse
tree is translated into AVCL. Keywords for
commands requiring parameters are mapped to more
specific unary rules along the lines of

""_ hoverTOKENHOVER →

that can be utilized during translation to infer the
potential parameter semantics. In total, 22 unary and
39 binary production rules are utilized to define the
Phoenix CFG.

It is worth noting that the COMMAND variable is
used on the left side of both unary and binary rules in
the Phoenix CFG. This results in numerous potential
parse tree structures with a “COMMAND” node at
their root. Nevertheless, in all cases the specific
keyword contained in the leftmost leaf of the parse
tree node (referenced directly from the
“COMMAND” node in the AUVW implementation
without further recursive traversal) can be utilized

during translation to determine how to process
individual commands.

Translation of Phoenix command language
documents into AVCL is almost a one to one
mapping from Phoenix commands to AVCL task-
level commands. For instance, each of the waypoint
commands described previously translates directly to
a single AVCL waypoint command. There are,
however, a number of Phoenix commands that are
not directly represented in AVCL. For instance,
“pause,” “trace” and “real-time-off” commands were
implemented to support mission and control testing in
a virtual environment in [1]. This functionality has
been implemented directly in the AUVW, however,
and is no longer required in the vehicle-command
language. Nevertheless, capture of the semantics of
these commands in AVCL is required in order to
facilitate the accurate generation of Phoenix missions
from AVCL scripts as described in [6]. AVCL,
therefore, incorporates a “meta” command that can
encode command data that is relevant only to a
specific vehicle. Conversions from AVCL to most
vehicle-specific data formats will ignore meta
commands, however, enough information is
contained in the command to allow accurate
translations from AVCL to the data format of the
relevant vehicle. For example, a meta command
representing a Phoenix “pause” command might have
the form

<MetaCommand value=“pause”
description= “Phoenix AUV
pause command”/>

Parameterized vehicle-specific commands requiring
meta command representation in AVCL will include
all of the parameters in the MetaCommand value
parameter.

The Seahorse AUV

The third vehicle-specific CFG implemented in the
AUVW is used for NAVO Seahorse AUV tasking.
While still script-based and mappable to the AVCL
task-level command set, the syntactic complexity of
the Seahorse CFL is greater than that of ARIES or
Phoenix, so the CFG implementation in the AUVW
is also comparatively complex.

Syntactic complexity notwithstanding, the Seahorse
CFL contains just four general purpose commands.
These can be used to direct the vehicle to a waypoint,
cause it to loiter at a specified location, obtain a GPS
fix or surface for communications. Additionally, the
first command in a Seahorse mission must be a

9

launch command that initializes the vehicle and the
final command must be a rendezvous command that
directs the vehicle to the retrieval location. Each of
the six commands has a form similar to the station-
keeping command depicted in Figure 8 (which
commands the vehicle to loiter at a specified
geographic position) which is comprised of a series
of parameter name-value pairs. Parameter order is
fixed, however CFG complexity is introduced by the
fact that some parameters are optional and others
have more than one potential form (e.g., positions can
be specified as latitude and longitude or as north and
east offsets from the current position, distances can
be specified using feet, meters, kilometers or
kiloyards, etc.). In all, the Seahorse AUV CFG
implemented in the AUVW utilizes 47 terminal and
136 binary production rules, most of which generate
subportions of individual commands.

Figure 8: A Seahorse AUV command directing the vehicle to
proceed to a geographic position and remain there for 90
minutes.

Utilization of the parse tree to generate AVCL is
relatively straight forward despite the number of
production rules and correspondingly deep parse tree
branches for individual commands. As with ARIES
and Phoenix, once a parse tree node representing a
command is encountered, the location in the branch
of various parameter names and values is known, so
they can be accessed directly without further
traversal.

In the simplest cases (e.g., a waypoint command with
no GPS fix during transit), a Seahorse command can
be represented by a single AVCL task-level
command. However, more complex cases such as
the command depicted in Figure 9, require a series of
task-level commands to accurately capture the
semantics (Figure 10).

The REMUS AUV

The final vehicle-specific CFG implemented in the
AUVW is utilized for tasking of the REMUS AUV.
A REMUS mission consists of a sequence of
objectives that are to be accomplished in order.
There are 14 objective types available including
mandatory start and end objectives, various forms of
waypoints and a number of vehicle-specific

commands. Like Seahorse AUV commands,
REMUS objectives use a keyword to identify the
objective type and a number of mandatory and
optional name-value pairs to parameterize the
objective resulting in objectives similar to the one
shown in Figure 11. In addition, the REMUS CFL
allows locations to be specified by reference. This
facilitates location reuse throughout the mission file
and supports the specification of relative positions.
[9]

Figure 9: A Seahorse AUV rendezvous command directing the
vehicle to transit at 30 meters depth and a speed of 4 knots to a
geographic rendezvous point and to obtain GPS fixes before
starting and after arriving.

Figure 10: An AVCL task-level command sequence
corresponding to the Seahorse AUV command of Figure 9.

The CFG implemented in the AUVW to support the
REMUS tasking language 40 unary and 40 binary
production rules and generates both the location and
objective portions of a REMUS mission file.

While advantageous at parsing time, maintenance of
both objective and location information in the same
parse tree requires some special handling during
translation. In the AUVW implementation, the parse
tree is traversed twice: once to build the location
reference table and once to translate the objectives
into AVCL. The nature and sequential execution of
REMUS objectives allows most of them to be
mapped directly to AVCL task-level commands. Of
the 14 objective types, nine can be represented a

<GpsFix>
 <StartGpsFix/>
</GpsFix>
<Waypoint>
 <LatitudeLongitude latitude="28.0"
 longitude="88.0"/>
 <Depth value="30"/>
 <SetPropeller>
 <AllPropellers value="75.0"/>
 </SetPropeller>
</Waypoint>
<GpsFix>
 <StartGpsFix/>
</GpsFix>
<Loiter>
 <LatitudeLongitude latitude="28.0"
 longitude="88.0"/>
 <LoiterDepth value="0.0"/>
 <Duration value="120.0"/>
</Loiter>
<Quit/>

Start_Order : Rendezvous_Order
Scheduling_Info_Is_Timed : False
Rendezvous_Latitude : 28.0 Degrees
Rendezvous_Longitude : 88.0 Degrees
Transit_Depth : 30.0 Meters
Transit_Speed : 4.0 Knots
GPS_Fix_Before_Departure : True
GPS_Fix_After_Arrival : True

Start_Order : Station_Keep_Order
Scheduling_Info_Is_Timed : True
Destination_Latitude : 33.0 Degrees
Destination_Longitude : -122.5 Degrees
Until_when : 90 Minutes
Transit_Altitude : 15 Meters
Loiter_Depth : 15 Feet

10

sequence of one or more task-level commands. The
remaining six objective types are REMUS-specific
and are not directly representable in AVCL. As with
the Phoenix AUV CFL, these commands require the
use of AVCL meta commands. Additionally, a
number of parameters to other commands (such as
the “Track ping interval” and “Sidescan range”
parameters in Figure 11) are vehicle-specific enough
require the use of meta commands.

Figure 11: REMUS AUV objectives defining two waypoints.
The first is specified using a reference to the location “WPT”
while the second is defined as an offset from “WPT”.

6. CONCLUSIONS

The implementation of automated parsing and
translation of four AUV command languages into a
common data format (in this case AVCL) using
CFGs and XML data binding demonstrates the
viability of this approach for the automated
conversion of structured non-XML data to an XML
format. Generally speaking, it is complementary to
XSLT in that it provides a fairly simple method of
converting between XML and non-XML data
formats. From an AUV data-management
standpoint, the implication is that a common data
model can be utilized for more or less arbitrary
AUVs with conversions providing the vehicle-
specific support.

Related NPS research is being conducted into the
development use of a common data model for UV
operations. Subtopics in this area in addition to the
one described in this paper include the development
of higher-level declarative UV mission specification,
conversion between task-level and declarative
mission specifications and the development of
XSLT-based conversions from AVCL to various
vehicle-specific data formats. Additionally, the
AUVW is being utilized as a testbed for arbitrary UV
planning, physics-based mission rehearsal and
playback, automated UV data archiving and runtime
monitoring and control of UVs [6].

ACKNOWLEDGEMENT

The author wishes to acknowledge the financial
support of the Navy Modeling and Simulation Office
(NMSO), Naval Undersea Warfare Center (NUWC)
CARUSO project, Navy Research Laboratory-
Stennis Space Center, and the Singapore Defense
Science and Technology Agency and Defense
Science Organization National Laboratories.

REFERENCES

[1] Brutzman, D. P., A Virtual World for an
Autonomous Underwater Vehicle, Ph.D. Thesis,
Department of Computer Science, Naval
Postgraduate School, Monterey, California,
December 1994.
http://web.nps.navy.mil/~brutzman/dissertation

[2] Cormen, T. H., Leiserson, C. E. and Rivest, R.
L., Introduction to Algorithms, McGraw-Hill Book
Company, 1990.

[3] Crangle, C. and Suppes, P., Language and
Learning for Robots, Center for the Study of
Language and Information Publishing, 1994.

 [4] Daconta, M. C., Obrst, L. J. and Smith, K. T.,
The Semantic Web, A Guide to the Future of XML,
Web Services, and Knowledge Management, Wiley
Publishing, 2003.

[5] Davis, D. T., Precision Maneuvering of the
Phoenix Autonomous Underwater Vehicle for
Entering a Recovery Tube, Masters Thesis,
Department of Computer Science, Naval
Postgraduate School, Monterey, California,
September 1996.

[Location]
Type= Waypoint
Label= WPT
Destination= 41N31.070 70W41.935
Offset direction= 0.0
Offset distance (meters)= 0.0
Offset Y axis(meters)= 0.0

[Objective]
Type= Navigate
Destination= WPT
Offset direction= 0.0
Offset distance (meters)= 0.0
Offset Y axis(meters)= 0.0
Minimum range (m.)= 10
Depth control mode= Depth (meters)= 5.0
Speed= 2.3 m/s
Timeout (seconds)= 300
Follow trackline= Yes
Track ping interval (secs.)= 0
Sidescan range= 30

[Objective]
Type= Navigate
Destination= WPT
Offset direction= 0.0
Offset distance (meters)= 1000.0
Offset Y axis(meters)= 200.0
Minimum range (m.)= Same
Depth control mode= Depth (meters)= 5.0
Speed= 4.0 knots
Timeout (seconds)= Auto
Follow trackline= No
Track ping interval (secs.)= 0
Sidescan range= Same

11

[6] Davis, D. T. and Brutzman, D. P., “The
Autonomous and Unmanned Vehicle Workbench:
Mission Planning Mission Rehearsal, and Mission
Replay Tool for Physics-Based X3D Visualization,”
Proceedings of the 14th International Symposium on
Unmanned Untethered Submersible Technology,
Durham, NH, August 2005.

[7] Hawkins, D. L. and Van Leuvan, B. C., An XML-
Based Mission Command Language for Autonomous
Underwater Vehicles, Masters Thesis, Department of
Information Sciences, Naval Postgraduate School,
Monterey, California, June 2003.

[8] Hopcroft, J., Motwani, R. and Ullman, J.,
Introduction to Automata Theory, Languages, and
Computation, 2nd Edition, Addson-Wesley, 2001.

[9] Hydroid, Inc., Technical Manual Operations and
Maintenance Instructions, Remote Environmental
Measuring Units (REMUS), 2001.

[10] Kay, M., XSLT Programmer’s Reference, 2nd
Edition, Wiley Publishing, 2003.

[11] Lee, C. S., NPS AUV Workbench:
Collaborative Environment for Autonomous
Underwater Vehicles (AUV) Mission Planning and
3D Visualization, Masters Thesis, Department of
Computer Science, Naval Postgraduate School,
Monterey, California, March 2004.

[12] Marco, D., “Procedure to Run Missions with the
ARIES,” Naval Postgraduate School Center for
Autonomous Underwater Vehicle Research internal
document, September 2001.

[13] Means, W. S. and Bodie, M. A., The Book of
SAX, The Simple API for XML, No Starch Press,
2002.

[14] Naval Postgraduate School (NPS) Technical
Report NPS-MAE-04-002, Naval Postgraduate
School Center for Autonomous Underwater Vehicle
Research 2003 Annual Report, edited by Kragelund,
S., 15 March 2004.

[15] Neushul, J. D., Interoperability, Data Control
and Battlespace Visualization Using XML, XSLT, and
X3D, Masters Thesis, Naval Postgraduate School,
Monterey, California, September 2003.

[16] Sun Microsystems, Inc., Java Architecture for
XML Binding (JAXB) Version 1.0, edited by Fialli, J.
and Vajjhala, S., January 2003. Available at
http://www.sun.com/xml/jaxb/jaxb-docs.pdf

[17] Weekley, J., Brutzman, D., Healey, A., Davis,
D. and Lee, D., “AUV Workbench: Integrated 3D
for Interoperable Mission Rehearsal, Reality and
Replay,” Proceedings of the Mine Warfare
Association Australian-American Mine Warfare
Conference, Canberra, Australia, February 2004.
Available at
http://www.movesinstitute.org/xmsf/projects/AUV/A
UVWorkbenchIntegrated3D-
MinwaraCanberraAustraliaFebruary2003.pdf

[18] World Wide Web Consortium, XSL
Transformations (XSLT) Version 1.0 Recommended
Specification, edited by Clark, J., October 2001.
Available at http://www.w3.org/TR/2001/REC-xsl-
20011015

[19] World Wide Web Consortium (W3C),
Extensible Markup Language (XML) 1.0 (Third
Edition) Recommended Specification, edited by
Bray, T., Paoli, J., Sperberg-McQueen C. M., Maler,
E., and Yergeau, F., February 2004. Available at
http://www.w3.org/TR/REC-xml

[20] World Wide Web Consortium, XML Schema
Part 1: Structures Second Edition Recommended
Specification, edited by Biron, Thompson, H. S.,
Beech, D., Maloney, M. and Mendelsohn, N.,
October 2004. Available at
http://www.w3.org/TR/xmlschema-1

[21] World Wide Web Consortium, XML Schema
Part 2: Datatypes Second Edition Recommended
Specification, edited by Biron, P. V. and Malhotra,
A., October 2004. Available at
http://www.w3.org/TR/xmlschema-2

[22] World Wide Web Consortium, Document
Object Model Level 3 Core Specification
Recommendation, edited by Le Hors, A., Le Hegaret,
P., Wood, L., Nicol, G., Robie, J., Champion, M. and
Byrne, S., April 2004. Available at
http://www.w3.org/DOM

