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ABSTRACT 

Numerous languages and data formats are utilized for 
autonomous underwater vehicle (AUV) operations.  
In particular, missions are generally written and data 
archived using vehicle-specific languages and 
formats.  Development of an unmanned vehicle (UV) 
ontology and automated conversion of vehicle-
specific information into a data format constrained by 
this ontology can prove useful by enabling the 
development of planning and analysis tools for 
arbitrary vehicles and enabling facilitating 
interoperability between dissimilar vehicles.  
Implementation of this ontology using the Extensible 
Markup Language (XML) is the obvious choice, in 
part because of the ease with which it can be 
transformed to other formats using the Extensible 
Stylesheet Language for Transformations (XSLT).  
Additionally, consistent mappings of output 
telemetry to XML files permits results to be self-
documenting and self-validating.  Nevertheless, 
automated conversion of vehicle-specific data to a 
common XML format can be problematic 
necessitating the development of conversion 
methodologies suited to this task. 

Although tools such as the Extensible Stylesheet 
Language for Transformations (XSLT) do not exist 
for arbitrary data formats, a similar methodology can 
be developed and implemented.  The key to a 
potential solution to this problem is recognizing that 
vehicle-specific languages and formats can be 
defined using context-free grammars (CFG).  
Specifically a set of productions rules in Chomsky 
Normal Form (CNF) is developed that completely 
defines both the structure and semantics of a vehicle-
specific data format.  The Cocke-Younger-Kasami 
(CYK) algorithm is then utilized to generate a parse 
tree for a vehicle-specific data file.  The parse tree 
contains all of the implicit information corresponding 
to the grammar provided by an XML document.  The 
implementation of routines to generate an XML data 

object corresponding to the common format is now a 
relatively simple matter that is analogous to the use 
of XSLT to convert from XML to vehicle-specific 
formats. 
 
This paper provides a brief discussion of a Naval 
Postgraduate School-developed, XML-based 
common autonomous vehicle data model—the 
Autonomous Vehicle Control Language (AVCL)—
which is used as the basis for vehicle-independent 
mission planning and rehearsal in the Naval 
Postgraduate School (NPS) Autonomous Unmanned 
Vehicle Workbench (AUVW).  Additionally, 
implementation results for the automated conversion 
of four vehicle-specific data formats to this common 
data model are presented. 

1.  INTRODUCTION 

Significant research in recent years has investigated 
methodologies and protocols to foster coordinated 
operations among unmanned vehicles (UV).  
However, much of this research has assumed that the 
vehicles involved are inherently compatible.  That is, 
either the multi-vehicle system consists solely of one 
type of vehicle, or all vehicles use the same language 
for mission specification and/or inter-vehicle 
communication.  Unfortunately, this is unrealistic 
given current inventories of legacy vehicles and the 
parallel development of vehicles by various 
commercial, academic, and government entities. 

Ongoing research at the Naval Postgraduate School 
(NPS) is attempting to address the issue of dissimilar 
vehicle compatibility through the use of a common 
ontology for UV tasking, communications and 
mission results.  In the context of this research, 
ontology refers to a formal description of a 
vocabulary, including word meanings, assumptions 
and relationships, that can be used to describe and 
represent an area of knowledge [4], in this case UV 
operations.  In addition to the ontology itself, 
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methods are being developed to foster automated 
translations between vehicle-specific data formats 
and an ontology-compliant format.  In this way, an 
UV tasking ontology can be used to facilitate 
coordination between vehicles that are not designed 
or programmed to work together.  Similarly, this 
ontology can be used as the basis for planning and 
data analysis tools. 

For reasons discussed in [7] and expanded in [17] and 
[14], the UV ontology is being developed as a 
schema-governed Extensible Markup Language 
(XML) tagset [19].  XML is well-suited to this role 
for a number of reasons.  First, an XML document 
can be easily understood and processed by both 
humans and computers.  This facilitates task 
development, monitoring of mission progress, and 
interpretation of mission results by human operators 
as well as programmatic parsing and interpretation by 
computer.  Additionally, the structure and content of 
an XML document can be rigorously defined through 
the use of an XML schema [20][21] or a Data Type 
Document (DTD) [19].  This strict content 
governance facilitates mapping to and from other 
data formats, makes document validity and 
correctness easily verifiable, and even serves as the 
basis for compression algorithms that make 
transmission of XML content over noisy and 
bandwidth-limited communications paths feasible.  
Finally, XML lends itself to automatic translation to 
different data formats through the use of the 
Extensible Stylesheet Language for Transformations 
(XSLT) [18] and XML data binding [16]. 

XSLT is a declarative programming language that is 
used to transform one XML document into another 
text-based format.  Primarily defined for 
transforming one XML document into another [18], 
XSLT is by no means limited to this application.  As 
demonstrated in [15], it can be used effectively to 
convert XML documents into virtually any text-based 
format containing the same information, or derivable 
information, as the original XML document.  Among 
the increasingly common uses of XSLT is the 
transfer of data between applications requiring 
different formats [10], a process that is semantically 
identical to transforming an UV-ontology constrained 
XML document to a vehicle-specific format. 

XML data binding is another tool that proves useful 
in processing schema- or DTD-governed XML 
documents.  While general XML parsers such as the 
Simple Application Programmer’s Interface (API) for 
XML (SAX) [13] and the Document Object Model 
(DOM) [22] are appropriate in many instances, they 
can be somewhat cumbersome because of the general 

nature of the APIs.  XML data binding, on the other 
hand, uses an XML schema or DTD to automatically 
generate high-level programming language code 
(Java implementations are the most common) that is 
specific to a particular type of document.  This makes 
loading, manipulating and generating schema-
compliant documents significantly simpler than 
would be the case using SAX or DOM.  With XML 
data binding, ontology-compliant UV data can be 
programmatically generated and transformed to 
vehicle-specific formats as required in a relatively 
straightforward manner. 

While the preceding discussion clearly indicates the 
utility of XML, XSLT and XML data binding in 
converting from an UV ontology to vehicle-specific 
data formats, it does not address the reverse 
transformation—a significantly more difficult 
problem.  The fact of the matter is that vehicle-
specific data formats are not, in general, XML.  
Nevertheless, use of an XML-based common data 
model as an intermediary between different vehicle-
specific formats requires a mechanism for converting 
non-XML vehicle-specific data into XML. 

A simple observation that vehicle-specific data 
formats, while not schema-governed XML, are still 
rigorously defined lexically, semantically, and 
structurally provides the basis for a methodology for 
the automatic parsing and conversion of vehicle-
specific data to ontology-compliant XML.  
Implementation of this methodology involves 
definition of vehicle-specific formats using context-
free grammars (CFG).  Once defined in this manner, 
there are a number of well-known algorithms that can 
be used to generate parse trees for arbitrary vehicle-
specific data, thereby providing a data structure 
capable of supporting automated translation into 
ontology-compliant XML. 

The implementation of this methodology in the NPS 
Autonomous and Unmanned Vehicle Workbench 
(AUVW) [6][11] will be the focus of the remainder 
of this paper.  Section 2 will consist of a brief 
discussion of the UV ontology into which vehicle-
specific data formats will be translated, the 
Autonomous Vehicle Command Language (AVCL).  
Section 3 will provide a mathematical overview of 
CFGs and their use in defining vehicle-specific data 
formats, while section 4 will describe the use of 
CFGs in the AUVW for the generation and 
translation of parse trees.  Finally, section 5 will give 
a brief description of the CFG definitions, 
translations and results for four vehicle-specific data 
formats currently implemented in the AUVW. 
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2.  AUTONOMOUS VEHICLE 
COMMAND LANGUAGE (AVCL) 

Before specifically covering CFG-based translations 
it is appropriate to briefly discuss the structure and 
semantics of the proposed data model into which 
vehicle-specific data is to be translated—the 
Autonomous Vehicle Control Language (AVCL).  
AVCL is an exemplar ontology encapsulating data 
requirements for the operations of arbitrary UVs.  
Structurally speaking, the schema is divided into 
three parts:  mission results, communication and 
mission preparation.  The mission results portion of 
the schema is utilized to record synchronous data 
such as telemetry and control orders as well as 
asynchronous data including contacts and messages 
sent or received.  The communications portion is 
used to format messages sent to or received from an 
UV.  Finally, AVCL’s mission preparation 
vocabulary is used to define the mission 
requirements.  This mission preparation portion of 
AVCL will be the primary focus of the remainder of 
this paper, however the methods discussed are 
equally applicable to the other portions of the 
ontology. 

The overall structure of the mission preparation 
element of an AVCL document is shown graphically 
in Figure 1.  This element includes child elements for 
the units of measure that are used throughout the rest 
of the document, the origin of the Cartesian 
coordinate system in geographic coordinates (if 
required), and the configuration and capability 
requirements of the vehicle for which the mission is 
intended.  Finally, the element contains the actual 
description of the mission (i.e. what the vehicle is 
required to do). 

Mission requirements can be specified in one of two 
ways.  An example of the first method, mission 
specification as a sequence of task-level script 
commands, is shown in Figure 2.  The simplest task-
level commands reset vehicle state parameters (e.g. 
commanded depth, rudder deflection, etc.) and will 
generally execute in a single vehicle control loop.  
More complex task-level commands, waypoints for 
example, will require an indeterminate amount of 
time to complete.  Missions specified in this way will 
proceed sequentially with individual commands 
executed one at a time in the order that they are 
specified.  Conceptually simple, this method of 
mission specification is appropriate for many current 
commercial and research UVs including NPS’ 
Acoustic Radio Interactive Exploratory Server 
(ARIES) AUV, the Naval Oceanographic Office 

(NAVO) Seahorse AUV and the Hydroid Remote 
Environmental Monitoring Units (REMUS) AUV. 

 
Figure 1: Mission preparation element structure in an 
Autonomous Vehicle Control Language (AVCL) document. 
 

 
Figure 2: A scripted mission for an autonomous underwater 
vehicle (AUV) written with AVCL. 
 
The second method of AVCL mission specification is 
via a set of goals and constraints that are to be 
completed in the course of the mission.  The overall 
format consists of a finite state machine (FSM) where 
each node represents a single high-level goal.  FSM 
links determine which goal is to be accomplished 
upon the completion (or failure) of the currently 
executing goal.  The AVCL element representing an 
individual goal (Figure 3) includes a description of 
the goal itself, the location or operating area and 

<UUVCommandScript/>
    <Position> 
        <XYPosition x="0.0" y="0.0"/> 
        <Depth value="0.0"/> 
    </Position> 
    <Thrusters value="false"/> 
    <Waypoint> 
        <XYPosition x="100.0" y="100.0"/> 
        <Depth value="45"/> 
        <SetPropeller> 
            <AllPropellers value="100.0"/> 
        </SetPropeller> 
    </Waypoint> 
    <Waypoint> 
        <XYPosition x="500.0" y="100.0"/> 
        <!-- use prior depth! --> 
    </Waypoint> 
    <Waypoint> 
        <XYPosition x="500.0" y="200.0"/> 
        <Depth value="25"/> 
    </Waypoint> 
    <Waypoint> 
        <XYPosition x="0.0" y="0.0"/> 
    </Waypoint> 
    <MakeDepth value="0.0"/> 
    <Quit/> 
</UUVCommandScript> 
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circumstances under which reports are to be made.  
Attributes of the current goal are used to reference 
the goal to be attempted upon completion 
(nextOnSucceed) or failure (nextOnFail).  Missions 
specified in this method are appropriate for vehicles 
such as the Naval Undersea Warfare Center (NUWC) 
UUV-21 AUV and other vehicles using more 
advanced hierarchical and hybrid control 
architectures. 

 
Figure 3: AVCL declarative mission goal element format. 

3.  DEFINITION OF VEHICLE-
SPECIFIC DATA FORMATS USING 
CONTEXT-FREE GRAMMARS (CFG) 

As stated in the previous section, vehicle-specific 
data formats are by necessity rigorously defined both 
structurally and semantically.  In fact, vehicle-
specific data formats take the form of specific 
context-free languages (CFL) [3].  Mathematically 
speaking, a CFL is the set of strings derivable from a 
CFG [8].  The implication of the previous statement 
is that there exists a CFG corresponding to any 
vehicle-specific data format in which we might be 
interested.  It stands to reason that the CFG can be 

used to both generate and parse instances of the 
vehicle-specific data format. 

A CFG is commonly defined as a set of productions 
or rules of the form  

α→A  

where A  is a variable, α  is a sequence of variables 
and terminal symbols (the tokens that make up the 
alphabet of the language) plus null (ε ), and the 
production symbol (→ ) indicates that the variable 
A  can be expanded into α . 

A CFG can be formally specified with four 
components: V, T, P, and S, where V is the set of 
variables, T the set of terminal symbols, P the set of 
productions, and S the set of available start symbols 
(a non-empty subset of V) [8].  As a simple example, 
the productions 

( )→P  and ( )PP →  

can be used to construct all strings of balanced 
parentheses (i.e., strings of the form “((()))”).  An 
appropriate CFG can therefore be fully defined as 

{ } { } { } { }( )AAAAAG ,)((),,)(,, →→= . 

Simplicity of the preceding example notwithstanding, 
CFGs can a powerful tool for recursively defining a 
variety of complex languages.  In fact, CFG 
production rules of the form described above provide 
the basic building blocks of the XML DTD [19] and 
can be used to define high-level programming 
languages [8]. 

While CFGs are expressively powerful in their basic 
form, there are a number of potential issues that can 
complicate their application.  The most obvious is 
that there are a number of CFGs that can be used to 
generate a specific CFL.  For instance we could 
generate the same CFL as the example by replacing 
the productions in the grammar (G) with 

{ })(,,),( →→→→ CBBCAAA . 

Further, it is easy to define a mathematically correct 
grammar (i.e. one that correctly generates the CFL) 
that has unreachable or redundant rules that make its 
use unnecessarily complex.  Finally, many CFGs are 
ambiguous, meaning that there are multiple ways to 
apply the productions to derive a given string.  It is 
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therefore, often advantageous to constrain the form of 
the production rules of the CFG by defining it in 
accordance with a normal form. 

In general a normal form is a way of defining the 
format and characteristics of the productions of a 
CFG.  Commonly utilized normal forms used in the 
definition of CFGs are Chomsky Normal Form 
(CNF), Greibach Normal Form (GNF) and Backus-
Naur Form (BNF) [8].  Because the  parsing 
algorithm implemented in the AUVW requires CFGs 
defined in CNF, the remainder of this section will 
consist of a discussion of this normal form and its 
practical use in defining CFGs capable of generating 
UV-specific documents. 

The productions of a CFG defined in CNF have three 
significant characteristics: 

1. No useless symbols (i.e., variables or terminal 
symbols that do not appear in any terminal-string 
derivation beginning with the start symbol). 

2. No ε  productions (i.e., those of the form 
ε→A ) . 

3. All productions must be of the form 

 BCA →   or 
aA →  

where A, B and C are variables and a is a 
terminal symbol. 

It can be proven that for any CFL not containing the 
empty string (ε ), there exists a CNF CFG capable of 
generating that CFL [8].  Defining CFGs in CNF 
addresses a number of the potential pitfalls of CFG 
definition (although ambiguity, in particular, can still 
be an issue), and provides a convenient form for 
application of the Cocke-Younger-Kasami (CFK) 
parsing algorithm that will be discussed in the next 
section. 

From a practical standpoint, defining a CFG to 
generate a particular vehicle-specific data format 
involves determining the terminal symbols and 
writing the productions.  Terminal symbols may 
consist solely of numbers as in the ARIES AUV 
control language [12] or can consist of keywords, 
symbols and numbers [9].  Production definition can 
be fairly arbitrary.  Nevertheless, since the production 
rules ultimately determine the structure of the 
resultant parse tree, the AUVW CFG definitions 
attempt to utilize production rules that generate 

homogeneous constructs at their particular derivation 
level (e.g., position, command or mission) as 
demonstrated by the following productions which 
were utilized in the CFG definition corresponding to 
the AUV mission programming language described 
in [5]. 

   COMMAND →  WAYPT_TOKEN + POSIT_3D 
   POSIT_3D →  LAT_LONG + DOUBLE 
   LAT_LONG →  DOUBLE + DOUBLE 

Similar production rules are developed for different 
commands that reuse variables such as 
“LAT_LONG”  and “POSIT_3D” when feasible. 

Programmatic implementation of individual CFGs in 
the AUVW is accomplished through a CFG-specific 
dictionary class that lexically maps tokens to their 
production rule, and a CFG-specific parser class that 
defines the set of binary production rules of the 
grammar.  Both of these classes inherit from abstract 
classes that implement the CYK parsing algorithm 
(described in the next section).  Actual parsing in the 
AUVW is therefore CFG-independent, and arbitrary 
languages can be implemented quickly.  All that is 
required is to define a suitable CFG through extended 
dictionary and parser classes. 

4.  CONTEXT-FREE LANGUAGE 
(CFL) PARSING AND 
TRANSFORMATION 

Utilization of CFGs defined as described in the 
previous section to transform vehicle-specific 
instance documents is implemented in the AUVW 
using a two-step process.  First, a parse tree is 
generated for the instance document using the CFG 
productions.  Second, the parse tree is traversed and 
templates applied at individual nodes to generate an 
XML data bound Java object using the Java 
Architecture for XML Binding (JAXB) [16].  The 
second step of this process is analogous to the use of 
XSLT in that both traverse a document tree in a 
predictable manner and generate output based on the 
contents of the tree.  These methods differ, however, 
in their traversal and generation methodologies.  In 
the case of XSLT, the document tree is traversed in 
an arbitrary fashion and allows multiple visits to 
individual nodes but generates the output document 
serially.  The CFG-based method described here, on 
the other hand, traverses the tree in depth-first order 
and visits each node only once, but generates the 
output document in an arbitrary fashion. 
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CFG parsing in the AUVW is accomplished using the 
CYK algorithm.  This algorithm utilizes dynamic 
programming [2] to parse CFL instances in a bottom 
up fashion.  When utilizing CFGs specified in CNF, 
the CYK algorithm can be expected to generate a 
binary parse tree (similar to the one shown in Figure 
4 which corresponds to a waypoint command 
derivable from the sample productions in the 
preceding section) in ( )3nO  time based on the 
length of the input string [8].  As shown in Figure 5, 
the algorithm simply recognizes string membership 
in the CFL corresponding to the CFG and does not 
generate a parse tree.  However, replacing the 
Boolean array with an array of partial parse trees is 
all that is required to fully implement a parser.  Upon 
completion of the algorithm, the array elements    
P[1, n, x] will contain valid parse trees (if the 
grammar is unambiguous, at most one will be non-
null). 

 
Figure 4: A Cocke-Younger-Kasami (CYK) algorithm 
generated parse tree corresponding to an AUV waypoint 
command as defined in [5] and the context-free grammar 
(CFG) productions example of section 3. 

Following generation of a parse tree corresponding to 
a vehicle-specific CFL instance, it is possible to 
generate AVCL based on the parse tree structure and 
content.  XSLT utilizes a template-based approach to 
generate output based on an XML content tree, and a 
similar approach is utilized here to generate AVCL 
based on the parse tree.  As previously stated, the tree 
is processed in depth-first order.  Templates are 
applied at each node that define actions to take based 
on the content of that particular node.  Actions in 
most cases will include recursively processing the 
current node’s left and then right child, and will in 
some cases include the generation of output. 

As an example, upon arriving at the “COMMAND” 
node depicted in Figure 4, output can be generated.  
Since the structure of the parse tree is deterministic, 
upon reaching this node, further traversal in this case 
not necessary, so the node’s children are not 

recursively processed.  All of the information 
required to generate the corresponding AVCL is in a 
known location relative to the current node.  For 
instance, the type of command is specified by the left 
child of the current node, and given that it is a 
“Waypoint” command, the latitude is specified by the 
left child of the left child of the right child of the 
current node. 

 
Figure 5: The CYK algorithm for recognizing string 
membership in a context-free language (CFL) [8]. 
 
A parse tree of the form shown in Figure 6, on the 
other hand, will probably not generate output upon 
reaching the “COMMAND_LIST” node.  Rather, it 
will recursively process the left child and then the 
right child.  While processing the left child, output 
will be generated that corresponds to the type of 
command represented.  When processing the right 
child no output will be generated until its left and 
right children are recursively processed. 

Still other cases might require the generation of 
output as well as recursive processing of the current 
node’s left and/or right child.  Additionally, nodes 
may include state information that must be 
maintained during traversal of the rest of the tree.  An 
example is provided by the REMUS AUV language’s 
reuse of program elements through references.  Upon 
encountering a reference, the template must cache the 
relevant data for use when the reference is invoked in 
other portions of the program. 

Let the input string be a sequence of n letters 
a1…an 

Let V1…Vr be the set of CFG symbols (V) 

Let S be the set of indices of V corresponding 
to CFG start symbols 

Let P[n, n, r] be a Boolean array initialized 
to false 

For i = 1 to n 

    For each unit production Vj → ai 

        P[i, 1, j] = true 

For i = 2 to n – Length of span 

    For j = 1 to n – i + 1 – Start of span 

        For k = 1 to i – 1 – Partition of span 

            For each production VA → VBVC 

                if P[j, k, B] = true and 

                   P[j + k, i – k, C] == true 

                    then P[j, i, A] = true 

if P[1, n, x] is true (x is an element of S) 

    then the string is a member of the CFL 

   else the string is not a member of the CFL
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Figure 6: A partial parse tree of a vehicle-specific CFL 
instance suitable for recursive translation into AVCL. 
 
A noteworthy characteristic of the depth-first 
traversal is that the instance document is processed in 
order.  For vehicle-specific data formats along the 
lines of those used in the ARIES or Seahorse AUVs, 
the corresponding AVCL will be generated in the 
same order.  However, the sequence and structure of 
the AVCL corresponding to instances of more 
complex data formats may differ significantly from 
the vehicle-specific document.  Since the parse-tree 
traversal is fixed, AVCL generation must be arbitrary 
(i.e. it must be possible to generate the AVCL 
document in any order).  This is accomplished 
through the use of XML data binding.  Since the 
entire document is maintained in memory throughout 
the generation process, it is a fairly simple matter to 
access or modify existing data, add new data, and 
move or copy existing  data from one location in the 
document to another. 

5.  IMPLEMENTATION AND 
RESULTS 

To date CFGs have been developed and implemented 
in the AUVW for the vehicle-specific mission 
programming languages of four AUVs:  NPS ARIES, 
NPS Phoenix, NAVO Seahorse and Hydroid 
REMUS.  Missions specified in any of these 
languages are translatable into task-level missions in 
AVCL. 

The ARIES AUV 

Of the implemented data formats, the simplest is used 
to task the NPS ARIES AUV.  ARIES mission files 
consist of individual waypoint commands that are to 
be achieved sequentially in the order specified.  Each 
waypoint is specified with 11 double-precision 
floating point numbers.  Waypoint parameters 
include Cartesian coordinate position of the 
waypoint, depth below the surface or altitude above 
the bottom to use during transit, left and right 
propeller speed, maximum time to allow for reaching 

the waypoint and a binary flag indicating whether or 
not a global positioning system (GPS) fix is to be 
obtained during transit. [12] 

Because ARIES’ data consists entirely of numbers, 
only one production rule mapping variables to 
terminals is required: 

numberDOUBLE →  

This and 14 binary productions fully define the 
ARIES mission specification language.  Resultant 
parse tree nodes corresponding to an ARIES 
waypoint often translate directly into a single AVCL 
waypoint script command.  In some circumstances, 
most notably when different left and right propeller 
settings are ordered or a GPS fix is required during 
transit, additional AVCL task-level commands are 
required prior to the waypoint command as depicted 
in the example of Figure 7. 

 
Figure 7: An AVCL task-level command sequence 
corresponding to an ARIES AUV waypoint command with 
dissimilar left and right propeller settings and an enroute 
global positioning system (GPS) fix. 

The Phoenix AUV 

The second vehicle-specific data format implemented 
in the AUVW is a script-based mission specification 
described in [5].  The language was utilized in the 
NPS Phoenix AUV and is still an available option in 
the AUVW.  Translation of Phoenix missions into 
AVCL requires a larger subset of the AVCL task-
level command set and includes a number of 
commands that are not directly representable in 
AVCL. 

A Phoenix AUV mission takes the form of a series of 
script commands.  Each command consists of a 
keyword and zero or more numerical or text 
parameters.  In some instances, different tokens can 
be used for the same keyword (e.g., “thrusters” and 
“thrusters-on” can be used interchangeably).  This is 

<SetPropeller>
    <PortPropeller value="75.0"/> 
</SetPropeller> 
<SetPropeller> 
    <StarboardPropelelr value="50.0"/> 
</SetPropeller> 
<GpsFix> 
    <StartGpsFix/> 
</GpsFix> 
<Waypoint> 
    <XYPosition x="500.0" y="200.0"/> 
    <Altitude value="25"/> 
    <Standoff value="10"/> 
    <TimeOut value="125"/> 
</Waypoint> 
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dealt with in the dictionary class by mapping each of 
the various forms of a keyword to the same 
production rule.  Additionally, many commands can 
have varying numbers of parameters.  In each case, 
the number of parameters determines what each 
parameter represents.  For instance, the command 

WAYPOINT 100 500 15 10 

orders the vehicle to transit to the waypoint specified 
by the Cartesian coordinate (100, 500) at a depth of 
15 meters and to proceed to the next command upon 
reaching a standoff distance of ten meters.  The 
command 

WAYPOINT 100 500 15 

on the other hand, specifies the same waypoint and 
transit depth, but does not specify a standoff distance 
(in this case, the most recently specified standoff 
distance applies).  It is not possible, however, to 
specify a waypoint with a Cartesian coordinate and 
standoff distance without also specifying a transit 
depth. 

Terminal tokens in the Phoenix command language 
can take the form of keywords, numbers or literal 
string tokens.  Keywords for parameterless 
commands (e.g., gpsfix) are all mapped to the same 
rule: 

keywordCOMMAND →  

This greatly simplifies the CFG, however it requires 
actual interpretation of the keyword when the parse 
tree is translated into AVCL.  Keywords for 
commands requiring parameters are mapped to more 
specific unary rules along the lines of 

""_ hoverTOKENHOVER →  

that can be utilized during translation to infer the 
potential parameter semantics.  In total, 22 unary and 
39 binary production rules are utilized to define the 
Phoenix CFG. 

It is worth noting that the COMMAND variable is 
used on the left side of both unary and binary rules in 
the Phoenix CFG.  This results in numerous potential 
parse tree structures with a “COMMAND” node at 
their root.  Nevertheless, in all cases the specific 
keyword contained in the leftmost leaf of the parse 
tree node (referenced directly from the 
“COMMAND” node in the AUVW implementation 
without further recursive traversal) can be utilized 

during translation to determine how to process 
individual commands. 

Translation of Phoenix command language 
documents into AVCL is almost a one to one 
mapping from Phoenix commands to AVCL task-
level commands.  For instance, each of the waypoint 
commands described previously translates directly to 
a single AVCL waypoint command.  There are, 
however, a number of Phoenix commands that are 
not directly represented in AVCL.  For instance, 
“pause,” “trace” and “real-time-off” commands were 
implemented to support mission and control testing in 
a virtual environment in [1].  This functionality has 
been implemented directly in the AUVW, however, 
and is no longer required in the vehicle-command 
language.  Nevertheless, capture of the semantics of 
these commands in AVCL is required in order to 
facilitate the accurate generation of Phoenix missions 
from AVCL scripts as described in [6].   AVCL, 
therefore, incorporates a “meta” command that can 
encode command data that is relevant only to a 
specific vehicle.  Conversions from AVCL to most 
vehicle-specific data formats will ignore meta 
commands, however, enough information is 
contained in the command to allow accurate 
translations from AVCL to the data format of the 
relevant vehicle.  For example, a meta command 
representing a Phoenix “pause” command might have 
the form 

<MetaCommand value=“pause” 
description= “Phoenix AUV 
pause command”/> 

Parameterized vehicle-specific commands requiring 
meta command representation in AVCL will include 
all of the parameters in the MetaCommand value 
parameter. 

The Seahorse AUV 

The third vehicle-specific CFG implemented in the 
AUVW is used for NAVO Seahorse AUV tasking.  
While still script-based and mappable to the AVCL 
task-level command set, the syntactic complexity of 
the Seahorse CFL is greater than that of ARIES or 
Phoenix, so the CFG implementation in the AUVW 
is also comparatively complex. 

Syntactic complexity notwithstanding, the Seahorse 
CFL contains just four general purpose commands.  
These can be used to direct the vehicle to a waypoint, 
cause it to loiter at a specified location, obtain a GPS 
fix or surface for communications.  Additionally, the 
first command in a Seahorse mission must be a 
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launch command that initializes the vehicle and the 
final command must be a rendezvous command that 
directs the vehicle to the retrieval location.  Each of 
the six commands has a form similar to the station-
keeping command depicted in Figure 8 (which 
commands the vehicle to loiter at a specified 
geographic position) which is comprised of a series 
of parameter name-value pairs.  Parameter order is 
fixed, however CFG complexity is introduced by the 
fact that some parameters are optional and others 
have more than one potential form (e.g., positions can 
be specified as latitude and longitude or as north and 
east offsets from the current position, distances can 
be specified using feet, meters, kilometers or 
kiloyards, etc.).  In all, the Seahorse AUV CFG 
implemented in the AUVW utilizes 47 terminal and 
136 binary production rules, most of which generate 
subportions of individual commands. 

 
Figure 8: A Seahorse AUV command directing the vehicle to 
proceed to a geographic position and remain there for 90 
minutes. 

Utilization of the parse tree to generate AVCL is 
relatively straight forward despite the number of 
production rules and correspondingly deep parse tree 
branches for individual commands.  As with ARIES 
and Phoenix, once a parse tree node representing a 
command is encountered, the location in the branch 
of various parameter names and values is known, so 
they can be accessed directly without further 
traversal. 

In the simplest cases (e.g., a waypoint command with 
no GPS fix during transit), a Seahorse command can 
be represented by a single AVCL task-level 
command.  However, more complex cases such as 
the command depicted in Figure 9, require a series of 
task-level commands to accurately capture the 
semantics (Figure 10). 

The REMUS AUV 

The final vehicle-specific CFG implemented in the 
AUVW is utilized for tasking of the REMUS AUV.  
A REMUS mission consists of a sequence of 
objectives that are to be accomplished in order.  
There are 14 objective types available including 
mandatory start and end objectives, various forms of 
waypoints and a number of vehicle-specific 

commands.  Like Seahorse AUV commands, 
REMUS objectives use a keyword to identify the 
objective type and a number of mandatory and 
optional name-value pairs to parameterize the 
objective resulting in objectives similar to the one 
shown in Figure 11.  In addition, the REMUS CFL 
allows locations to be specified by reference.  This 
facilitates location reuse throughout the mission file 
and supports the specification of relative positions.  
[9] 

 
Figure 9: A Seahorse AUV rendezvous command directing the 
vehicle to transit at 30 meters depth and a speed of 4 knots to a 
geographic rendezvous point and to obtain GPS fixes before 
starting and after arriving. 

 
Figure 10: An AVCL task-level command sequence 
corresponding to the Seahorse AUV command of Figure 9. 

The CFG implemented in the AUVW to support the 
REMUS tasking language 40 unary and 40 binary 
production rules and generates both the location and 
objective portions of a REMUS mission file. 

While advantageous at parsing time, maintenance of 
both objective and location information in the same 
parse tree requires some special handling during 
translation.  In the AUVW implementation, the parse 
tree is traversed twice:  once to build the location 
reference table and once to translate the objectives 
into AVCL.  The nature and sequential execution of 
REMUS objectives allows most of them to be 
mapped directly to AVCL task-level commands.  Of 
the 14 objective types, nine can be represented a 

<GpsFix>
    <StartGpsFix/> 
</GpsFix> 
<Waypoint> 
    <LatitudeLongitude latitude="28.0" 
                       longitude="88.0"/> 
    <Depth value="30"/> 
    <SetPropeller> 
        <AllPropellers value="75.0"/> 
    </SetPropeller> 
</Waypoint> 
<GpsFix> 
    <StartGpsFix/> 
</GpsFix> 
<Loiter> 
    <LatitudeLongitude latitude="28.0" 
                       longitude="88.0"/> 
    <LoiterDepth value="0.0"/> 
    <Duration value="120.0"/> 
</Loiter> 
<Quit/> 

Start_Order              : Rendezvous_Order
Scheduling_Info_Is_Timed : False 
Rendezvous_Latitude      : 28.0 Degrees 
Rendezvous_Longitude     : 88.0 Degrees 
Transit_Depth            : 30.0 Meters 
Transit_Speed            : 4.0 Knots 
GPS_Fix_Before_Departure : True 
GPS_Fix_After_Arrival    : True 

Start_Order              : Station_Keep_Order
Scheduling_Info_Is_Timed : True 
Destination_Latitude     : 33.0 Degrees 
Destination_Longitude    : -122.5 Degrees 
Until_when               : 90 Minutes 
Transit_Altitude         : 15 Meters 
Loiter_Depth             : 15 Feet 
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sequence of one or more task-level commands.  The 
remaining six objective types are REMUS-specific 
and are not directly representable in AVCL.  As with 
the Phoenix AUV CFL, these commands require the 
use of AVCL meta commands.  Additionally, a 
number of parameters to other commands (such as 
the “Track ping interval” and “Sidescan range” 
parameters in Figure 11) are vehicle-specific enough 
require the use of meta commands. 

 
Figure 11: REMUS AUV objectives defining two waypoints.  
The first is specified using a reference to the location “WPT” 
while the second is defined as an offset from “WPT”. 

6.  CONCLUSIONS 

The implementation of automated parsing and 
translation of four AUV command languages into a 
common data format (in this case AVCL)  using 
CFGs and XML data binding demonstrates the 
viability of this approach for the automated 
conversion of structured non-XML data to an XML 
format.  Generally speaking, it is complementary to 
XSLT in that it provides a fairly simple method of 
converting between XML and non-XML data 
formats.  From an AUV data-management 
standpoint, the implication is that a common data 
model can be utilized for more or less arbitrary 
AUVs with conversions providing the vehicle-
specific support. 

Related NPS research is being conducted into the 
development use of a common data model for UV 
operations.  Subtopics in this area in addition to the 
one described in this paper include the development 
of higher-level declarative UV mission specification, 
conversion between task-level and declarative 
mission specifications and the development of 
XSLT-based conversions from AVCL to various 
vehicle-specific data formats.  Additionally, the 
AUVW is being utilized as a testbed for arbitrary UV 
planning, physics-based mission rehearsal and 
playback, automated UV data archiving and runtime 
monitoring and control of UVs [6]. 
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