
Proceedings of the 14th International Symposium on Unmanned Untethered Submersible Technology, Durham, NH,
August 2005

1

THE AUTONOMOUS UNMANNED VEHICLE WORKBENCH: MISSION
PLANNING, MISSION REHEARSAL, AND MISSION REPLAY TOOL

FOR PHYSICS-BASED X3D VISUALIZATION

Duane T. Davis, Naval Postgraduate School
1 University Circle

Watkins Annex Room 265
Monterey, CA 93943

(831) 656-3733
dtdavis@nps.navy.mil

Don Brutzman, Naval Postgraduate School

1 University Circle, Code USW/Br
Watkins Annex Room 270

Monterey, CA 93940
brutzman@nps.navy.mil

ABSTRACT

In recent years, numerous military and civilian
applications for autonomous underwater vehicles
have been identified or proposed and a number of
production and research vehicles have been
developed to address many of these. However, the
use of vehicle-specific data formats and mission
planning systems hampers cooperative research
efforts by fostering the implementation of stove-pipe
systems. Additionally, the lack of physics-based
playback and tightly coupled two- and three-
dimensional (2D/3D) visualization environments
typically precludes realistic mission rehearsal or
high-fidelity playback.

The Naval Postgraduate School (NPS) Autonomous
Unmanned Vehicle Workbench (AUVW) bridges the
gap between dissimilar vehicles by providing a
mission planning, rehearsal, and replay tool for
arbitrary unmanned vehicles (UV). The AUVW is
designed around the capabilities of the Autonomous
Vehicle Control Language (AVCL), an Extensible
Markup Language (XML) vocabulary for task-level
mission specification, vehicle telemetry, control
orders and sensor data. Also integral to the AUVW
is physical simulation of planned missions in a virtual
environment (VE) using a six degree of freedom (6-
DOF) vehicle-response model that is parameterized
for a variety of vehicles.

The vehicle-independent nature of AVCL, enables
the AUVW user to design and test missions for
arbitrary vehicles using a single format. Once

satisfactory performance is obtained in the virtual
environment (VE), the AVCL mission is transformed
to vehicle-specific format using the Extensible
Stylesheet Language for Transformations (XSLT)
and loaded into the vehicle. In similar fashion,
vehicle-specific data can be parsed using a context
free grammar (CFG) and transformed into AVCL for
editing and testing with the AUVW.

3D visualization utilizes a variety of archived and
autogenerated scenes authored in Extensible 3D
(X3D) graphics, the ISO-approved standard for 3D
graphics on the web and the Xj3D open-source
toolkit for X3D-compliant application development.

1. INTRODUCTION

Numerous military and civilian uses for autonomous
vehicles (UV) have been identified or proposed in
recent years. Not surprisingly, a number of UV
systems have become available and research is
ongoing in a number of areas that will significantly
advance the state of the art in UV technology. A
shortcoming exists, however, that will inhibit the
implementation of systems that adequately address
the majority of these potential applications. The fact
of the matter is that vehicle-specific data formats and
mission planning systems preclude effective
coordination in multi-vehicle systems and hinder the
design of such systems. Additionally, the
nonavailability of a system for mission planning and
monitoring for dissimilar UVs makes it difficult to
develop and execute multi-vehicle plans for anything

2

but homogeneous systems (i.e., multi-vehicle systems
consisting of only one type of vehicle).

Current research at the Naval Postgraduate School
(NPS) Center for Autonomous Underwater Vehicle
(AUV) Research is addressing the paucity of vehicle-
independent UV-planning systems through the
development of the Autonomous Unmanned Vehicle
Workbench (AUVW) [15]. The AUVW is a Java
application for air, ground, surface and underwater
UV mission planning, rehearsal and playback.
Features include a geographically synchronized two-
dimensional (2D) graphical user interface (GUI) for
mission development and editing, physics in the loop
mission rehearsal using six degree of freedom (6-
DOF) models, 2D and three-dimensional (3D)
visualization of mission progress, import and export
of vehicle-specific data, and networked
communication between the AUVW and vehicles
before, during and after mission execution.

AUVW efforts utilize the Java Look + Feel (L+F)
guidelines to achieve cross-platform compatibility.
Menu tooltips, hotkeys and a consistent graphical
user interface (GUI) permit a coherent approach to
combined 2D and 3D displays. Additionally, the
JavaHelp system has been utilized to provide
extensive documentation, linked in a context-
sensitive manner throughout the workbench toolbars
and buttons.

The remainder of this paper will be cover specific
details of the AUVW. Section 2 will briefly discuss
the Autonomous Vehicle Control Language (AVCL),
an Extensible Markup Language (XML) [22] tagset
for UV mission definition, inter-vehicle
communications and mission results data. Section 3
will provide a description of the mission planning
functionality of the AUVW. Section 4 consists of an
overview of the AUVW mission-rehearsal capability.
Section topics include the implementation of
physically based vehicle models and their use to
model arbitrary vehicles in a common VE, and the
use of Extensible 3D (X3D) graphics [14] and the
Distributed Interactive Simulation (DIS) protocol
[13] to support mission visualization in a VE.
Section 5 will discuss AUVW facilities for support of
specific vehicles. This section will cover the import
of vehicle-specific data for editing and visualization
in the AUVW, the production of vehicle-specific
code from AUVW-generated AVCL files, and
AUVW-vehicle communications supporting pre-,
post-, and in-mission interaction with actual vehicles
and operators.

2. AUTONOMOUS VEHICLE
COMMAND LANGUAGE (AVCL)

Supporting the implementation of a planning system
for arbitrary UVs is an ontology defined by AVCL—
vocabulary, word meanings, assumptions and
relationships sufficient to describe a subset of UV
operations [6]. This common data format and
corresponding utilities for the automatic conversion
of data in this format to and from vehicle-specific
formats serves as a bridge between dissimilar
autonomous vehicles. AVCL facilitates coordinated
operations between dissimilar vehicles and enables
their human operators to interact with dissimilar
vehicles during all operational phases—planning,
execution, and post-mission analysis. As the data
format utilized by the AUVW, AVCL enables the
development of tasking for and interaction with
numerous UVs regardless of their specific data
formats.

For reasons described in [10], AVCL is being
developed as a schema-governed XML vocabulary.
XML has a number of advantages that make it well-
suited to this role. An XML document can be easily
understood and processed by both humans and
computers. This simplifies the operator interface for
generating and editing documents when compared
with binary data formats and simplifies computer
processing of documents when compared to non-
XML, text-based formats.

More importantly, strict definition of allowable
document content and structure using an XML
schema [23][24] or data type document (DTD) [22]
provides a number of advantages over alternative
formats. First is programmatic verification of
document correctness and validity. This enables the
planning system to be implemented in such a way as
to detect and possibly correct errors in loaded
documents and preclude the generation of invalid
documents. Another advantage of schema-governed
XML is that the rigorously defined structure
facilitates data mapping to and from vehicle-specific
data formats. Ultimately, this directly supports
automated conversions to and from vehicle-specific
data formats using Extensible Stylesheet Language
for Transformations (XSLT) and context free
grammars (CFG) as described in section 5. Further,
the XML schema serves as the basis for compression
algorithms that make the transfer of XML data over
noisy and bandwidth-limited communications paths
feasible [19].

3

A final advantage to the use of schema-governed
XML takes the form of XML data binding. The
AUVW utilizes the Java Architecture for XML Data
Binding (JAXB) [20] to automatically generate an
application programmer’s interface (API) specific to
the AVCL schema. Since the API is specific to the
type of document being processed, JAXB allows the
manipulation of data-bound objects whose schema-
compliance is programmatically maintained. On the
other hand, while simpler parsers such as the
Document Object Model (DOM) [25] and Simple
API for XML (SAX) [16] can be used to process and
manipulate XML documents they can be
cumbersome and error prone because schema-
compliance must be explicitly maintained by the
programmer and cannot be assumed.

AVCL attempts to define an UV operational ontology
consisting of three parts: mission definition, mission
results, and communications. The mission results
and communications portions of the schema are still
being developed and are not yet utilized to a large
degree by the AUVW (although the telemetry data
included in the mission results portion of the
ontology is used for playback of previously executed
missions). Mission definition, on the other hand, is
utilized extensively for mission planning in the
AUVW and will therefore comprise the bulk of the
AVCL-specific discussion of this paper.

AVCL provides two means of defining an UV
mission. The first uses a sequence of script or task-
level commands (task-level AUV commands are
listed in Table 1) that are executed in order. Some
commands are used to update vehicle control
parameters such as commanded depth and closed-
loop-control timestep and require only a single
vehicle execution loop to complete. Others, such as
waypoint commands, control vehicle execution until
some commanded end state (e.g. geographic position)
is achieved. In addition to the set of task-level
commands, AVCL task-level scripts can contain meta
commands. These will normally be used for vehicle-
specific information or comments, and will not
directly influence how specific vehicles might
execute the specified mission. They may, however,
effect how the AVCL script is translated to a vehicle-
specific format. For example, an AVCL meta
command can be used to capture the Hydroid Remote
Environmental Measuring Units (REMUS) AUV
navigation modes that are not directly representable
with AVCL task-level commands. Conversion of a
mission with such a meta command to a format for
any vehicle other than REMUS will ignore the meta
command, but conversion to the REMUS command

COMMAND DESCRIPTION
CompositeWaypoint Specifies a pattern

consisting of multiple
waypoints

GpsFix Surface for a GPS fix
while continuing the
current control mode

Hover Transit to a specified
position and maintain a
fixed position (requires
hover-capable vehicle)

Loiter Proceed to a specified
position and remain in
the vicinity

MakeAltitude Maintain a specific
altitude above the bottom
while continuing the
current control mode

MakeDepth Maintain a specific depth
while continuing the
current control mode

MakeHeading Set commanded vehicle
heading

MakeSpeed Set commanded forward
speed

MissionScript Load and execute a new
script

MoveLateral Slide laterally (requires
a body thruster equipped
vehicle)

MoveRotate Rotate in place (requires
a body thruster equipped
vehicle

Position Updates vehicle
geographic position

Quit Mission ended
ResetTime Reset the vehicle time
SendMessage Transmit a message
SetPlanes Manually set vehicle

control planes
SetPropeller Manually set vehicle

propellers
SetRudder Manually set vehicle

rudder
SetThruster Manually set vehicle body

thrusters
Standoff Set the acceptable

distance from waypoints

TakeStation Hover relative to an
external object (requires
hover-capable vehicle)

Thrusters Enable or disable body
thrusters

TimeStep Reset vehicle control
closed loop timestep

Wait Wait a specified time
period before proceeding
to next command

WaitUntilTime Wait until a specified
time before proceeding to
next command

Waypoint Transit to a specified
position

Table 1: Available Autonomous Vehicle Control Language
(AVCL) task-level commands for autonomous underwater
vehicle (AUV) use.

4

language [12] will utilize it to set the correct
navigation mode.

The second method of specifying an AVCL mission
is as a declarative goal-based mission. Missions
specified in this manner consist of a set of constraints
(avoid areas and required ingress and egress routing)
and a set of goals in the form of a finite state machine
(FSM) where each goal to be accomplished (e.g. an
area search or rendezvous with another UV).
Individual goals are represented as states in the FSM
with transitions executed upon success or failure of a
goal. A declarative mission completes when the
current goal succeeds (or fails) and there is no further
applicable transition, such as would be the case if the
“SampleEnvironment” goal depicted in Figures 1 and
2 failed. Upon reaching the end of the mission
defined by the FSM, the egress routing specified by
the mission constraints (or a direct routing back to the
start point if no egress routing is specified) is
executed prior to vehicle shutdown.

Figure 1: The finite state machine (FSM) portion of an
example declarative goal-based AVCL mission specification.

3. MISSION PLANNING AND
EDITING

Current mission-planning functionality of the AUVW
utilizes the task-level mission definition portion of
the AVCL schema. Declarative goal-based mission
planning and rehearsal is currently under
development. Multiple graphical user interface
(GUI) displays are provided that allow for adding
new task-level commands to a mission as well as for
editing existing commands. Additionally, the

mission editor supports simultaneous development
and testing of multiple missions for all available air,
surface, ground and underwater vehicles (Figure 3).

Figure 2: AVCL defined declarative mission corresponding to
the FSM depicted in Figure 1.

Five display formats are available for viewing AVCL
task-level missions in the AUVW. Access to all task-
level command editing functionality is available
through the current mission’s icon view (Figure 4).
This view uses a list of icon/name pairs to graphically
represent the task-level script of a mission.
Individual task-level commands can be added to the
end of the mission or inserted anywhere in the
mission using either a pulldown or a popup menu.
Dialog boxes similar to Figure 5 are used to edit
individual commands. These are accessed via the
same menus or by double-clicking the command in
the icon list. Individual commands can be deleted,
copied or moved to new locations in the script using
pulldown or popup menus or user-specified hot keys.

<GoalList>
 <Goal id="Search1" nextOnSucceed="Sample1"
 nextOnFail="Search2">
 <Search datumType="point"
 requiredPD="0.8"/>
 <OperatingArea id="AreaA">
 <Circle>
 <Center>
 <LatitudeLongitude
 latitude="31.5"
 longitude="-121.75"/>
 </Center>
 <Radius value="10000"/>
 </Circle>
 </OperatingArea>
 </Goal>
 <Goal id="Search2"
 nextOnSucceed="Rendezvous"
 nextOnFail="Rendezvous">
 <Search datumType="area"
 requiredPD="0.8"/>
 <OperatingArea id="AreaB">
 <Polygon>
 <LatitudeLongitude
 latitude="33.0"
 longitude="-122.0"/>
 <LatitudeLongitude
 latitude="33.0"
 longitude="-121.75"/>
 <LatitudeLongitude
 latitude="32.75"
 longitude="-121.75"/>
 <LatitudeLongitude
 latitude="32.75"
 longitude="-122.0"/>
 </Polygon>
 </OperatingArea>
 </Goal>
 <Goal id="Sample1" nextOnSucceed="Search2">
 <SampleEnvironment/>
 <OperatingArea idRef="AreaA"/>
 </Goal>
 <Goal id="Rendezvous">
 <Rendezvous contactID="AUV2"/>
 <OperatingArea idRef="AreaB"/>
 </Goal>
</GoalList>

5

Additionally, the popup and pulldown menus provide
the capability to add general mission metadata set the
mission’s geographic origin upon which the
mission’s Cartesian coordinate system described later
is anchored.

Although capable of accessing all AUVW task-level
mission editing functions, the icon view does not
depict the full AVCL document. Header information,
metadata, command progress and mission results data
elements, for instance, are not displayed. Two other
display formats, however, can be utilized to view
portions of the document not available in the icon
view: the tree and text views, both of which display
the entire AVCL document.

Figure 3: Screen snapshot of the Autonomous and
Unmannned Vehicle Workbench being used to simultaneously
edit autonomous air, surface and underwater vehicle missions.

The capability to view and edit all aspects of an
AVCL task-level mission using the icon, tree and text
views notwithstanding, most potential users will
agree that a geographic interface is more intuitive in
many instances for developing UV tasking. The
AUVW, therefore, provides 2D interfaces that
complement the functionality of the other display
methods. The first displays the mission tracks of
currently loaded missions on a Cartesian grid with
the positive-X axis oriented true north and the
positive-Y axis oriented true east (the resultant right-
handed 3D system corresponds to the one utilized by
AVCL and has the positive-Z axis oriented down).
Locations can be entered using either Cartesian
coordinates that can be plotted directly on the 2D
display or latitude and longitude which are converted
to Cartesian coordinates based on a user-defined
geographic origin.

Figure 4: Autonomous Unmanned Vehicle Workbench icon
view of an AVCL task-level AUV.

Unlike the icon, tree and text views, the 2D planner
(Figure 6) does not display all AVCL task-level
commands in the mission. Only commands having a
geographic component such as waypoints and
hoverpoints will be shown on the 2D display. Of the
26 task-level commands currently available for AUV
use, only five (CompositeWaypoint, Hover, Loiter,
Position and Waypoint) meet this criteria.
Nevertheless, these are among the most common
commands utilized in AUV missions, so most
mission editing can be accomplished using the 2D
editor. Drag and drop, snap to grid, click to
highlight, and double-click to edit features support
precise GUI modification of existing commands.
The pulldown menu functionality to insert new
commands (including those not visible in the 2D
display), copy, move, edit or delete existing
commands, add metadata or set the geographic origin
provides full task-level mission editing capability
using the AUVW 2D mission editor.

6

Figure 5: Autonomous Unmanned Vehicle Workbench editing
interface for an AUV waypoint command.

The final display available AUVW is the
geographically-based OpenMap™ editor (Figure 7).
OpenMap™ is an open-source Java API for handling
geospatial data and digital map data [3]. The AUVW
utilizes U.S. Census Bureau Census 2000 Tiger/Line
data in shapefile format [9] and Digital Nautical
Charts (DNC®) to enable the user to plan missions for
a specific geographic area. OpenMap™ allows the
user to selectively enable and disable dataset layers,
so the display can contain as much or as little
geographic information as desired.

Figure 6: The 2D Cartesian coordinate-based editing interface
for AVCL task-level script missions allowing mission authors
to drag waypoints to reposition tracks and add/remove/inspect
commands directly.

As with the 2D editor, only those task-level
commands having a geographic component are
overlayed in the OpenMap™ editor. While useable
in its current state, the OpenMap™ editor is still
under development. Thus mission editing capability

is somewhat limited when compared to other edit
modes of the AUVW. At present, physical
manipulation of task-level AVCL missions using the
OpenMap™ editor is limited to drag and drop
repositioning of individual task-level command
points, however full implementation of all 2D
planner functionality is anticipated in the near future.
Additionally, all previously discussed pulldown
menu functionality can be accessed while using the
OpenMap™ editor. Ultimately, it is envisioned that
the this editor will closely mirror, and possibly
replace, the current AUVW 2D planner.

Figure 7: The OpenMap™ editing interface for AVCL task-
level script missions.

4. MISSION REHEARSAL

Simulation in the AUVW

Among the most important aspects of the AUVW is
the ability to realistically rehearse missions in a VE.
Mission rehearsal in the AUVW utilizes physically
based models that accurately represent the vehicles
for which missions are being designed. All
simultaneous simulated missions run in the same VE
enabling the operator to effectively determine the
effectiveness of multi-vehicle plans.

Simulation speed can be constrained to run in real
time or accelerated to improve performance. During
faster-than-real time simulations involving multiple
vehicles, synchronization is maintained by
consistently matching all vehicle speedup factors
(e.g., 50 times real time). In this way,
synchronization can be maintained not only among
vehicle simulations running within a single AUVW
session, but among those spawned by other, possibly
distributed, AUVW instances as well.

7

3D visualization of mission progress utilizes X3D
graphics and the Xj3D open source browser. 2D
visualization is also provided via both the 2D planner
and the OpenMap™ editor GUI windows.

Vehicle Physics Modeling

To date, physically based vehicle models have been
implemented for autonomous underwater, surface
and air vehicles. By nature, each is vehicle-
nonspecific and can be parameterized to obtain
accurate physical response for arbitrary vehicles of
the given type. Appropriate parameters are loaded at
run time from an XML configuration file
corresponding to the vehicle being simulated. The
AUVW provides a GUI menu for each mission being
edited (immediately below the icon, tree or text view
pane) for selection of the specific vehicle that is to be
modeled. Additions and deletions from the set of
available vehicles can be made by editing the master
AUVW configuration XML file.

The AUV hydrodynamics model, fully described in
[5], was first utilized to model the NPS Phoenix
AUV. It is a 6-DOF rigid-body model capable of
achieving accurate physical response for AUVs of
various control configurations including those with
cross-body thrusters. The model utilizes five
environmental parameters and 28 vehicle-
configuration parameters (mass, inertia matrix,
control configuration, etc.). The six equations of
motion utilize these parameters, 61 dimensionless
force/moment coefficients, and a current state vector
consisting of position, orientation, linear and angular
velocity and all control settings to compute linear and
angular accelerations for each closed-loop control
cycle. Heun integration is utilized to update vehicle
position, orientation and velocities based on the
computed accelerations.

The AUVW unmanned air vehicle (UAV) model is
significantly simpler than the AUV model.
Nevertheless, it is robust enough to accurately model
the physical response of all UAVs for which AUVW
implementation is anticipated. Also a 6-DOF rigid-
body model, the UAV model was first used at NPS to
implement an A-4 Skyhawk aircraft in the NPSNET
III distributed VE [5]. The model equations of
motion rely on 14 parameters defining the vehicle
configuration, 25 dimensionless aerodynamic
coefficients and a state vector consisting of position,
orientation, linear and angular velocity and control
settings. Coefficients for the Predator UAV currently
available in the AUVW were derived by matching
the performance of an airfoil-specific model
implemented as described in [4] with National

Advisory Committee for Aeronautics (NACA) airfoil
data from [1]. A simplifying assumption of the UAV
model implementation is that atmospheric
characteristics (e.g., air density, temperature at
altitude, etc.) are computed based on a standard
meteorological day (zero percent relative humidity,
288.15 degrees Kelvin and 29.92” Hg barometric
pressure at sea level), however future improvements
include the use of actual meteorological data obtained
via web service at run time. As with the AUV model,
Heun integration is utilized to update vehicle state
variables for each timestep.

The simplest of the AUVW models implements the
unmanned surface vehicle (USV) and is intended as a
place holder until a more accurate physically based
model is implemented. Unlike the AUV and UAV
models, the USV model provides only two degrees of
freedom to account for forward velocity and yaw
rate. Further, the model is kinematic in nature and
does not utilize forces and moments to compute
vehicle accelerations. Rather, response is computed
as a function of current velocity (linear or angular),
the current control setting (rudder or propeller), and
the maximum velocity possible with the current
setting. Over time vehicle velocity will
asymptotically approach the maximum possible
control-setting-specific velocity. Simplicity
notwithstanding, this kinematic model is capable of
modeling reasonable response for envisioned USVs
until a more robust model is implemented. As with
the previous models, Heun integration is used to
update vehicle state variables for each timestep.

Environmental Modeling

Proper modeling of environmental factors can
produce major changes in sensor propagation, vehicle
buoyancy, vehicle control and predicted power
consumption. Therefore, multiple environmental
datasets and services are being connected to the
AUVW in order to maximize the real-world physics
modeling capability for mission rehearsal and
mission evaluation.

AUVW now includes the ability to read
supercomputer-generated Network Common Data
Form (NetCDF) [18] datasets which include 4D (x y
z t) gridded time series of ocean parameters such as
sound speed profile (SSP), local ocean current, wind
speed, etc. Similar real-time oceanographic
parameters are also available via XML-based
mechanisms. Together with Fleet Numerical
Meteorological Oceanographic Center (FNMOC)
Monterey we have integrated XML-based Web
Services queries using the Joint METOC Brokering

8

Language (JMBL) for query/response of real-time
and projected ocean data. Additional environmental
inputs (and outputs) are planned.

3D Visualization

The AUVW supports 3D visualization of mission
progress during rehearsal and playback through the
use of X3D—an International Organization for
Standards (ISO) standardized format for web-capable
3D graphics. It utilizes an XML-enabled file format
to facilitate the transfer of 3D data across networked
applications. Significantly more robust than its web-
capable 3D predecessor, the Virtual Reality Modeling
Language (VRML), X3D includes implicit support
for DIS networking and incorporates a rigorously
defined Scene Access Interface (SAI) making it well-
suited for use in the AUVW.

X3D-based 3D visualization is implemented in the
AUVW with the Xj3D toolkit [11]. Xj3D is an open
source API produced by Yumetech, Inc. for
developing X3D-compliant applications.
Implemented with the support of the Web3D
Consortium as an exemplar X3D-compliant browser,
Xj3D implements most aspects of the interchange,
interactive and immersive X3D profiles [14] as well
as a number of proposed extensions to the ISO
standard. Figure 8 shows the AUVW Xj3D viewer
being used to monitor the operations of multiple
AUVs in a VE incorporating bathymetry and
cartography near Panama City, Florida.

Figure 8: ARIES and Seahorse autonomous underwater
vehicles operating in the same virtual environment as seen in
the Autonomous Unmanned Vehicle Workbench Xj3D viewer.

A number of vehicle and VE models are included
with the AUVW distribution. In addition,
approximately 1000 models including vehicles,
structures, sensors, terrain and even entire scenarios
are available for unencumbered individual,
government and corporate use in the Scenario

Authoring and Visualization for Advanced Graphical
Environments (SAVAGE) online archive (available
at http://web.nps.navy.mil/~brutzman/Savage). A
number of authoring tools are also available that
facilitate the use of these and other models. Thus, the
development of large VEs remains time consuming
but is becoming a straight forward process. When
coupled with the potential autogeneration of
significant VE content, the rapid creation of realistic
VEs to rehearse and visualize real-world operations
of arbitrary UVs is becoming an achievable goal.

The X3D Scene Access Interface (SAI)

Among the most important Xj3D features is
implementation of the X3D SAI—a portion of the
X3D specification that provides for programmatic
access to a loaded scene graph. Within the AUVW,
the SAI enables dynamic generation of X3D content
for addition to the existing VE as well as the
manipulation of existing content.

The first implemented AUVW dynamic generation of
X3D content using the SAI takes the form of
mission-path trackline addition to the scene. Mission
tracks are automatically created based on the content
of the activated AVCL task-level script using X3D
indexed line sets and billboards when the mission is
loaded for rehearsal. This X3D corresponding to a
mission’s path is generated by applying an XSLT
stylesheet to the AVCL document as described in the
next section. The resultant X3D is then added to the
current VE scene graph using the X3D SAI. If the
mission is subsequently edited and rerun, the
previously generated content is removed from the
scene graph and replaced with updated content.

A second use of the SAI for manipulation of the
AUVW VE is its use for sensor modeling. The VE
contains all of the objects with which the UVs are
intended to interact during mission rehearsal and
playback. Enough information is therefore contained
in the scene graph for vehicles operating in the VE to
model various sensors through the use of collision
detection and picking. [7] documented the use of
C++ and the Open Inventor™ SoRayPickAction [17]
to model mechanically steered the narrow beam
active sonars installed on the NPS Phoenix AUV.
Unfortunately, the X3D specification does not
support general collision detection along the lines of
that required for ray picking operations. Xj3D,
however, implements a proposed formal extension to
the X3D specification that supports various forms of
picking suitable for sensor modeling [26].
Specifically, the AUVW uses the Xj3D
PrimitivePicker node to obtain the same functionality

9

provided by the Open Inventor™ SoRayPickAction.
Individual nodes are created and added to the VE
using the SAI upon the request of individual vehicle
instances. Each vehicle can manipulate pickers via
the SAI as required to model onboard sensors.
Individual sensors can be modeled with single picker
nodes (as depicted in Figure 9) or multiple nodes
depending on sensor characteristics. Currently
implemented vehicles use this functionality to model
fathometers, sonar and radar altimeters and ranging
sonars.

Distributed Interactive Simulation (DIS)

Vehicle position in the VE is maintained through the
use of DIS updates with individual vehicles
periodically transmitting multicast entity state
protocol data units (PDU). Explicitly supported by
X3D, entity state PDUs provide a means of
simultaneously updating multiple views into a
common VE. This inherently supports the use of
multiple AUVW instances in a networked
environment to provide for planning and rehearsal of
multiple-vehicle missions from different locations by
synchronizing the VE across the network.

Figure 9: Sensor modeling using the X3D scene graph and
Xj3D picking nodes. This approach allows modelin realistic
sensor response in arbitrarily large VEs.

Potential DIS support highlights an additional
planned use of the SAI: DIS entity monitoring to
support the automatic addition of applicable vehicle
models to the scene graph based on the
characteristics of new entity state PDUs received
specifically, the PDU’s siteID, applicationID,
entityID and marking. These four fields contain
enough information to uniquely identify the type of
vehicle and determine whether or not it is present in a
given VE. With this information, an instance of the
appropriate vehicle that will correctly respond to the

entity state PDUs that its rehearsal instance is
transmitting can be created dynamically and inserted
into the VE scene graph.

5. VEHICLE SUPPORT

It is worth noting at this point that the common UV
operational ontology defined by AVCL, along with
the mission planning and rehearsal functionality of
the AUVW provide no real-world value unless they
support actual vehicles. In order to satisfy this
requirement, the AUVW must be capable of
importing and exporting vehicle-specific data for all
supported vehicles. Fortunately, the use of XML in
the AUVW enables automated translation to and
from vehicle-specific data formats and facilitates
compatibility with real-world vehicles. Additionally,
communications capabilities are provided to support
interaction with vehicles during pre-, in-, and post-
mission operating phases.

Data Format Conversion

Enabling the translation of AVCL to vehicle-specific
formats is the Extensible Stylesheet Language for
Transformation (XSLT) [21]. XSLT is a pattern-
matching, template-based language that is used to
convert XML documents to other text formats.
Although primarily intended as a tool for converting
from one XML format to another, XSLT is more than
capable of supporting conversion from XML to
arbitrary text formats along the lines of those used by
most UVs.

A number of APIs are available for the incorporation
of XSLT transformations in applications written in a
variety of programming languages. The AUVW
provides XSLT stylesheets for each supported
vehicle and uses the Xalan-Java API, an open source
product of the Apache XML Project [2], to conduct
transformations. The GUI panel of Figure 10 is used
to initiate XSLT transformations to convert stored or
loaded AVCL documents to vehicle-specific formats
as required.

While the use of XSLT to convert AVCL documents
to vehicle-specific data formats is fairly
straightforward, the reverse transformation (i.e.,
vehicle-specific data to AVCL) is more problematic.
Generally speaking, most vehicle-specific data is not
maintained with XML, and no utility along the lines
of XSLT is available to support such conversion to
AVCL. Nevertheless, vehicle-specific data formats
are highly structured and can be rigorously defined
mathematically. Formally, any consistently defined

10

vehicle-specific data format is a context-free
language (CFL) that can be expressed using a
context-free grammar (CFG).

Figure 10: Support for automated conversion from AVCL to
vehicle-specific data formats using the Extensible Stylesheet
Language for Transformations (XSLT) stylesheets.

The AUVW uses a CFG definition for supported
vehicle-specific data formats as the basis for
conversion to AVCL and subsequent import into the
AUVW mission editor. Development of a CFG for
specific vehicle data formats enables automated
parsing of instance documents. Once parsed, the
resulting parse tree is traversed and translated to
AVCL using templates in much the same way that
XSLT traverses and converts an XML document.
Described in detail in [8], this methodology has been
utilized in the AUVW to enable the import of NPS
ARIES AUV, Hydroid REMUS and Naval
Oceanographic Office (NAVO) Seahorse AUV data.

Communications

All phases of UV operations generally require some
level of communication between vehicles and
operators. During the pre-mission phase, the operator
must be able to initialize the vehicle and load and
initiate missions. During mission execution, many
vehicles are able to provide position and status
reports or receive updated tasking. Following
execution, mission results must be downloaded from
the vehicle to offboard systems for analysis and
archiving. The AUVW has a number of
communications capabilities implemented or planned
to support these requirements.

Communications involving UVs routinely utilize
acoustic modems or other devices relying on serial
communications. The AUVW implements user-
configurable serial communications and Kermit
protocol file transfer appropriate for point to point
communications between the AUVW and a variety of
devices. Also slated for implementation are File
Transfer Protocol (FTP), Secure FTP (SFT),

Terminal Emulation (TELNET) and Secure Shell
(SSH) facilities that will improve the flexibility and
efficiency of communications between the AUVW
and controlled vehicles that use Transmission Control
Protocol/Internet Protocol (TCP/IP) networking.

6. CONCLUSIONS

A platform-independent planning, rehearsal,
execution and playback tool for UVs can make a
significant contribution in the area of dissimilar
vehicle interoperability. The NPS AUVW is just
such a product. Built around an evolving common
UV ontology, the AUVW provides a planning tool
suitable for arbitrary UVs with a number of utilities
available to facilitate operations with real-world
vehicles including automated data format
translations, rigorous physics-in-the-loop mission
rehearsal, and AUVW-to-vehicle communications
and data transfer support.

Already capable of supporting a variety of vehicles, a
number of enhancements to the AUVW are
anticipated that will further increase its utility in real-
world operations. Among these are increased use of
autogenerated X3D content in the 3D view, including
the insertion of new, unannounced vehicles into the
scene based on DIS packet characteristics. Also
planned is the automated generation of scene
bathymetry and topography based on run-time
queries to networked web services, providing
improved sensor modeling with real-time
environmental data.

Increased networking based on web technologies and
XML will continue to improve the functionality and
usefulness of the AUVW. Therefore, key goals of a
number of planned improvements are increased
access to and utilization of network data bases, sensor
models and 3D models using the web services. The
use of web-based technologies will provide access to
a significantly larger cache of information than is
reasonable otherwise and leverage the capabilities of
distributed systems in a net-centric environment.
Further, it will enable AUVW users to accurately
plan and rehearse missions for specific operating
environments and foster collaboration among
operators at distributed locations.

Availability and Development

Thanks to consistent use of Java and Java L+F, the
AUVW has been successfully tested on Windows,
MacOSX, Linux and Solaris. Autoinstall CDs are

11

updated weekly online, and installation DVDs are
available on request.

Source code is available under an open-source license
that ensures unencumbered use by individuals,
government projects and industry. All source code,
configuration files and documentation are maintained
under Concurrent Version System (CVS) control,
allowing around-the-clock distributed development
by qualified participants.

An archived mailing list is used to discuss design
issues and problem resolution. The bugzilla tracking
system is used to resolve all problems and precisely
define new features.

Further participation is welcome. Additional
information is available online at
http://www.movesinstitute.org/xmsf/xmsf.html#Proje
cts-AUV.

ACKNOWLEDGEMENT

The authors wish to acknowledge the financial
support of the Navy Modeling and Simulation Office
(NMSO), Naval Undersea Warfare Center (NUWC)
CARUSO project, Navy Research Laboratory-
Stennis Space Center, and the Singapore Defense
Science and Technology Agency and Defense
Science Organization National Laboratories.

REFERENCES

[1] Abbott, I. H. and Von Doenhoff, A. E., Theory of
Wing Sections, Dover Publications, 1959.

[2] Apache Software Foundation, Xalan-Java 2.6.2
Online Documentation, 2004. Available at
http://xml.apache.org/xalan-j/index.html

[3] BBN Technologies Solutions, LLC, OpenMap
Viewer Application User’s Guide, November 2001.
Available at http://openmap.bbn.com/doc/user-
guide.html

[4] Bourg, D. M., Physics for Game Developers,
O’Reilly and Associates, 2002.

[5] Brutzman, D. P., A Virtual World for an
Autonomous Underwater Vehicle, Ph.D. Thesis,
Department of Computer Science, Naval
Postgraduate School, Monterey, California,
December 1994.
http://web.nps.navy.mil/~brutzman/dissertation

[5] Cooke, J. M., Zyda, M. J., Pratt, D. R. and
McGhee, R. B., “NPSNET: Flight Simulation
Dynamic Modeling Using Quaternions,” Presence, v.
1, nbr. 4, pp. 404-420, Fall 1992.

[6] Daconta, M. C., Obrst, L. J. and Smith, K. T.,
The Semantic Web, A Guide to the Future of XML,
Web Services, and Knowledge Management, Wiley
Publishing, 2003.

[7] Davis, D. T., Precision Maneuvering of the
Phoenix Autonomous Underwater Vehicle for
Entering a Recovery Tube, Masters Thesis,
Department of Computer Science, Naval
Postgraduate School, Monterey, California,
September 1996.

[8] Davis, D. T., “Automated Parsing and
Conversion of Vehicle-Specific Data into
Autonomous Vehicle Control Language using
Context Free Grammars and XML Data Binding,”
Proceedings of the 14th International Symposium on
Unmanned Untethered Submersible Technology,
Durham, NH, August 2005.

[9] Environmental Systems Research Institute
(ESRI) White Paper, “ESRI Shapefile Technical
Description,” July 1998. Available at
http://www.esri.com/library/whitepapers/pdfs/shapefi
le.pdf

[10] Hawkins, D. L. and Van Leuvan, B. C., An
XML-Based Mission Command Language for
Autonomous Underwater Vehicles, Masters Thesis,
Department of Information Sciences, Naval
Postgraduate School, Monterey, California, June
2003.

[11] Hudson, A. D., “An Introduction to the Xj3D
Toolkit,” Proceedings of the 9th International
Conference on 3D Web Technology, Monterey, CA,
April 2004.

[12] Hydroid, Inc., Technical Manual Operations
and Maintenance Instructions, REMUS Remote
Environmental Measuring Units, 2001.

[13] Institute of Electrical and Electronics Engineers
(IEEE) Standard 1278.1-1995, Standard for
Distributed Interactive Simulation (DIS) Application
Protocols, 1995.

[14] International Organization for Standardization /
International Electrotechnical Commission
International Specification 19775:200x, Extensible

12

3D (X3D) International Specification, 2004.
Available at
http://www.web3d.org/x3d/specifications/#x3d

[15] Lee, C. S., NPS AUV Workbench:
Collaborative Environment for Autonomous
Underwater Vehicles (AUV) Mission Planning and
3D Visualization, Masters Thesis, Department of
Computer Science, Naval Postgraduate School,
Monterey, California, March 2004.

[16] Means, W. S. and Bodie, M. A., The Book of
SAX, The Simple API for XML, No Starch Press,
2002.

[17] Open Inventor Architecture Group (OIAG),
Open Inventor C++ Reference Manual, Addison
Wesley Publishing, 1994.

[18] Rew, R., Davis, G., Emmerson, S. and Davies,
H. The NetCDF Users’ Guide, Data Model,
Programming Interface, and Format for Self-
Describing, Portable Data, NetCDF Version 3.6.1,
Unidata Program Center, May 2005.

[19] Serin, E., Design and Test of the Cross Format
Schema Protocol (XFSP) for Networked Virtual
Environments, Masters Thesis, Department of
Computer Science, Naval Postgraduate School,
Monterey, California, March 2003.

[20] Sun Microsystems, Inc., Java Architecture for
XML Binding (JAXB) Version 1.0, edited by Fialli, J.
and Vajjhala, S., January 2003. Available at
http://www.sun.com/xml/jaxb/jaxb-docs.pdf

[21] World Wide Web Consortium, XSL
Transformations (XSLT) Version 1.0 Recommended
Specification, edited by Clark, J., October 2001.
Available at http://www.w3.org/TR/2001/REC-xsl-
20011015

[22] World Wide Web Consortium (W3C),
Extensible Markup Language (XML) 1.0 (Third
Edition) Recommended Specification, edited by
Bray, T., Paoli, J., Sperberg-McQueen C. M., Maler,
E., and Yergeau, F., February 2004. Available at
http://www.w3.org/TR/REC-xml

[23] World Wide Web Consortium, XML Schema
Part 1: Structures Second Edition Recommended
Specification, edited by Biron, Thompson, H. S.,
Beech, D., Maloney, M. and Mendelsohn, N.,
October 2004. Available at
http://www.w3.org/TR/xmlschema-1

[24] World Wide Web Consortium, XML Schema
Part 2: Datatypes Second Edition Recommended
Specification, edited by Biron, P. V. and Malhotra,
A., October 2004. Available at
http://www.w3.org/TR/xmlschema-2

[25] World Wide Web Consortium, Document
Object Model Level 3 Core Specification
Recommendation, edited by Le Hors, A., Le Hegaret,
P., Wood, L., Nicol, G., Robie, J., Champion, M. and
Byrne, S., April 2004. Available at
http://www.w3.org/DOM

[26] Yumetech, Inc., “Xj3D Picking Extensions,”
Proposed extension to the X3D specification, 2004.
Available at
http://www.xj3d.org/extensions/picking.html

