
Proceedings of the IEEE-OES Autonomous Underwater Vehicles 2012, September 2012, Southampton, England

An Implemented Universal Mission Controller with
Run Time Ethics Checking for Autonomous

Unmanned Vehicles—a UUV Example

Don Brutzman, Robert McGhee, Duane Davis
Modeling, Virtual Environments and Simulation (MOVES) Institute, Naval Postgraduate School, Monterey, California USA

brutzman@nps.edu, robertbmcghee@gmail.com, dtdavi1@nps.edu

Abstract—The authors have been involved for several decades
in the development and testing of both remotely controlled and
autonomous subsea and ground vehicles. This experience has led
us to view autonomous mobile robot control problems from both
a bottom up and a top down perspective. Specifically, in our
work, we have developed and tested a three-level software
architecture called Rational Behavior Model (RBM), in which a
top (strategic) level mission control finite state machine (FSM)
orders the rational execution, at an intermediate (tactical) level,
of vehicle behaviors in such a way as to carry out a specified
mission. This implementation experience and these principles
have led us to believe that human-like intelligence and judgment
are not required to achieve a useful operational capability in
autonomous mobile robots. Furthermore, we are convinced that
a primitive but useful type of robot ethical behavior can also be
attained, even in hazardous or military environments, without
invoking concepts of artificial intelligence. To support our views,
we present a software invention called a mission execution engine
(MEE), implemented in the Prolog logic programming language.
This MEE can be shown to represent an extension of the idea of a
universal Turing machine and is therefore well grounded in
existing mathematical automata theory. We further show how
human readable mission orders, also written in Prolog, can
specialize an MEE to any desired mission control FSM. An
important aspect of our work is that mission orders can be tested
exhaustively in human executable form before being translated
into robot executable form. This provides the kind of
transparency and accountability needed for after action review of
missions, and possible legal proceedings in case of loss of life or
property resulting from errors in mission orders.

Index Terms—AUV, UUV, autonomous robot control, ethical
robot control, Turing machine.

I. INTRODUCTION
There is at present underway a revolutionary change in the

role of unmanned vehicles in warfare and other high risk
environments [1, 2]. In the case of unmanned undersea
vehicles (UUVs), some are true autonomous robots, capable of
operating for months at sea, without human intervention [3]. In
a recent publication [4], the authors propose an extension of the
most general theoretical model for computation, a Turing
machine (TM) [5], into a broader class of automata, that we
call Mission Execution Automata (MEA). Among other
possible applications, MEA are intended provide a
mathematically grounded basis for control of long duration

autonomous robot missions, with an ability to deal with
contingencies arising during extended mission execution.
Specifically, an MEA consists of a mission specific finite state
machine (FSM) [5], provided with one or more external agents,
each with an ability to sense the environment in some well-
defined and limited way, to respond to commands issued by the
FSM, and to answer a finite set of predetermined queries from
the FSM. When the external agent is an incremental tape
recorder, a Turing machine results. In [6], an implemented
universal Turing machine is presented as an MEA, thereby
proving that Turing machines constitute a proper subclass of
MEA.

Analogous to a universal Turing machine [5], we have
found it useful to define and realize a universal Mission
Execution Engine (MEE) that can imitate any mission specific
MEA by executing a given set of mission orders [4]. These
orders are analogous to the formal written mission orders
typically provided to the commander of a manned submarine.
They are also analogous to, but more general than, the machine
description part of the tape of a universal Turing machine [5].
For UUVs operating in high risk environments, we believe that
it is a moral imperative that such orders be subjected to
exhaustive human testing in simulation form before recoding
into robot executable form. When such testing has been
completed, then the senior mission specialist participating in
the testing can formally approve these orders as executable
specifications for the subsequent generation of robot mission
orders by robot specialists. He then could be legally solely
accountable for any errors in mission orders. In addition, when
mission orders are written in appropriately structured Prolog
[7], we claim that they can be read declaratively by non-
programmers, thus providing the kind of transparency needed
for after action review, and possible legal proceedings relating
to loss of life or property.

After formal approval of mission orders in human testable
form, the next step can involve a sequence of specialists taking
the code in a controlled and testable way toward full robot
executable form, thus creating a chain of command, with a
single designated individual accountable for code correctness at
each level of abstraction, where such code constitutes
executable and testable specifications for refinement in the
level below it [8]. This process is facilitated by adopting the
Rational Behavior Model (RBM) software architecture [9], in

mailto:brutzman@nps.edu
mailto:robertbmcghee@gmail.com
mailto:dtdavi1@nps.edu

2

which strategic level code for mission control is realized as an
FSM, specifically as an MEA.

Below the strategic level in RBM lies the tactical level in
which commands from the MEA controlling the mission are
refined to execution level commands resulting in actual vehicle
maneuvers and environmental sensing [9]. The tactical level
also replies to queries from the strategic level by integrating
sensed information from the execution level. The remainder of
this paper develops, in computer simulation form, an example
mission for a UUV using Allegro Prolog [10] for MEA
realization. The main contribution of this work is to show that
finite state machine theory and predicate logic [7, 11] are
sufficient for providing useful degree of machine intelligence
to an autonomous mobile robot. We claim that artificial
intelligence [12, 13], mimicking human behavior in the control
of manned submarine missions, is not required to achieve “field
programmability” in a UUV, including a primitive form of run
time ethics checking. In this paper we develop and test a
prototypical “area search and sample mission” to illustrate our
approach and support this contention.

Experimental results, both for UUVs and ground robots
operating with RBM software in natural outdoor environments,
are already available and confirm the effectiveness of this
software architecture [9, 14, 15]. There are no questions of
feasibility associated with the adoption of RBM and MEA for
autonomous mobile robot control software.

II. EXAMPLE STRUCTURED NATURAL LANGUAGE MISSION
ORDERS AND ASSOCIATED STATE GRAPH

Figure 1 presents a prototypical set of mission orders for a
(simplified) “area search and sample” mission to be conducted
by a manned submarine [4].

As a step toward formalizing the above orders for MEA
execution, it is useful to construct a corresponding state graph
as shown in Fig. 2. In examining this figure, it should be noted
that two of the phases enclosed by ovals are terminal phases (or
states) that have no successor states. In addition, there is a
“Start” phase that has no predecessor state. These phases are
implicit in the word statement of Fig. 1, but, as will be seen,
need to be made explicit for MEA execution [4].

Before proceeding further, it is important to determine that
the senior mission specialist agrees that Fig. 2 correctly

captures the intent of the word statement of Fig. 1. For this
paper, the authors have exhaustively reviewed these two
figures, and are in agreement that the graph of Fig. 2 is correct.
This having been accomplished, Fig. 2 can now be “animated”
to actually issue commands and to query a human “tactical
officer” to carry out a simulated mission. In this paper, this
animation is accomplished by a MEE “invented” by us and
encoded in Prolog [4]. This MEE, together with its mission
orders is presented in the next section of this paper.

III. UNIVERSAL MISSION EXECUTION ENGINE AND PROLOG
MISSION ORDERS

Figure 3 below, taken from [4], defines a universal MEE in
executable form using Allegro Prolog. To understand the code,
it is necessary to recognize that an arrow symbol designates
rule definition and that the expression inside the first
parenthesis is the rule head, while the remainder of the
expression is the rule body [7]. Thus, the first line of code can
be read declaratively as: “A mission is executed if it is
initialized and successive phases are then executed until done.”
The next line says: “Initializing a mission is accomplished if
the current phase is set to 1.” The third line says “Consult the
fact database to find the value of the ‘current phase’ variable,
and then execute that phase.”

Fig. 2. State graph for prototypical unmanned undersea vehicle (UUV)

area search and sample mission.

Goal 1. Proceed to Area A and search the area. If the search is successful execute Goal 2. If the search is unsuccessful, execute
Goal 3.

Goal 2. Obtain an environment sample from Area A. If the sample is obtained, execute Goal 3. If the sample cannot be obtained,
proceed to recovery position to complete the mission.

Goal 3. Proceed to Area B and search the area. Upon search success or failure, execute Goal 4.

Goal 4. Proceed to Area C and rendezvous with UUV-2. Upon rendezvous success or failure, proceed to recovery position to
complete the mission.

Fig. 1. Example manned submarine area search and sample mission orders expressed in structured natural language.

3

Finally, the last two lines state that mission execution is
over if the current phase is “mission complete” or “mission
abort”. Remarkably, these few lines define, in executable
form, means for sequencing phases for a very wide range of
mission types, including all possible Turing machine missions
[6]. The reader is referred to [4, 7, 13] for a more complete
discussion of Prolog syntax and semantics.

The following Fig. 4, adapted from [4], presents Prolog
mission orders for the “area search and sample” mission of Fig.
2. Comparing Fig. 2 to Fig. 4, it can be seen that execution of
Phase 1 involves issuing the command to a human tactical
officer to “Search Area A”, and a branch to Phase 2 if the
search succeeds and Phase 3 if it does not. A similar
interpretation can be made for all other phases in this mission.
Again, this comparison was made for all phases of the selected
mission, and the authors agree on the correctness of the above
mission orders. In examining this code, it should be noted that
the commands issued by States 3 and 4 have been prefixed to
include the word “attempt”. This was done in order to
emphasize that subsequent commands are not conditioned on
the outcome of such an attempt.

IV. VALIDATION OF MISSION ORDERS THROUGH EXHAUSTIVE
TESTING

Fortunately, since an MEA is by definition a finite state
machine, providing that it is loop free, it can be tested
exhaustively by answering the queries arising during human
mission execution in every possible way. Figure 5 presents
partial results of such a test for the mission orders of Fig. 4. To
conserve space in this paper, user responses to prompts 3
through 5 have been omitted. Also, for ease of understanding
these results, user responses have been manually highlighted in
bold.

The authors recognize that obtaining and interpreting the
above kind of results can be challenging, especially when more
phases are involved than in this example. However, we have
collectively reviewed Fig. 5, along with the results of replying
to queries with the other three possible answer sequences (ynn,
yny, and yyn), and agree that results obtained correspond to
what we intended when writing the above mission orders.

An important question is: “How do we know that the above
test is exhaustive?” After all, the mission orders include three
questions, each of which can be answered in two ways, so

;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Ethical MEA/mission-controller.cl"

;This code was written in Allegro ANSI Common Lisp, Version 8.2.

;Allegro Prolog uses Lisp syntax. Rule head is first expression following "<--" symbol. Rule
;body is rest of expressions. Subsequent definitions of rule use "<-" symbol to avoid overwrite.

;Mission orders must be compiled and saved in location specified by your (edited) version of “load”
;command below. If "mission-controller.cl" has not been previously compiled, it may be necessary to
;open it in a new Allegro Editor window to avoid "name conflict error" response from compiler.

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog.

(load "C:/Documents and Settings/mcghee/My Documents/Tech Reports/Ethical MEA/mission-orders.fasl")

;Facts

(<-- (current_phase 0)) ;Start phase.

;Mission execution rule set

(<-- (execute_mission) (initialize_mission) (repeat) (execute_current_phase) (done) !)
(<-- (initialize_mission) (abolish current_phase 1) (asserta ((current_phase 1))))
(<-- (execute_current_phase) (current_phase ?x) (execute_phase ?x) !)
(<-- (done) (current_phase 'mission_complete))
(<- (done) (current_phase 'mission_abort))

;Human external agent communication functions

(<-- (negative nil))
(<- (negative n))
(<-- (affirmative ?x) (not (negative ?x)))
(<-- (report ?C) (princ ?C) (princ ".") (nl))
(<-- (command ?C) (princ ?C) (princ "!") (nl))
(<-- (ask ?Q ?A) (princ ?Q) (princ "?") (read ?A))

;Test function (illustrates format for calling for mission execution from Lisp)

(defun tm () (?- (execute mission)))

Fig. 3. Prolog code for Universal Mission Execution Engine (MEE) with human external agent communication functions.

4

shouldn’t there be eight cases to be tested? The answer to this
question is “no,” the reason being that some missions are
executed with less than three responses being invoked.
Specifically, the “Sample environment” command associated
with Phase 2 of the mission is not issued in either of these cases
because, as can be seen from the mission orders, Phase 2 is
entered only upon success of Phase 1. This results in a total of
only six cases rather than eight.

Some deeper questions arose from our discussions of the
results of Fig. 5. For example, referring to Fig. 2, why should
the vehicle return to base upon failing to get a sample from
Area A? Wouldn’t it be better for it to go on and attempt to
sample Area B? For that matter, if the purpose of the mission
is to obtain a sample, why not return to base after success of
sampling in Area A rather than in the event of failure of this
phase? Was this a mistake in the original human natural
language mission definition presented in Fig. 1? Only appeal
to a higher authority can answer this kind of question.
However, this is an additional value of human mission
rehearsal that we feel will prove to be essential to some types
of UUV missions. In particular, we believe that no potentially
lethal robot mission orders should be executed by an
operational vehicle until they have passed the kind of
exhaustive “Turing test” [13] illustrated by Fig. 5 above. When
all questions have been resolved concerning exhaustive testing
results, then in the most meaningful sense of the term, the
Prolog mission code can said to have been “proved correct”.

As a final remark, the above exhaustive testing of mission
execution is possible only because the control flow graph of
Fig. 3 is loop free. If mission orders contain a loop, then the
possibility of an infinite number of test cases arises. As
demonstrated in [6, 14], this can be dealt with by utilizing a
loop count or time out failure mode in tactical level behavior
implementation.

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog.

;Utility functions

(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) (asserta ((current_phase ?new))))

;Mission specification

(<-- (execute_phase 1) (command "Search Area A") (ask "Search successful" ?A) (affirmative ?A)
 (change_phase 1 2))
(<- (execute_phase 1) (change_phase 1 3))

(<- (execute_phase 2) (command "Sample environment") (ask "Sample obtained" ?A) (affirmative ?A)
 (change_phase 2 3))
(<- (execute_phase 2) (change_phase 2 5))

(<- (execute_phase 3) (command "Attempt Area B search") (change_phase 3 4))

(<- (execute_phase 4) (command "Attempt rendezvous with UUV2") (change_phase 4 5))

(<- (execute_phase 5) (command "Return to base") (ask "At base" ?A) (affirmative ?A)
 (change_phase 5 'mission_complete) (report "Mission succeeded"))
(<- (execute_phase 5) (change_phase 5 'mission_abort) (report "Mission failed"))

Fig. 4. Prolog mission orders for human execution of prototypical UUV area search and sample mission.

CG-USER(1): (?- (execute_mission))
Search Area A!
Search successful?n
Attempt Area B search!
Attempt rendezvous with UUV2!
Return to base!
At base?n
Mission failed.
Yes

No.
CG-USER(2): (?- (execute_mission))
Search Area A!
Search successful?n
Attempt Area B search!
Attempt rendezvous with UUV2!
Return to base!
At base?y
Mission succeeded.
Yes

No.
CG-USER(6): (?- (execute_mission))
Search Area A!
Search successful?y
Sample environment!
Sample obtained?y
Attempt Area B search!
Attempt rendezvous with UUV2!
Return to base!
At base?y
Mission succeeded.
Yes

No.

Fig. 5. Partial results from exhaustive human interactive testing of area
search and sample mission orders (user responses in bold).

5

V. AUTONOMOUS EXECUTION
As explained above, execution of all code presented so far

in this paper requires the participation of a human “tactical
officer”. This is not unrealistic for some applications.
Specifically, if such a person were in control of a remotely
operated vehicle (ROV or “drone”), then he or she would be
able to execute commands from an MEA, and also to respond
to queries during the execution of a real mission. However,
that is not our goal here. Rather, in this paper, we are primarily
interested in totally autonomous execution. To accomplish this
in simulation form requires the development of both tactical
level and execution level software. That is, there must be code
written to interpret commands and queries from the MEA to
the simulated robot as calls to implemented functions at these
levels. Since the Allegro dialect of Prolog used in this paper
for MEA realization is based on Common Lisp, this is the
natural language to use for this purpose. Such a simulation for
the mission under consideration here is presented in [8].
Typical results are presented in Fig. 6.

It is important to realize that the choice of Allegro Prolog
and Common Lisp for the work presented so far in this paper is
based on a desire for clarity of exposition and to allow
convenient code development and execution on a personal
computer. Readers interested in such execution are referred to
[8] for code and detailed instructions.

Actual robot experiments using the RBM architecture [9,
14, 15] have used both Prolog and other languages.
Nevertheless, regardless of final implementation languages, at
the present time we believe that Prolog provides the best
widely available basis for development and verification of

mission orders by mission specialists, who are not necessarily
programmers. Better than any other method we know of, this
approach provides transparency, as well as accountability, in
assigning legal responsibility for issuance of executable
mission orders as specifications for real time code
development. We also believe that the incremental code
development methods used in [8] are equally well applicable to
other languages. The use of detailed graphical representations
of both vehicles and their environments adds much to the
viability of such an approach to code development and
validation for control of autonomous mobile robots [16].

VI. RUN TIME ETHICS CHECKING
As mentioned in the introduction to this paper, a primitive

form of run time ethics checking can be included in the
software architecture we are advocating. Specifically, a
mission specialist could add “robot ethical constraints” to
structured natural language robot orders such as those of Fig. 1.
A simple example is provided by Fig. 7 below.

Of course these rules are very simple compared to typical
human rules of engagement. However, this paper is not aimed
at human mission execution. Rather, our goal is to show how
useful missions can be specified and conducted by autonomous
mobile robots without requiring that they possess humanlike
artificial intelligence. Whether or not this is so will eventually
require physical experiments involving realistic ethical
constraints on robot behavior. At this point in time we merely
wish to show how code for such experiments can be written in
computer simulation form. Incorporating the Fig. 4 constraints
into the code of Fig. 7 yields the revised mission orders of Fig.
8. Partial results from the beginning and end of testing of all
possible user responses to the queries issued by this code are
depicted in Fig. 9.

The results make use of the beginning of a “just say no”
exhaustive testing algorithm. Specifically, each query is
answered “no” unless to do so would repeat a previous pattern.
If this is the case, then the query is answered “yes”.
Surprisingly, following this algorithm, it turns out that only 19
distinct answer sequences are possible in executing the mission
orders of Fig. 8. This is in contrast to the 256 possible
sequences of arbitrary “yes” or “no” answers to eight questions.
The reason for this is of course, that most answer sequences
terminate with success or failure after many fewer than 8
queries. The authors have examined all 19 answer sequences
and are in agreement that the given robot ethical constraints
have been correctly incorporated into the previously verified
mission orders of Fig. 4.

Of course, as with the code of Fig. 4, this code is suitable

CG-USER(1): (tm)
Search Area A!
Robot report: Search Area A succeeded.
Sample environment!
Robot report: Sample environment succeeded.
Search Area B!
Robot report: Search Area B succeeded.
Rendezvous UUV2!
Robot report: Rendezvous UUV2 succeeded.
Return to base!
Robot report: Return to base succeeded.
Mission succeeded.
Yes

No.
CG-USER(2): (tm)
Search Area A!
Robot report: Search Area A failed.
Search Area B!
Robot report: Search Area B succeeded.
Rendezvous UUV2!
Robot report: Rendezvous UUV2 failed.
Return to base!
Robot report: Return to base failed.
Mission failed.
Yes

No.

Fig. 6. Examples of mission logs resulting from execution of fully
autonomous mission simulation code.

Constraint 1: If ethical search of Area A is not possible,
go to Goal 4.

Constraint 2: If ethical execution of Goal 3, 4, or 5 is not

possible, abort the mission.

Fig. 7. Example robot ethical constraints for area search and sample
mission.

6

only for execution by a human tactical officer. Presumably
such a person would have sufficient knowledge of the tactical
situation (when controlling a remotely operated vehicle or
during code debugging by simulation means), and of human
rules of engagement, to make correct decisions in deciding if
ethical execution of a given command is possible or not. At
this point in time, encoding of such judgments for robot
execution cannot be expected to give results as good as human
judgment. Much more research will be needed before this
becomes possible. However, the authors wish to point out that

all such future code development would be at the tactical level,
and would not change the mission orders of Fig. 8. Moreover,
further consideration may show that even very primitive
robotic ethical constraints, such as those included in this paper,
may prove to be better than none. Only real operational
experience can show whether this is true or not.

VII. SUMMARY AND CONCLUSIONS
The purpose of this paper is to show a means by which the

well understood tasking of missions for manned submarines by

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog.

;Utility functions

(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) (asserta ((current_phase ?new))))
(<-- (ethical_abort ?x) (ask "Ethical execution possible" ?A) (not (affirmative ?A))
 (change_phase ?x 'mission_abort) (report "Mission aborted. Unethical command"))
(<-- (ethical_branch ?old ?new) (ask "Ethical execution possible" ?A) (not (affirmative ?A))
 (change_phase ?old ?new) (report "Phase aborted. Unethical command"))

;Mission specification

(<-- (execute_phase 1) (command "Search Area A") (phase_completed 1))
(<-- (phase_completed 1) (ethical_branch 1 4))
(<- (phase_completed 1) (command "Execute command") (ask "Successful-1" ?A)
 (affirmative ?A) (change_phase 1 2))
(<- (phase_completed 1) (change_phase 1 3))

(<- (execute_phase 2) (command "Sample environment") (phase_completed 2))
(<- (phase_completed 2) (ethical_abort 2))
(<- (phase_completed 2) (command "Execute command") (ask "Successful-2" ?A)
 (affirmative ?A) (change_phase 2 3))
(<- (phase_completed 2) (change_phase 2 5))

(<- (execute_phase 3) (command "Search Area B") (phase_completed 3))
(<- (phase_completed 3) (ethical_abort 3))
(<- (phase_completed 3) (command "Execute command") (change_phase 3 4))

(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4))
(<- (phase_completed 4)(ethical_abort 4))
(<- (phase_completed 4) (command "Execute command") (change_phase 4 5))

(<- (execute_phase 5) (command "Return to base") (phase_completed 5))
(<- (phase_completed 5) (ethical_abort 5))
(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)
 (change_phase 5 'mission_complete) (report "Mission succeeded"))
(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed"))
(<- (phase_completed 2) (change_phase 2 5))

(<- (execute_phase 3) (command "Search Area B") (phase_completed 3))
(<- (phase_completed 3) (ethical_abort 3))
(<- (phase_completed 3) (command "Execute command") (change_phase 3 4))

(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4))
(<- (phase_completed 4)(ethical_abort 4))
(<- (phase_completed 4) (command "Execute command") (change_phase 4 5))

(<- (execute_phase 5) (command "Return to base") (phase_completed 5))
(<- (phase_completed 5) (ethical_abort 5))
(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)
 (change_phase 5 'mission_complete) (report "Mission succeeded"))
(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed"))

Fig. 8. Mission orders for area search and sample mission with run time ethics checking included.

7

means of written mission orders can be applied to autonomous
unmanned undersea vehicles. Our methodology makes use of a
software invention called a Universal Mission Execution
Engine (MEE). In the implementation presented here, we use
the Prolog logic programming language for clarity and to allow
mission orders written in a particular specified format to be
read by human mission experts who may not be computer
programmers. Further, these Prolog orders can be executed in
simulation form (and ultimately in actual robots) without
recoding once verified for “correctness” by a human tactical
officer. Our approach allows for a limited form of run time
ethics testing by a real vehicle during actual execution of a
potentially lethal mission. An important feature of our work is
that artificial intelligence concepts are not required in the
development and execution of such orders. Rather, it is shown
by computer simulation studies that finite state machine theory
and predicate calculus are sufficient for this purpose.

REFERENCES
[1] Singer, P.W., Wired for War, Penguin Books, London, England,

2009.
[2] Arkin, R.C., Governing Lethal Behavior in Autonomous Robots,

CRC Press, New York, 2009.
[3] Clooney,L., and Webb,D., “Increasing the Operational Envelope

for the Slocum Electric Glider”, Proc. Of 17th International

Symposium on Unmanned Untethered Submersible Technology,
Portsmouth, NH, August, 2011.

[4] McGhee, R. B., Brutzman, D. P., and Davis, D. T., “A
Universal Multiphase Mission Execution Automaton (MEA)
with Prolog Implementation for Unmanned Untethered
Vehicles”, Proc. Of 17th International Symposium on
Unmanned Untethered Submersible Technology, Portsmouth,
NH, August, 2011. Available at
https://savage.nps.edu/AuvWorkbench/website/documentation/pa
pers/papers.html

[5] Minsky, M.L., Computation: Finite and Infinite Machines,
Prentice Hall, 1967.

[6] McGhee, R.B., Brutzman, D.P., and Davis, D.T., A Taxonomy of
Turing Machines and Mission Execution Automata with
Lisp/Prolog Implementation, Technical Report NPS-MV-11-
002, Naval Postgraduate School, Monterey, CA 93943, June,
2011. Available at
https://savage.nps.edu/AuvWorkbench/website/documentation/re
ports/reports.html

[7] Rowe, N.C., Artificial Intelligence through Prolog, Prentice
Hall, Englewood Cliffs, NJ 07632, 1988.

[8] McGhee, R.B., Brutzman, D.P., and Davis, D.T., Recursive
Goal Refinement and Iterative Task Abstraction for Top-Level
Control of Autonomous Mobile Robots by Mission Execution
Automata – A UUV Example, Technical Report NPS-MV-12-
002, Naval Postgraduate School, Monterey, CA 93943, August,
2012. Available at
https://savage.nps.edu/AuvWorkbench/website/documentation/re
ports/reports.html

[9] Brutzman, D., et al, “The Phoenix Autonomous Underwater
Vehicle”, Artificial Intelligence and Mobile Robots: Case
Studies of Successful Robot Systems, Ch. 13, pp. 323-360, ed.
by Kortenkamp, D., et al, MIT Press, Cambridge, MA 02142,
1998.

[10] Franz, Inc., Allegro Prolog Online Documentation, 2011.
Available at
www.franz.com/support/documentation/current/doc/prolog.html

[11] Kohavi, Z., and Niraj, K.J., Switching and Finite Automata
Theory, McGraw Hill, 2010.

[12] Nilsson, N.J., The Quest for Artificial Intelligence, Cambridge
University Press, New York, 2010.

[13] Russell, S.J., and Norvig, P., Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995.

[14] Marco, D.B., Healey, A.J., and McGhee, R.B., “Autonomous
Underwater Vehicles: Hybrid Control of Mission and Motion”,
Autonomous Robots 3, pp. 169-186, 1996.

[15] Davis, D.T., Brutzman, D.P., and Becker, W.J., “Facilitation of
Autonomous Vehicle Coordination through an XML-Based
Vehicle-Independent Control Architecture”, Proc. of the 16th
International Symposium on Unmanned Untethered Submersible
Technology, Durham, NH, August, 2009. Available at
https://savage.nps.edu/AuvWorkbench/website/documentation/pa
pers/papers.html

[16] Davis, D.T., and Brutzman, D.P., “The Autonomous Unmanned
Vehicle Workbench: Mission Planning, Mission Rehearsal, and
Mission Replay Tool for Physics-Based X3D Visualization”,
Proc. Of 14th International Symposium on Unmanned
Untethered Submersible Technology, Durham, NH, August,
2005. Available at
https://savage.nps.edu/AuvWorkbench/website/documentation/pa
pers/papers.html

CG-USER(1): (tm)
Search Area A!
Ethical execution possible?n
Phase aborted. Unethical command.
Search Area B!
Ethical execution possible?n
Mission aborted. Unethical command.
Yes

No.

CG-USER(19): (tm)
Search Area A!
Ethical execution possible?y
Execute command!
Successful-1?y
Sample environment!
Ethical execution possible?y
Execute command!
Successful-2?y
Search Area B!
Ethical execution possible?y
Execute command!
Rendezvous UUV2!
Ethical execution possible?y
Execute command!
Return to base!
Ethical execution possible?y
At base?y
Mission succeeded.
Yes

No.

Fig. 9. Partial results of exhaustive testing of area search and sample
mission with run time ethics checking.

https://savage.nps.edu/AuvWorkbench/website/documentation/papers/papers.html
https://savage.nps.edu/AuvWorkbench/website/documentation/papers/papers.html
https://savage.nps.edu/AuvWorkbench/website/documentation/reports/reports.html
https://savage.nps.edu/AuvWorkbench/website/documentation/reports/reports.html
https://savage.nps.edu/AuvWorkbench/website/documentation/reports/reports.html
https://savage.nps.edu/AuvWorkbench/website/documentation/reports/reports.html
http://www.franz.com/support/documentation/current/doc/prolog.html
https://savage.nps.edu/AuvWorkbench/website/documentation/papers/papers.html
https://savage.nps.edu/AuvWorkbench/website/documentation/papers/papers.html
https://savage.nps.edu/AuvWorkbench/website/documentation/papers/papers.html
https://savage.nps.edu/AuvWorkbench/website/documentation/papers/papers.html

	I. Introduction
	II. Example Structured Natural Language Mission Orders and Associated State Graph
	III. Universal mission execution engine and prolog mission orders
	IV. validation of mission orders through exhaustive testing
	V. Autonomous Execution
	VI. Run Time Ethics Checking
	VII. Summary and Conclusions
	References

