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Abstract—The authors have been involved for several decades 
in the development and testing of both remotely controlled and 
autonomous subsea and ground vehicles.  This experience has led 
us to view autonomous mobile robot control problems from both 
a bottom up and a top down perspective.  Specifically, in our 
work, we have developed and tested a three-level software 
architecture called Rational Behavior Model (RBM), in which a 
top (strategic) level mission control finite state machine (FSM) 
orders the rational execution, at an intermediate (tactical) level, 
of vehicle behaviors in such a way as to carry out a specified 
mission.  This implementation experience and these principles 
have led us to believe that human-like intelligence and judgment 
are not required to achieve a useful operational capability in 
autonomous mobile robots.  Furthermore, we are convinced that 
a primitive but useful type of robot ethical behavior can also be 
attained, even in hazardous or military environments, without 
invoking concepts of artificial intelligence.  To support our views, 
we present a software invention called a mission execution engine 
(MEE), implemented in the Prolog logic programming language.  
This MEE can be shown to represent an extension of the idea of a 
universal Turing machine and is therefore well grounded in 
existing mathematical automata theory.  We further show how 
human readable mission orders, also written in Prolog, can 
specialize an MEE to any desired mission control FSM.  An 
important aspect of our work is that mission orders can be tested 
exhaustively in human executable form before being translated 
into robot executable form.  This provides the kind of 
transparency and accountability needed for after action review of 
missions, and possible legal proceedings in case of loss of life or 
property resulting from errors in mission orders. 

Index Terms—AUV, UUV, autonomous robot control, ethical 
robot control, Turing machine. 

I. INTRODUCTION 
There is at present underway a revolutionary change in the 

role of unmanned vehicles in warfare and other high risk 
environments [1, 2].  In the case of unmanned undersea 
vehicles (UUVs), some are true autonomous robots, capable of 
operating for months at sea, without human intervention [3].  In 
a recent publication [4], the authors propose an extension of the 
most general theoretical model for computation, a Turing 
machine (TM) [5], into a broader class of automata, that we 
call Mission Execution Automata (MEA).  Among other 
possible applications, MEA are intended provide a 
mathematically grounded basis for control of long duration 

autonomous robot missions, with an ability to deal with 
contingencies arising during extended mission execution.  
Specifically, an MEA consists of a mission specific finite state 
machine (FSM) [5], provided with one or more external agents, 
each with an ability to sense the environment in some well-
defined and limited way, to respond to commands issued by the 
FSM, and to answer a finite set of predetermined queries from 
the FSM.  When the external agent is an incremental tape 
recorder, a Turing machine results.  In [6], an implemented 
universal Turing machine is presented as an MEA, thereby 
proving that Turing machines constitute a proper subclass of 
MEA.   

Analogous to a universal Turing machine [5], we have 
found it useful to define and realize a universal Mission 
Execution Engine (MEE) that can imitate any mission specific 
MEA by executing a given set of mission orders [4].  These 
orders are analogous to the formal written mission orders 
typically provided to the commander of a manned submarine.  
They are also analogous to, but more general than, the machine 
description part of the tape of a universal Turing machine [5].  
For UUVs operating in high risk environments, we believe that 
it is a moral imperative that such orders be subjected to 
exhaustive human testing in simulation form before recoding 
into robot executable form.  When such testing has been 
completed, then the senior mission specialist participating in 
the testing can formally approve these orders as executable 
specifications for the subsequent generation of robot mission 
orders by robot specialists.  He then could be legally solely 
accountable for any errors in mission orders.  In addition, when 
mission orders are written in appropriately structured Prolog 
[7], we claim that they can be read declaratively by non-
programmers, thus providing the kind of transparency needed 
for after action review, and possible legal proceedings relating 
to loss of life or property.   

After formal approval of mission orders in human testable 
form, the next step can involve a sequence of specialists taking 
the code in a controlled and testable way toward full robot 
executable form, thus creating a chain of command, with a 
single designated individual accountable for code correctness at 
each level of abstraction, where such code constitutes 
executable and testable specifications for refinement in the 
level below it [8].  This process is facilitated by adopting the 
Rational Behavior Model (RBM) software architecture [9], in 
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which strategic level code for mission control is realized as an 
FSM, specifically as an MEA.   

Below the strategic level in RBM lies the tactical level in 
which commands from the MEA controlling the mission are 
refined to execution level commands resulting in actual vehicle 
maneuvers and environmental sensing [9].  The tactical level 
also replies to queries from the strategic level by integrating 
sensed information from the execution level.  The remainder of 
this paper develops, in computer simulation form, an example 
mission for a UUV using Allegro Prolog [10] for MEA 
realization.  The main contribution of this work is to show that 
finite state machine theory and predicate logic [7, 11] are 
sufficient for providing useful degree of machine intelligence 
to an autonomous mobile robot.  We claim that artificial 
intelligence [12, 13], mimicking human behavior in the control 
of manned submarine missions, is not required to achieve “field 
programmability” in a UUV, including a primitive form of run 
time ethics checking.  In this paper we develop and test a 
prototypical “area search and sample mission” to illustrate our 
approach and support this contention. 

Experimental results, both for UUVs and ground robots 
operating with RBM software in natural outdoor environments, 
are already available and confirm the effectiveness of this 
software architecture [9, 14, 15].  There are no questions of 
feasibility associated with the adoption of RBM and MEA for 
autonomous mobile robot control software. 

II. EXAMPLE STRUCTURED NATURAL LANGUAGE MISSION 
ORDERS AND ASSOCIATED STATE GRAPH 

Figure 1 presents a prototypical set of mission orders for a 
(simplified) “area search and sample” mission to be conducted 
by a manned submarine [4]. 

As a step toward formalizing the above orders for MEA 
execution, it is useful to construct a corresponding state graph 
as shown in Fig. 2.  In examining this figure, it should be noted 
that two of the phases enclosed by ovals are terminal phases (or 
states) that have no successor states.  In addition, there is a 
“Start” phase that has no predecessor state.  These phases are 
implicit in the word statement of Fig. 1, but, as will be seen, 
need to be made explicit for MEA execution [4]. 

Before proceeding further, it is important to determine that 
the senior mission specialist agrees that Fig. 2 correctly 

captures the intent of the word statement of Fig. 1.  For this 
paper, the authors have exhaustively reviewed these two 
figures, and are in agreement that the graph of Fig. 2 is correct.  
This having been accomplished, Fig. 2 can now be “animated” 
to actually issue commands and to query a human “tactical 
officer” to carry out a simulated mission.  In this paper, this 
animation is accomplished by a MEE “invented” by us and 
encoded in Prolog [4].  This MEE, together with its mission 
orders is presented in the next section of this paper. 

III. UNIVERSAL MISSION EXECUTION ENGINE AND PROLOG 
MISSION ORDERS 

Figure 3 below, taken from [4], defines a universal MEE in 
executable form using Allegro Prolog.  To understand the code, 
it is necessary to recognize that an arrow symbol designates 
rule definition and that the expression inside the first 
parenthesis is the rule head, while the remainder of the 
expression is the rule body [7].  Thus, the first line of code can 
be read declaratively as:  “A mission is executed if it is 
initialized and successive phases are then executed until done.”  
The next line says:  “Initializing a mission is accomplished if 
the current phase is set to 1.”  The third line says “Consult the 
fact database to find the value of the ‘current phase’ variable, 
and then execute that phase.” 

 
Fig. 2.  State graph for prototypical unmanned undersea vehicle (UUV) 

area search and sample mission. 

 

Goal 1. Proceed to Area A and search the area.  If the search is successful execute Goal 2.  If the search is unsuccessful, execute 
Goal 3. 

Goal 2. Obtain an environment sample from Area A.  If the sample is obtained, execute Goal 3.  If the sample cannot be obtained, 
proceed to recovery position to complete the mission. 

Goal 3. Proceed to Area B and search the area.  Upon search success or failure, execute Goal 4. 

Goal 4. Proceed to Area C and rendezvous with UUV-2.  Upon rendezvous success or failure, proceed to recovery position to 
complete the mission. 

Fig. 1.  Example manned submarine area search and sample mission orders expressed in structured natural language. 
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Finally, the last two lines state that mission execution is 
over if the current phase is “mission complete” or “mission 
abort”.  Remarkably, these few lines define, in executable 
form, means for sequencing phases for a very wide range of 
mission types, including all possible Turing machine missions 
[6].  The reader is referred to [4, 7, 13] for a more complete 
discussion of Prolog syntax and semantics. 

The following Fig. 4, adapted from [4], presents Prolog 
mission orders for the “area search and sample” mission of Fig. 
2.  Comparing Fig. 2 to Fig. 4, it can be seen that execution of 
Phase 1 involves issuing the command to a human tactical 
officer to “Search Area A”, and a branch to Phase 2 if the 
search succeeds and Phase 3 if it does not.  A similar 
interpretation can be made for all other phases in this mission.  
Again, this comparison was made for all phases of the selected 
mission, and the authors agree on the correctness of the above 
mission orders.  In examining this code, it should be noted that 
the commands issued by States 3 and 4 have been prefixed to 
include the word “attempt”.  This was done in order to 
emphasize that subsequent commands are not conditioned on 
the outcome of such an attempt. 

IV. VALIDATION OF MISSION ORDERS THROUGH EXHAUSTIVE 
TESTING 

Fortunately, since an MEA is by definition a finite state 
machine, providing that it is loop free, it can be tested 
exhaustively by answering the queries arising during human 
mission execution in every possible way.  Figure 5 presents 
partial results of such a test for the mission orders of Fig. 4.  To 
conserve space in this paper, user responses to prompts 3 
through 5 have been omitted.  Also, for ease of understanding 
these results, user responses have been manually highlighted in 
bold. 

The authors recognize that obtaining and interpreting the 
above kind of results can be challenging, especially when more 
phases are involved than in this example.  However, we have 
collectively reviewed Fig. 5, along with the results of replying 
to queries with the other three possible answer sequences (ynn, 
yny, and yyn), and agree that results obtained correspond to 
what we intended when writing the above mission orders.   

An important question is:  “How do we know that the above 
test is exhaustive?” After all, the mission orders include three 
questions,  each  of  which  can  be  answered  in  two  ways, so 

;C:/Documents and Settings/mcghee/My Documents/Tech Reports/Ethical MEA/mission-controller.cl" 
 
;This code was written in Allegro ANSI Common Lisp, Version 8.2. 
 
;Allegro Prolog uses Lisp syntax. Rule head is first expression following "<--" symbol. Rule 
;body is rest of expressions. Subsequent definitions of rule use "<-" symbol to avoid overwrite. 
   
;Mission orders must be compiled and saved in location specified by your (edited) version of “load” 
;command below. If "mission-controller.cl" has not been previously compiled, it may be necessary to 
;open it in a new Allegro Editor window to avoid "name conflict error" response from compiler. 
 
(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
(load "C:/Documents and Settings/mcghee/My Documents/Tech Reports/Ethical MEA/mission-orders.fasl") 
 
;Facts 
 
(<-- (current_phase 0)) ;Start phase. 
 
;Mission execution rule set  
 
(<-- (execute_mission) (initialize_mission) (repeat) (execute_current_phase) (done) !) 
(<-- (initialize_mission) (abolish current_phase 1) (asserta ((current_phase 1))))  
(<-- (execute_current_phase) (current_phase ?x) (execute_phase ?x) !) 
(<-- (done) (current_phase 'mission_complete))  
(<- (done) (current_phase 'mission_abort))  
 
;Human external agent communication functions 
 
(<-- (negative nil)) 
(<- (negative n)) 
(<-- (affirmative ?x) (not (negative ?x))) 
(<-- (report ?C) (princ ?C) (princ ".") (nl)) 
(<-- (command ?C) (princ ?C) (princ "!") (nl)) 
(<-- (ask ?Q ?A) (princ ?Q) (princ "?") (read ?A)) 
 
;Test function (illustrates format for calling for mission execution from Lisp) 
 
(defun tm () (?- (execute mission))) 
 

Fig. 3.  Prolog code for Universal Mission Execution Engine (MEE) with human external agent communication functions. 
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shouldn’t there be eight cases to be tested?  The answer to this 
question is “no,” the reason being that some missions are 
executed with less than three responses being invoked.  
Specifically, the “Sample environment” command associated 
with Phase 2 of the mission is not issued in either of these cases 
because, as can be seen from the mission orders, Phase 2 is 
entered only upon success of Phase 1.  This results in a total of 
only six cases rather than eight. 

Some deeper questions arose from our discussions of the 
results of Fig. 5.  For example, referring to Fig. 2, why should 
the vehicle return to base upon failing to get a sample from 
Area A?  Wouldn’t it be better for it to go on and attempt to 
sample Area B?  For that matter, if the purpose of the mission 
is to obtain a sample, why not return to base after success of 
sampling in Area A rather than in the event of failure of this 
phase?  Was this a mistake in the original human natural 
language mission definition presented in Fig. 1?  Only appeal 
to a higher authority can answer this kind of question.  
However, this is an additional value of human mission 
rehearsal that we feel will prove to be essential to some types 
of UUV missions.  In particular, we believe that no potentially 
lethal robot mission orders should be executed by an 
operational vehicle until they have passed the kind of 
exhaustive “Turing test” [13] illustrated by Fig. 5 above.  When 
all questions have been resolved concerning exhaustive testing 
results, then in the most meaningful sense of the term, the 
Prolog mission code can said to have been “proved correct”. 

As a final remark, the above exhaustive testing of mission 
execution is possible only because the control flow graph of 
Fig. 3 is loop free.  If mission orders contain a loop, then the 
possibility of an infinite number of test cases arises.  As 
demonstrated in [6, 14], this can be dealt with by utilizing a 
loop count or time out failure mode in tactical level behavior 
implementation. 

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) (asserta ((current_phase ?new)))) 
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Search Area A") (ask "Search successful" ?A) (affirmative ?A) 
     (change_phase 1 2)) 
(<- (execute_phase 1) (change_phase 1 3)) 
 
(<- (execute_phase 2) (command "Sample environment") (ask "Sample obtained" ?A) (affirmative ?A)  
    (change_phase 2 3)) 
(<- (execute_phase 2) (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Attempt Area B search") (change_phase 3 4)) 
 
(<- (execute_phase 4) (command "Attempt rendezvous with UUV2") (change_phase 4 5)) 
 
(<- (execute_phase 5) (command "Return to base") (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (execute_phase 5) (change_phase 5 'mission_abort) (report "Mission failed")) 
 

Fig. 4.  Prolog mission orders for human execution of prototypical UUV area search and sample mission. 

CG-USER(1): (?- (execute_mission)) 
Search Area A! 
Search successful?n 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?n 
Mission failed. 
Yes 
 
No. 
CG-USER(2): (?- (execute_mission)) 
Search Area A! 
Search successful?n 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 
CG-USER(6): (?- (execute_mission)) 
Search Area A! 
Search successful?y 
Sample environment! 
Sample obtained?y 
Attempt Area B search! 
Attempt rendezvous with UUV2! 
Return to base! 
At base?y 
Mission succeeded. 
Yes 
 
No. 

Fig. 5.  Partial results from exhaustive human interactive testing of area 
search and sample mission orders (user responses in bold). 
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V. AUTONOMOUS EXECUTION 
As explained above, execution of all code presented so far 

in this paper requires the participation of a human “tactical 
officer”.  This is not unrealistic for some applications.  
Specifically, if such a person were in control of a remotely 
operated vehicle (ROV or “drone”), then he or she would be 
able to execute commands from an MEA, and also to respond 
to queries during the execution of a real mission.  However, 
that is not our goal here.  Rather, in this paper, we are primarily 
interested in totally autonomous execution.  To accomplish this 
in simulation form requires the development of both tactical 
level and execution level software.  That is, there must be code 
written to interpret commands and queries from the MEA to 
the simulated robot as calls to implemented functions at these 
levels.  Since the Allegro dialect of Prolog used in this paper 
for MEA realization is based on Common Lisp, this is the 
natural language to use for this purpose.  Such a simulation for 
the mission under consideration here is presented in [8].  
Typical results are presented in Fig. 6. 

It is important to realize that the choice of Allegro Prolog 
and Common Lisp for the work presented so far in this paper is 
based on a desire for clarity of exposition and to allow 
convenient code development and execution on a personal 
computer.  Readers interested in such execution are referred to 
[8] for code and detailed instructions. 

Actual robot experiments using the RBM architecture [9, 
14, 15] have used both Prolog and other languages.  
Nevertheless, regardless of final implementation languages, at 
the present time we believe that Prolog provides the best 
widely available basis for development and verification of 

mission orders by mission specialists, who are not necessarily 
programmers.  Better than any other method we know of, this 
approach provides transparency, as well as accountability, in 
assigning legal responsibility for issuance of executable 
mission orders as specifications for real time code 
development.  We also believe that the incremental code 
development methods used in [8] are equally well applicable to 
other languages.  The use of detailed graphical representations 
of both vehicles and their environments adds much to the 
viability of such an approach to code development and 
validation for control of autonomous mobile robots [16]. 

VI. RUN TIME ETHICS CHECKING 
As mentioned in the introduction to this paper, a primitive 

form of run time ethics checking can be included in the 
software architecture we are advocating.  Specifically, a 
mission specialist could add “robot ethical constraints” to 
structured natural language robot orders such as those of Fig. 1.  
A simple example is provided by Fig. 7 below. 

Of course these rules are very simple compared to typical 
human rules of engagement.  However, this paper is not aimed 
at human mission execution.  Rather, our goal is to show how 
useful missions can be specified and conducted by autonomous 
mobile robots without requiring that they possess humanlike 
artificial intelligence.  Whether or not this is so will eventually 
require physical experiments involving realistic ethical 
constraints on robot behavior.  At this point in time we merely 
wish to show how code for such experiments can be written in 
computer simulation form.  Incorporating the Fig. 4 constraints 
into the code of Fig. 7 yields the revised mission orders of Fig. 
8.  Partial results from the beginning and end of testing of all 
possible user responses to the queries issued by this code are 
depicted in Fig. 9. 

The results make use of the beginning of a “just say no” 
exhaustive testing algorithm.  Specifically, each query is 
answered “no” unless to do so would repeat a previous pattern.  
If this is the case, then the query is answered “yes”.  
Surprisingly, following this algorithm, it turns out that only 19 
distinct answer sequences are possible in executing the mission 
orders of Fig. 8.  This is in contrast to the 256 possible 
sequences of arbitrary “yes” or “no” answers to eight questions.  
The reason for this is of course, that most answer sequences 
terminate with success or failure after many fewer than 8 
queries.  The authors have examined all 19 answer sequences 
and are in agreement that the given robot ethical constraints 
have been correctly incorporated into the previously verified 
mission orders of Fig. 4. 

Of course, as with the code of Fig. 4, this code is suitable 

CG-USER(1): (tm) 
Search Area A! 
Robot report: Search Area A succeeded. 
Sample environment! 
Robot report: Sample environment succeeded. 
Search Area B! 
Robot report: Search Area B succeeded. 
Rendezvous UUV2! 
Robot report: Rendezvous UUV2 succeeded. 
Return to base! 
Robot report: Return to base succeeded. 
Mission succeeded. 
Yes 
 
No. 
CG-USER(2): (tm) 
Search Area A! 
Robot report: Search Area A failed. 
Search Area B! 
Robot report: Search Area B succeeded. 
Rendezvous UUV2! 
Robot report: Rendezvous UUV2 failed. 
Return to base! 
Robot report: Return to base failed. 
Mission failed. 
Yes 
 
No. 

Fig. 6.  Examples of mission logs resulting from execution of fully 
autonomous mission simulation code. 

Constraint 1: If ethical search of Area A is not possible, 
go to Goal 4. 

 
Constraint 2: If ethical execution of Goal 3, 4, or 5 is not 

possible, abort the mission. 

Fig. 7.  Example robot ethical constraints for area search and sample 
mission. 
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only for execution by a human tactical officer.  Presumably 
such a person would have sufficient knowledge of the tactical 
situation (when controlling a remotely operated vehicle or 
during code debugging by simulation means), and of human 
rules of engagement, to make correct decisions in deciding if 
ethical execution of a given command is possible or not.  At 
this point in time, encoding of such judgments for robot 
execution cannot be expected to give results as good as human 
judgment.  Much more research will be needed before this 
becomes possible.  However, the authors wish to point out that 

all such future code development would be at the tactical level, 
and would not change the mission orders of Fig. 8.  Moreover, 
further consideration may show that even very primitive 
robotic ethical constraints, such as those included in this paper, 
may prove to be better than none.  Only real operational 
experience can show whether this is true or not. 

VII. SUMMARY AND CONCLUSIONS 
The purpose of this paper is to show a means by which the 

well understood tasking of missions for manned submarines by 

(require :prolog) (shadowing-import '(prolog:==)) (use-package :prolog) ;Start Prolog. 
 
 
;Utility functions 
 
(<-- (change_phase ?old ?new) (retract ((current_phase ?old))) (asserta ((current_phase ?new)))) 
(<-- (ethical_abort ?x) (ask "Ethical execution possible" ?A) (not (affirmative ?A))  
     (change_phase ?x 'mission_abort) (report "Mission aborted. Unethical command"))  
(<-- (ethical_branch ?old ?new) (ask "Ethical execution possible" ?A) (not (affirmative ?A))  
     (change_phase ?old ?new) (report "Phase aborted. Unethical command"))  
 
 
;Mission specification 
 
(<-- (execute_phase 1) (command "Search Area A") (phase_completed 1)) 
(<-- (phase_completed 1) (ethical_branch 1 4)) 
(<- (phase_completed 1) (command "Execute command") (ask "Successful-1" ?A)  
    (affirmative ?A) (change_phase 1 2))  
(<- (phase_completed 1) (change_phase 1 3)) 
 
(<- (execute_phase 2) (command "Sample environment") (phase_completed 2)) 
(<- (phase_completed 2) (ethical_abort 2)) 
(<- (phase_completed 2) (command "Execute command") (ask "Successful-2" ?A)  
    (affirmative ?A) (change_phase 2 3))  
(<- (phase_completed 2) (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Search Area B") (phase_completed 3)) 
(<- (phase_completed 3) (ethical_abort 3)) 
(<- (phase_completed 3) (command "Execute command") (change_phase 3 4)) 
 
(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4)) 
(<- (phase_completed 4)(ethical_abort 4)) 
(<- (phase_completed 4) (command "Execute command") (change_phase 4 5)) 
 
(<- (execute_phase 5) (command "Return to base") (phase_completed 5)) 
(<- (phase_completed 5) (ethical_abort 5)) 
(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed"))  
(<- (phase_completed 2) (change_phase 2 5)) 
 
(<- (execute_phase 3) (command "Search Area B") (phase_completed 3)) 
(<- (phase_completed 3) (ethical_abort 3)) 
(<- (phase_completed 3) (command "Execute command") (change_phase 3 4)) 
 
(<- (execute_phase 4) (command "Rendezvous UUV2") (phase_completed 4)) 
(<- (phase_completed 4)(ethical_abort 4)) 
(<- (phase_completed 4) (command "Execute command") (change_phase 4 5)) 
 
(<- (execute_phase 5) (command "Return to base") (phase_completed 5)) 
(<- (phase_completed 5) (ethical_abort 5)) 
(<- (phase_completed 5) (ask "At base" ?A) (affirmative ?A)  
    (change_phase 5 'mission_complete) (report "Mission succeeded")) 
(<- (phase_completed 5) (change_phase 5 'mission_abort) (report "Mission failed")) 

Fig. 8.  Mission orders for area search and sample mission with run time ethics checking included. 
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means of written mission orders can be applied to autonomous 
unmanned undersea vehicles.  Our methodology makes use of a 
software invention called a Universal Mission Execution 
Engine (MEE).  In the implementation presented here, we use 
the Prolog logic programming language for clarity and to allow 
mission orders written in a particular specified format to be 
read by human mission experts who may not be computer 
programmers.  Further, these Prolog orders can be executed in 
simulation form (and ultimately in actual robots) without 
recoding once verified for “correctness” by a human tactical 
officer.  Our approach allows for a limited form of run time 
ethics testing by a real vehicle during actual execution of a 
potentially lethal mission.  An important feature of our work is 
that artificial intelligence concepts are not required in the 
development and execution of such orders.  Rather, it is shown 
by computer simulation studies that finite state machine theory 
and predicate calculus are sufficient for this purpose. 
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CG-USER(1): (tm) 
Search Area A! 
Ethical execution possible?n 
Phase aborted. Unethical command. 
Search Area B! 
Ethical execution possible?n 
Mission aborted. Unethical command. 
Yes 
 
No. 
 
CG-USER(19): (tm) 
Search Area A! 
Ethical execution possible?y 
Execute command! 
Successful-1?y 
Sample environment! 
Ethical execution possible?y 
Execute command! 
Successful-2?y 
Search Area B! 
Ethical execution possible?y 
Execute command! 
Rendezvous UUV2! 
Ethical execution possible?y 
Execute command! 
Return to base! 
Ethical execution possible?y 
At base?y 
Mission succeeded. 
Yes 
 
No. 

Fig. 9.  Partial results of exhaustive testing of area search and sample 
mission with run time ethics checking. 
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