

NPS AUV Workbench: Rehearsal, Reality, Replay for Unmanned Vehicle Operations

Don Brutzman and Jeff Weekley

Naval Postgraduate School (NPS)
Center for Autonomous Underwater Vehicle (AUV) Research
Modeling, Virtual Environments & Simulation (MOVES) Institute
30 August 2010

Topics

- Why modeling & simulation?
- AUV Workbench Components
- Sonar Visualization
- Technologies: X3D, XML, XMSF
- Looking ahead
- Demonstrations

theory = conceptual description of reality experiment = test theory in physical world

Scientific method, 15th-20th centuries

model = formal representation of reality simulation = behavior of model over time

Scientific method, 1950-present

running together

model = formal representation of reality

simulation = behavior of model over time

Scientific method, 1950-present

Virtual environments can connect all models and simulations together

Scientific method, emerging 21st century

AUV Workbench Project Description

- Open source, Java, XML, X3D graphics
- Mission planning
- Robot mission execution
- Hydrodynamics response
- Sonar modeling
- 3D visualization
- Compressed radio frequency (RF) and acoustic communications

Our 3 R's: rehearsal, reality, replay

- Same needs and capabilities for each: mission, visualization, data support, etc.
- AUV workbench supports each
 - ongoing work, starting to mainstream
- 15 years of accumulated effort
 - integrating great variety of successful work
 - new work projects occurring regularly
- Collaboration is welcome

Rehearsal

Mission planning and preparation

<u>Rehearsal</u>

- Prepare missions, either manually or automatically via other software tools
- Test robot software's ability to perform commands
- Test again with physics "in the loop"
 - Hydrodynamics and control are critical, difficult
 - Sonar, environmental modeling
- Repeat until robust, with cautious respect
 - "Simulation is doomed to success" G. Bekey

Mission views: iconic, tree, XML, dialog box

Each view is consistent with GIS, 2D, 3D views

Supporting views: mission metadata, state

UsvBoxTest.xml	wml UavWaypointMission.xml			
▶ WWWGridDer	mo1.xml	WWWGridDemo2.xml		
time	235.7	х	361.6	
у[50.0	Z	25.0	
roll (phi)	-0.0	pitch (theta)	0.0	
yaw (psi)	179.9	x dot	-1.0	
y dot [0.0	z dot	0.0	
phi dot	0.0	theta dot	-0.0	
psi dot	0.0	roll rate	0.0	
pitch rate	-0.0	yaw rate	0.0	
fwd veloc	1.0	lat veloc	0.0	
vert veloc	0.0	remaining Power	98.8	
paddle speed	1.0	bow plane	-0.0	
stern plane	0.0	rudder	-0.0	
port prop	288.8	stbd prop	288.8	
bow vert thruster	0.0	stn vert thruster	0.0	
bow lat thruster	0.0	stn lat thruster	0.0	
dop stw u	1.0	dop stw v	0.0	
dop sog u	1.0	dop sog v	0.0	
dop alt	0.0	st725 bearing	-49.5	
st725 range	0.0	st725 strength	0.0	
st1K bearing	49.5	st1K range	0.0	
st1K strength	0.0			

POSTGRADUATE SCHOOL 2D planner: script missions

2D planner: script missions

Can edit
missions by
adding or
removing
script
commands

POSTGRADUATE 2D planner: agenda missions

OpenMap GIS display

- OpenMap http://www.openmap.org
 - Geographic Information System (GIS)
 - Open source Java, bundled
 - Building layers for areas of interest
 - Geographic coordinates throughout
 - Will synchronize with mission definitions, X3D

Secure sftp download of large GIS datasets

Reality: real-time mission support

- Monitor mission progress
- Task-level control using same mission vocabulary
- Visualize and supervise operations
 - caveat, again: work in progress
- Integrate acoustic and RF communications
- Chat for distributed collaboration among participants, both human and robotic

Real-time mission data import/export

- Export
 - Mission commands that are already rehearsed
 - Convert to specific dialect particular to that robot
- Import
 - Mission telemetry recording detailed track data
 - Data products: imagery, video, mission log, etc.

Record mission metadata for archives

- Support operator keeping detailed notes, kept in context when conducting mission
- Prompt for full details as appropriate
- Archive notes for later review and followup

- Future work
 - Automatic tests to confirm configuration, control
 - Automate pre-underway checklists

Serial port communications

Configurable to different devices, ports

JavaHelp support

NPS AUV Workbench: Sponsor Support and Partner Projects

The following projects have supported, utilized and extended the AUV Workbench source code.

- AUV Mission Planning Project sponsored by Naval Oceanography Office and Naval Research Lab, Stennis Space Center
- Autonomous Vehicle Control Language (AVCL) design by Navy Modeling & Simulation Office (NMSO)
- Sonar visualization using high-performance computational models by <u>Naval Air Systems Command (NAVAIR)</u> together with <u>Sonalysts</u>
- <u>CARUSO project</u> by <u>Naval Undersea Warfare Center (NUWC)</u> and the <u>Ocean State Techology Consortium</u> (<u>OSTC</u>), Newport RI
- Vehicle control configuration design by <u>Singapore DSO National Laboratories</u> and <u>National University of Singapore</u> (<u>NUS</u>)

The following partners are collaborating with NPS on AUVW capabilities and projects.

 Environmental data queries using Web Services by <u>Fleet Numerical Meteorological Oceanographic Center</u> (<u>FNMOC</u>)

Interested in starting up a new project or sponsoring a graduate student? NPS is a research university. We can likely work with our many partners to help with your challenge. Please contact <u>Don Brutzman</u> with questions or proposals.

Snapshot support

Replay: post-mission support

- Automatic archiving of mission to server
 - Being built into workbench simplify user tasks
- Integration and compression of all relevant data into single compressed XML file
 - Metadata for mission
 - Many pieces: ordered mission, commands, telemetry, coefficients, contacts, etc. etc.
 - Autonomous Vehicle Control Language (AVCL) is Ph.D. work by CDR Duane Davis

Geographic track plot

Geographic X Y plot. Robot coordinate system: world coordinates for vehicle position. +X (North) and +Y (East) data in meters.

x y z versus t plot

X Y Z telemetry time-series plot. Robot coordinate system: world coordinates for vehicle position. +X (North), +Y (East) and +Z (down) data in meters versus mission time.

----- Propeller values port starboard all

POSTGRADUATE phi theta psi versus t plot

Rotational angles (phi theta psi) time-series plot. Rotational angles (phi theta psi) measured about world-coordinate axes (+X+Y+Z) respectively. Units are degrees/second versus mission time. Positive values rotate according to the right-hand rule.

Physical modeling

- Control algorithms and 6 degree-of-freedom (6DOF) hydrodynamics response
- Sonar propagation, attenuation
- Collision detection
 - Direct vehicle contact and sensor contact
 - Separate use of same X3D graphics models
- Visualization greatly aids understanding
 - provides good "forcing function" for integration

Wave modeling

- Triple sinusoid Pierson Moskowitz equations provide good emulation of variable sea state
 - Well understood example model
 - Many other variations exist, could substitute
- Real-time modeling of underwater vehicle response when broached
 - Split hull into sections
 - Compute each one as linear approximation
 - Buoyancy components add to overall response

Group development support

- Open standards throughout
- Open source Java for software
- All data structured as XML
- Website https://savage.nps.edu/AuvWorkbench
- XMSF Bugtracker
- Email list with hypermail archive
- Online autoinstallers

NPS Autonomous Unmanned Vehicle (AUV) Workbench

Information

- · Flyer, poster, and latest slidesets · Presentations, papers, theses, dissertations
- Autonomous Vehicle Command Language (AVCL)
- · SAVAGE Modeling and Analysis Language (SMAL)

Tutorial (abstract and slides) presented at Unmanned Untethered Submersibles Technology (UUST) Symposium, 19-22 August 2007, Durham New Hampshire

Installation and open-source software development

🤎 NPS Autonomous Unmanned Vehicle (AUV) Workbench - Mozilla Firefox

- Autoinstall software
- · Mailing list and mailing list archive
- · XMSF Issue Tracker for bug reports and feature requests
- · Version control: SVN source archive with SVN Web view of source files
- AUV Workbench AutoUpdate Control for manual control of automatic nightly server-side software updates (available to system administrators only)

Example missions

- AUV Workbench Robot Telemetry: Savage Archives
- AUV Workbench Robot Telemetry: SavageDefense Archives (password protected)

Example Auto Generated Post-mission Report

· Generic Auto Generated Post-mission Report

Related resources

- Extensible 3D (X3D) Graphics (also X3D Help, X3D-Edit, X3D examples, X3D Earth and X3dGraphics.com)
- · Scenario Authoring and Visualization for Advanced Graphical Environments (Savage) and Savage Defense X3D model archives

G - Google

Environmental data inputs

- Constant vectors for ocean current, wind
- NetCDF environmental data developed by NAVO/NRL Stennis supercomputer models
- FNMOC web-services query to live/projected meteorological sources using Joint Metoc Brokering Language
 - Worked briefly but was a moving target...
- Other inputs welcome

<u>Summary</u>

- Significant collected AUV capabilities
 - Support rehearsal, reality, replay
- Integrated as tactical application
- Open standards: XMSF, X3D, chat, etc.
- Open source + commercial compatibility
- Improved messaging, net-centric exemplar
- We hope to add all possible vehicles!
 - Collaboration and questions welcome

Acronyms

- 3D: Three dimensional
- 6DOF: Six degrees of freedom (x y z, roll pitch yaw)
- <u>AUV</u>: Autonomous Underwater Vehicle
- <u>AVCL</u>: Autonomous Vehicle Control Language
- CD: Compact Disk
- <u>CUP</u>: Common Undersea Picture
- <u>FEC</u>: Forward Error Correction

- FNMOC: U.S. Navy Fleet Numerical Meteorological & Oceanographic Center
- HPCC: High-Performance Computing Center
- <u>Java</u>: programming language
- METOC: meteorological and oceanographic (data)
- NAVAIR: U.S. Naval Air Systems Command

<u>Acronyms</u>

- NPS: Naval Postgraduate School, Monterey California
- P_D: Probability of detection
- RF: radio frequency
- RRA: Recursive Ray Acoustics Sonar Propagation
- SBIR: Small Business Innovative Research
- TDA: Tactical Decision Aid
- <u>USW</u>: Undersea Warfare

- X3D: Extensible 3D
 Graphics Specification
- XML: Extensible Markup Language
- XMSF: Extensible Modeling and Simulation Framework
- XSBC: XML Schema-based Binary Compression
- XTC: XML Tactical Chat

Contact

Don Brutzman

brutzman@nps.edu http://web.nps.navy.mil/~brutzman

Code USW/Br, Naval Postgraduate School Monterey California 93943-5000 USA 1.831.656.2149 voice 1.831.656.7599 fax