Web-based 3D Graphics Rendering of Dynamic Deformation Structures in Large-Scale Distributed Simulations Donald P. Brutzman Naval Postgraduate School Monterey California USA November 30, 2003 http://web.nps.navy.mil/~brutzman/DeformableSurfacesTechnicalReport2003November.pdf This report examines multiple technologies, constraints and strategies for Web-based 3D rendering of dynamic deformation structures in military simulations. The motivating goal is to show how all manner of 3D objects can be modeled, animated and manipulated, in a scalable and repeatable fashion, in support of distributed large-scale virtual environments (LSVEs). Such capabilities have broad training, analysis and operational value. Web-based 3D graphics are the critical technology needed for rendering the dynamic deformation of structures in distributed military simulations. This is a broad subject area with many specific requirements. The Extensible 3D (X3D) Graphics standard undergoing ISO review includes nearly the full range of capabilities needed. This approach differs from other technical possibilities through adherence to an open standard, royalty-free licensing for any use, availability of both commercial and open-source implementations, provision for alternate software application programming interfaces (APIs), multiple extensibility mechanisms, and a growing content base of compatible 3D models. Of particular importance is that X3D supports encoding of scenes using the Extensible Markup Language (XML), which ensures that files are self-validating and capable of reliable processing. Since XML is well suited to both Web interchange and database interoperability, X3D using XML encodings provides new capabilities for large-scale production. Advanced X3D capabilities include geospatial referencing, humanoid animation, shared-state distribution using the IEEE Distributed Interactive Simulation (DIS) protocol, building prototypes, server-produced custom terrain, image overlay of photographic, cartographic or pseudocolor images, integrated physics for entity motion and sensor projection, a variety of user-interaction techniques, and scalable loading/unloading of interrelated scenes. The multiple challenges involved in modeling deformable surfaces cannot each be solved in isolation. 3D graphics, underlying model representations and networked distribution at first appear to be different topics. Nevertheless, solutions for each area must simultaneously consider constraints and capabilities of other areas. Compatible integration within a Web-based framework allows effective use of deformable surfaces for diverse military simulations. This report presents results emphasizing standards-based interoperability, scalable architectures, demonstrated examples and directions for future work.