
NAVAL POSTGRADUATE SCHOOL 
Monterey, California USA 

 

 
 
 

Approved for public release; distribution is unlimited. 
 

Prepared for: Naval Postgraduate School, Monterey, CA and  
Ecole Nationale d'Ingénieurs de Tarbes, Tarbes Cedex, France 

 
3D MODEL OF THE ARIES  

AUTONOMOUS UNDERWATER VEHICLE (AUV),  
JAVADOC FOR DYNAMICS, SOFTWARE, 

AUV MISSION-VISUALIZATION WORKBENCH, AND 
AUV DYNAMICS CONTROL WORKBENCH IN MATLAB 

 
by 
 

Adrien Gruneisen and Yann Henriet 
 

22 October 2002 

NPS-ME-02-005 



[This page intentionally left blank]



NAVAL POSTGRADUATE SCHOOL 
Monterey, California 93943-5000 

 
 
RADM David R. Ellison, USN       Richard Elster 
Superintendent                                                                                                 Provost 
 
This report was prepared for Naval Postgraduate School, Monterey, CA 93943 
and Ecole Nationale d'Ingénieurs de Tarbes, 65016 Tarbes Cedex, France 
 
and funded in cooperation with NPS Center for AUV Research, Naval Postgraduate School, 
Monterey, California, USA 
 
Reproduction of all or part of this report is authorized. 
 
 
This report was prepared by: 
 
 
 
 
________________________                                    __________________________ 
Adrien GRUNEISEN                                                 Yann HENRIET 
Ecole Nationale d'Ingénieurs de Tarbes  Ecole Nationale d'Ingénieurs de Tarbes 
 
 
Reviewed by:                                                              Released by: 
 
 
 
________________________                                    ______________________________ 
Associate Professor Don Brutzman   D. W. Netzer 
Undersea Warfare Research Group    Associate Provost and 

Dean of Research 
 
________________________                                                 
Professor Anthony J. Healey 
Department of Mechanical Engineering 
 
 



 
  

 

REPORT DOCUMENTATION PAGE 

 

Form approved  
 

OMB No 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, and to 
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 
1.  AGENCY USE ONLY (Leave blank) 
 

2.  REPORT DATE 
21 October 2002 

3.  REPORT TYPE AND DATES COVERED 
     Technical Memorandum,  February – July 2002         

4. TITLE AND SUBTITLE 
3D Model of the Aries Autonomous Underwater Vehicle (AUV), JavaDoc for 
Dynamics, Software, AUV Mission-Visualization, and AUV Dynamics Control 
Workbench in Matlab 

5. FUNDING 
      Office of Naval Research (ONR) 
       N0001401AF00002 

6.  AUTHORS  
Adrien Gruneisen and Yann Henriet 

 

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES  
 
Naval Postgraduate School Center for AUV Research, 800 Dyer Road, 
Monterey, CA 93943 and  
Ecole Nationale d'Ingénieurs de Tarbes, 47 Avenue d'Azereix BP 1629, 65016 
Tarbes Cedex 
 

8.  PERFORMING  ORGANIZATION 
     REPORT NUMBER 
          
     NPS-ME-02-005 

9. SPONSORING/MONITORING AGENCY NAMEAND ADDRESS  
 

Naval Postgraduate School, Monterey, CA 93943-5000 
      

10.  SPONSORING/MONITORING 
       AGENCY REPORT NUMBER 

11.  SUPPLEMENTARY NOTES  
 
 
12a.  DISTRIBUTION/AVAILABILITY STATEMENT 
 Approved for public release; distribution is unlimited 

12b.  DISTRIBUTION CODE 
                            A 

13.  ABSTRACT 
A 3D Model of the research vehicle ARIES Autonomous Underwater vehicle (AUV) was developed to 
provide more realistic visual simulation capabilities using commercial 3D authoring tools. The model was 
then translated into Virtual Reality Modeling Language/X3D format for web portability and interactivity. 
Java code was developed and JavaDoc for Dynamics documentation was written to support the ongoing 
software development efforts at the Center for AUV Research. A preliminary integration of various tools 
used in mission planning and visualization, called the AUV Mission Visualization Workbench was 
developed to aid in mission planning and visualization. The workbench is a first pass on an integrated 
development environment and graphical user interface for multiple vehicle platforms, using dynamics 
algorithms and mission control planning tools. This work also included the integration of the AUV 
Dynamics Control Workbench in MATLAB.  
 

14. SUBJECT TERMS  
Autonomous Underwater Vehicle (AUV), Control Algorithms, Virtual Reality Modeling 
Language (VRML), Extensible 3D Graphics (X3D) 

 
 

15.  NUMBER OF  
PAGES      
            75 

 16.  PRICE CODE 
 

17. SECURITY 
CLASSIFICATION 
       OF REPORT 

UNCLASSIFIED 

18. SECURITY 
CLASSIFICATION 
       OF THIS PAGE 

UNCLASSIFIED 

19.  SECURITY 
CLASSIFICATION 
        OF ABSTRACT 

UNCLASSIFIED 

20.  LIMITATION OF 
      ABSTRACT    
 

UL 
NSN 7540-01-280-5800                        Standard Form 298 (Rev. 2-89) 
                          Prescribed by ANSI Std 239-18 



 i 

3D MODEL OF THE ARIES 
AUTONOMOUS UNDERWATER VEHICLE (AUV), 

JAVADOC FOR DYNAMICS, SOFTWARE 
AUV MISSION-VISUALIZATION WORKBENCH, AND 

AUV DYNAMICS CONTROL WORKBENCH IN MATLAB 
 

 
ABSTRACT 

 
 Operating an Autonomous Underwater Vehicle (AUV) in real-world conditions is 

time consuming, expensive and prone to failure, because of the complexity of the tasks and of 

the machinery associated with AUV operations. A virtual world offers many advantages for 

testing and development of an AUV. The challenges are fewer and the barriers to practicing in a 

virtual world are less strenuous than in the hazardous undersea environment. Yet, it is still 

difficult work. 

This technical report details one approach to modeling AUV operations in a virtual 

world. A 3D Model of the research vehicle ARIES AUV was developed to provide more realistic 

visual simulation capabilities using commercial 3D authoring tools. The model was then 

translated into Virtual Reality Modeling Language/X3D format for web portability and 

interactivity. Java code was developed and JavaDoc for Dynamics documentation was written to 

support the ongoing software development efforts at the Center for AUV Research. A 

preliminary integration of various tools used in mission planning and visualization, called the 

AUV Mission Visualization Workbench was developed to aid in mission planning and 

visualization. The workbench is a first pass on an integrated development environment and 

graphical user interface for multiple vehicle platforms, using dynamics algorithms and mission 

control planning tools. This work also included the integration of the AUV Dynamics Control 

Workbench in MATLAB. 



 ii

3D MODEL OF THE ARIES 
AUTONOMOUS UNDERWATER VEHICLE (AUV), 

JAVADOC FOR DYNAMICS, SOFTWARE 
AUV MISSION-VISUALIZATION WORKBENCH, AND 

AUV DYNAMICS CONTROL WORKBENCH IN MATLAB 
 

TABLE OF CONTENTS 
 

I. INTRODUCTION..............................................................................................................1 
A.  BACKGROUND ....................................................................................................1 
B. MOTIVATION ......................................................................................................1 
C.  ORGANIZATION OF THE REPORT................................................................2 

II. NPS OVERVIEW ..............................................................................................................3 
A.  INTRODUCTION..................................................................................................3 

1. AUV ARIES Presentation.........................................................................4 
a. ARIES Hardware ............................................................................4 
b. Computer Hardware Architecture..................................................6 
c. Computer Software Architecture....................................................6 

2. ADS Capabilities........................................................................................8 

III. 3D MODELING OF THE ARIES AUV........................................................................10 
A.  INTRODUCTION................................................................................................10 

1. Motivation.................................................................................................10 
2. Software and Programming Language ..................................................10 

a. The VRML Language ...................................................................10 
b.  X3DScene Graph Editing Tool .....................................................12 
c. 3D Studio Max ..............................................................................15 

3. 3D Modeling Using 3D Studio Max........................................................18 
a. Design and Realization.................................................................18 

4. Integration Using X3D-Edit ....................................................................22 
a. Organization of the Different Files..............................................22 
b. How to Import the Shapes from 3dsmax ......................................23 
c. Material and Mapping ..................................................................24 
d. The Two Levels of Detail ..............................................................25 
e. Sounds ...........................................................................................27 
f. Animations ....................................................................................27 

IV.  UNDERWATER VEHICLE HYDRODYNAMICS USING JAVA............................29 
A.  INTRODUCTION................................................................................................29 
B. DYNAMICS ALGORITHM DERIVATION AND IMPLEMENTATION ...29 

1. Aim ............................................................................................................29 
2. The Working of the Dynamics Model....................................................29 
3. Hydrodynamics Model Class Hierarchy ................................................30 

C.  EQUATIONS OF MOTION ...............................................................................33 
1. World Coordinates and Body Coordinate .............................................33 
2. Force Moments and Acceleration...........................................................34 



 iii 

3. Velocities and Posture ..............................................................................34 
4. The Form of the Equation of Motion.....................................................35 
5. Variables and Coefficients ......................................................................36 
6. Hydrodynamics Model Algorithm..........................................................37 
7. JavaDoc.....................................................................................................38 

a. Introduction...................................................................................38 
b. JavaDoc Commenting Convention...............................................38 
c. Other JavaDoc Conventions.........................................................39 
d. Why JavaDoc?...............................................................................41 

D. CONCLUSIONS ..................................................................................................42 

V.  AUV MISSION VISUALIZATION WORKBENCH...................................................43 
A.  INTRODUCTION................................................................................................43 
B. REQUIREMENTS...............................................................................................43 

1. The New Interface for the Simulation....................................................44 
a. Why a New Interface?...................................................................44 
b. Presentation of the New Interface................................................45 

2. Details of the Different Parts of the Software ........................................47 
a. The Mission Script Editor.............................................................47 
b. Execution and Dynamics Process ................................................47 
c. The Xj3D Viewer for X3D ............................................................50 

C.  HOW TO INSTALL AND RUN THE PROGRAM .........................................50 
D. CONCLUSIONS AND FUTURE WORK.........................................................51 

VI. AUV DYNAMICS CONTROL WORKBENCH ON MATLAB.................................52 
A.  THE MATLAB DYNAMICS MODEL .............................................................52 

1. Overview...................................................................................................52 
2. The SimuLink Model...............................................................................53 
3. Integration of the Equations and Variables ..........................................55 
4. Test Results ...............................................................................................55 
5. Interfacing to the Virtual World ............................................................55 
6. The Graphical Interface ..........................................................................56 

a. GUI Development Environment...................................................56 
b. MATLAB Tools.............................................................................57 
c. The AUV Dynamics Control Workbench Functionality.............58 
d. Description of the AUV Dynamics Control Workbench..............59 

7. Modifications ............................................................................................60 
a. AUV ARIES...................................................................................60 
b. REMUS..........................................................................................60 

B. CONCLUSIONS AND FUTURE WORK.........................................................61 

VII. CONCLUSIONS AND RECOMMENDATIONS.........................................................62 
A.  CONCLUSIONS ..................................................................................................62 
B. RECOMMENDATIONS FOR FUTURE WORK............................................62 

LIST OF REFERENCES ............................................................................................................64 

INITIAL DISTRIBUTION LIST...............................................................................................66 



 iv 

Table of Figures 
 
 

Figure 1. Autonomous Underwater Vehicle Acoustic Radio Interactive Exploratory Server. .....3 
Figure 2. Hardware Components of the NPS ARIES. ..................................................................4 
Figure 3. Dual Computer System Unit. .........................................................................................6 
Figure 4. Relational Behavior Model [Brutzman 94]....................................................................7 
Figure 5. The Old ARIES AUV Model.........................................................................................8 
Figure 6. New Aries Model. ..........................................................................................................9 
Figure 7. Exemplar Scene in Netscape 4.77, Using Pivoron Browser Plugin from Nexternet. 

(Above). VRML Encoding (Left). ...............................................................................12 
Figure 8. X3D-Edit Interface, Annotated. ...................................................................................15 
Figure 9. 3D Studio Max Interface Screen-Shot. ........................................................................16 
Figure 10. Sphere with Normals and without Normals .................................................................17 
Figure 11. IndexedFaceSet Definition Using VRML Syntax. ......................................................17 
Figure 12. Screen-Shot of the Different Elements of the AUV On 3D Studio Max, Duplicate 

Copy-By-Reference Elements Are Not Shown. ..........................................................18 
Figure 13. Optimization of the Fin Guard. ....................................................................................19 
Figure 14. Before and After Using the MeshSmooth Function. ...................................................19 
Figure 15. Before Optimization, 159 Points and 260 Meshes (Left). After Optimization, 71 

Points and 108 Meshes (Right). ...................................................................................20 
Figure 16. Meshes and Geometry of Aries Model. .......................................................................22 
Figure 17. The Different Folders and Files of the Project.............................................................23 
Figure 18. X3D-Edit Import Function. ..........................................................................................23 
Figure 19. Shape, Appearance and Material Nodes. .....................................................................24 
Figure 20. Texture Maps Used for the AUV. ................................................................................24 
Figure 21. Applying the Textures..................................................................................................25 
Figure 22. High and Low Level Of Detail (LOD).........................................................................26 
Figure 23. Sound Node is Dependent on Distance to Viewer Location........................................27 
Figure 24. Animations ...................................................................................................................27 
Figure 25. Main Models in the Combined AUV Underwater Virtual World. ..............................30 
Figure 26. Telemetry State Vector Elements. ...............................................................................30 
Figure 27. Hierarchy Class for AUV Hydrodynamic Response. ..................................................32 
Figure 28. Coordinate System. ......................................................................................................33 
Figure 29. Comments in JavaDoc. ................................................................................................38 
Figure 30. Javadoc Results. ...........................................................................................................39 
Figure 31. Javadoc Markup for Tags.............................................................................................40 
Figure 32. HTML Version. ............................................................................................................40 
Figure 33. HTML Codes in JavaDoc Source. ...............................................................................40 
Figure 34. JavaDoc Results. ..........................................................................................................41 
Figure 35. Interrelationships in the AUV Workbench. .................................................................44 
Figure 36. Interface of the AUV Mission Visualization Workbench. ...........................................46 
Figure 37. The Mission Script Editor Panel. .................................................................................47 
Figure 38. Execution and Dynamics Panel. ...................................................................................48 
Figure 39. Options Panel. ..............................................................................................................49 



 v 

Figure 40. Xj3D Viewer for X3D. .................................................................................................50 
Figure 41. Future Work: Example of a Customized Layout. ........................................................51 
Figure 42. AUV Phoenix................................................................................................................53 
Figure 43. SimuLink Model. .........................................................................................................54 
Figure 44. Models Layout Editor. .................................................................................................56 
Figure 45. Property Inspector. .......................................................................................................57 
Figure 46. Callback Function Arguments .....................................................................................58 
Figure 47. Main Windows. ............................................................................................................59 
Figure 48. Remus AUV [WHOI]. .................................................................................................60 



 1

I. INTRODUCTION 

A. BACKGROUND 

Autonomous Underwater Vehicles (AUVs) are designed to independently accomplish 

complex tasks either in deep oceans or shallow water. A meticulous design must be followed 

during conception of the AUV, since little or no communication with distant human supervisors 

is possible during regular operations. Thus, the underwater domain imposes many limitations and 

restrictions on hardware. 

The Center for AUV Research at the Naval Postgraduate School (NPS) has been working 

for 14 years on several AUV prototypes, with each improvement showing further success. The 

latest NPS AUV is called Acoustic Radio Interactive Exploratory Server (ARIES) and is fully 

operational. Currently ARIES operates for short missions in Monterey Bay, California USA. 

During operations, data sets gathered from the ARIES include track positions, 

bathymetry (for each sample point), sonar and video data, contact coordinates, image, etc. 

All of this data helps to reconstruct what happened during a mission. Nevertheless those 

information streams are merely raw data and it is very difficult to observe AUV operations. Thus 

an underwater virtual world is needed to comprehensively model all AUV missions and all 

characteristics of the real world where the AUV moves around. 

B. MOTIVATION 

A virtual world using 3D graphics for the ARIES provides an excellent design alternative 

to observe and understand its operations. Because of its high level of realism, a virtual world has 

the potential to completely change how people observe and analyze post-mission data. 

The Virtual Reality Modeling Language (VRML), specially created to design virtual 

worlds, is a good choice for designing such tasks. Not only suited to 3D virtual worlds, VRML is 

also a good way to share information and make these experiments available via the World Wide 

Web. Extensible 3D (X3D) improvements to VRML provide further benefits. 

For our purposes, the counterpoint to use the virtual world 3D is the “Real- time Model.” 

Real-time in this context is defined by the requirement that a vehicle maneuvering, within the 



 2

virtual world, describe essentially the same path and postures as the vehicle maneuvering in the 

real world. This requires that the robot hardware and software receive the same responsiveness 

from the virtual world as from the real world. To allow the same behavior of the robot, whether 

operating in the real world or the virtual world, two software languages have been used: Java and 

MATLAB. 

C. ORGANIZATION OF THE REPORT 

This report describes a number of tools created in order to support AUV software 

development and mission visualization. It is organized into seven chapters: 

• Chapter I is the present introduction. 

• Chapter II is a NPS AUV overview and a presentation of related works to the 
ARIES. 

• Chapter III explains the modeling of the AUV using 3D Studio Max and X3D-
Edit. 

• Chapter IV is about the dynamics program which is able to simulate the expected 
AUV response in the real environment. 

• Chapter V describes the new interface for launching the simulation built using 
JAVA for robot control-software development. 

• Chapter VI is about the MATLAB dynamics program and the new interface. 

• Chapter VII provides conclusions and recommendations for future work. 

Appendices and associated research products comprise the final section of this report. 



 3

II. NPS OVERVIEW 

A. INTRODUCTION 

Research on Autonomous Underwater Vehicles (AUVs) has been an ongoing project at 

the Naval Postgraduate School (NPS) in Monterey, California USA since 1987. Several AUVs 

followed one another, increasing operational capabilities and becoming more robust as they 

become more sophisticated in terms of hardware and computer software. 

 

Figure 1. Autonomous Underwater Vehicle Acoustic Radio Interactive Exploratory 
Server. 

 



 4

The latest NPS vehicle is named Acoustic Radio Interactive Exploratory Server (ARIES). 

This vehicle is a student-research test bed for shallow-water minefield-mapping missions, 

operating in the literal ocean. Currently the vehicle operates regularly in Monterey Bay. 

The following section is a general overview of the NPS AUV. It provides a general 

description of the hardware and the software architecture of the vehicle. 

 
1. AUV ARIES Presentation 

a. ARIES Hardware 

 
Figure 2. Hardware Components of the NPS ARIES. 



 5

 

Dimensions and Endurance: The Vehicle weighs 225 Kg and measures 

approximately 3 m long wide and 0.25 m high. The hull is constructed of 6.35 mm thick type 

6061 aluminum and forms the main pressure vessel that house all electronics, computers and 

batteries. A flooded fiberglass nose is used to house the external sensors, key-controlled power 

“on/off” switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is 

powered by six 12-volt rechargeable lead-acid batteries. Vehicle endurance is approximately 4 

hours at top speed, with 20 hours endurance under “hotel load” only. The ARIES is primarily 

designed for shallow-water operations and can operate safely down to depths of 30 meters. 

Propulsion and Motion Control Systems: Main propulsion is achieved using 

twin ½ Hp electric drive thrusters located at the stern. During normal submerged flight, heading 

and depth are controlled using upper bow and stern rudders plus a set of bow planes and stern 

planes. Since the control fins are ineffective during very slow (or zero) forward-speed 

maneuvers, vertical and lateral cross-body thrusters are used to control surge, sway, heave, pitch 

and yaw motions. 

Navigation Sensors: The sensor suite used for navigations includes a 1200 kHz 

Instruments (RDI) Navigator Doppler Velocimeter Log (DVL) that also contains a TCM2 

magnetic compass. This instrument measures the vehicle ground speed, altitude, and magnetic 

heading. Angular rates and accelerations are measured using a Systron Donner 3-axis Motion 

pak IMU. While surfaced, Global Positioning System (GPS) inputs is provided by a carrier-

phase differential GPS (DGPS CP) system, available during surfaced operation to correct any 

navigational errors accumulated during the submerged phases of a mission. 

Sonar and Video Sensors: Tritech ST725 scanning sonar and an ST1000 

profiling sonar is used for obstacle avoidance and target acquisition/reacquisition. The sonar 

heads can scan continuously through 360 degree of rotation or swept through a predefined 

angular sector. A fixed-focus wide-angle video camera is located in the nose and is connected to 

a DVC recorder. The computer is interfaced to the recorder which controls on/off and start/stop 

record functions. While recording images, data for date, time, vehicle position, depth and altitude 

is superimposed on the video image. 



 6

Vehicle/Operator Communications: Radio modems are used for high-

bandwidth command, control and system monitoring while the vehicle is deployed and surfaced. 

While submerged, an acoustic modem is used for low-bandwidth communications. In the 

laboratory environment, a 10 Mbps thin-wire Ethernet connection is used for software 

development and mission data upload and download. 

b. Computer Hardware Architecture 

The dual-computer system unit measures approximately 28 x 20 x 20 cm. It 

consists of two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM, four serial 

ports, a network adapter and a 2.5 GB hard drive each. Two DC/DC voltage converters for 

powering both computer systems and peripherals are integrated into the computer package. The 

entire computer system draws a nominal 48 Watts. Both systems use TCP/IP sockets over thin-

wire Ethernet for inter-processor communications as well as connections to an external LAN. 

The sensor data-collection computer is designated QNXT. The second is named QNXE and 

executes the various auto-pilots for servo-level control. 

 
 

 
Figure 3. Dual Computer System Unit. 

 
c. Computer Software Architecture 



 7

The ARIES AUV has used a tri- level software architecture called the Rational 

Behavior Model (RBM). RBM divides responsibilities into areas of open-ended strategic 

planning, soft-real-time tactical analysis and hard-real-time execution- level control. The RBM 

architecture has been created as a model of a manned submarine operational structure. The 

correspondence between the three levels and a submarine crew is shown in Figure 4 below. 

 

 
 

Figure 4. Relational Behavior Model [Brutzman 94]. 

 

This figure represents the tri- level software hierarchy with level emphasis and 

submarine equivalent listed. A functional summary of each level follows. 

The Execution Level assures the interface between hardware and software. Its 

tasks are to maintain the physical and operational stability of the vehicle, to control the 

individual devices and to provide data to the tactical level. These tasks are currently performed 

by on-board host QNXS computer. 

The Tactical Level provides a software level that interfaces with both the 

Execution Level and the Strategic Level. Its chores are to give to the Strategic level indications 

of vehicle state, completed tasks and execution level commands. The Tactical level selects the 



 8

tasks needed to reach the goal imposed by the Strategic level. It operates in terms of discrete 

events. 

The Strategic Level controls the completion of the mission goals. The mission 

specifications are inside this level. 

2. ADS Capabilities 

ADS is the acronym for AUV Data Server system. It is a software system developed at 

NPS and used to gather and translate AUV data into a format, suitable for input into the Mine 

Warfare Environmental Decision Aids Library (MEDAL) system. This format is used by the US 

Navy to evaluate asset positions, mine- like contacts, snipped images of those contacts identified 

as mines and bathymetry maps. Thus, data gathered by ADS from the AUV are track positions, 

bathymetry at each point, sonar and data video processing, image files for contact as well as their 

locations. Data are converted into Message Transfer Format (MTF) message formats and 

imported into MEDAL. 

 
Figure 5. The Old ARIES AUV Model. 



 9

 
Figure 6. New Aries Model. 



 10

III. 3D MODELING OF THE ARIES AUV  

A. INTRODUCTION 

This chapter describes how the new virtual ARIES AUV model is created using the 

Virtual Modeling Language (VRML) and 3D Studio Max. The first part presents the VRML 

language, X3D-Edit and 3D Studio Max. The second part explains the modeling and the X3D 

file. 

1. Motivation 

The current VRML model of the ARIES AUV was built by Don Brutzman. This model 

has the advantage of being very light and thus bearable by the majority of the computers. 

However, the computers are now more and more powerful, so the creation of a more realistic 

model is now possible and makes the virtual simulation more realistic as well. 

2. Software and Programming Language 

a. The VRML Language 

(1) VRML History 

The Virtual Reality Modeling Language (VRML) was an idea conceived 

by Mark Perce and Tony Parisi, initially presented at the First International Conference of the 

World Wide Web in 1994. VRML was intended to be a platform independent language for web-

based 3D graphics, and implemented on the internet. 

The language needed to be able to place objects in 3D space, as well as 

include attributes such as shape, color and size. Since VRML was to be used in the Internet, all 

platforms needed to be able to support it: UNIX workstations, personal computers, etc. 

The Silicon Graphics Open Inventor format was the initial basis for the 

VRML file format and after numerous improvements VRML was widely accepted. VRML 1.0 

was introduced in 1995. In 1996, VRML 2.0 became the new VRML specification. In 1997, the 

revised language was certified by the International Organization for Standardization (ISO) as 

ISO/IEC and was commonly referred to as VRML 97 [reference – VRML 97 Specification].  

(2) Presentation 

Using VRML, an author can create 3D virtual worlds for display on the 

web. While VRML 1.0 had static worlds, which is to say that it allowed for no arbitrary 



 11

behaviors for objects in the VRML world, VRML 97 provides for dynamic behaviors by adding 

Java and JavaScript support, as well as sound and animation. 

The feature of VRML 97 is that it enables to create dynamic worlds and an 

interactive environment on the Internet, including the ability to: 

• animate objects in the VRML world 

• play sounds and movies 

• allow users to interact with VRML worlds 

• control and enhance worlds with scripts 

Since authors are able to create effective 3D virtual worlds, VRML is an 

appropriate language for moderately complex global scene renderings. Nevertheless VRML is 

not a Computer Aided Design (CAD) tool. Creating complex shapes with level of detail implies 

using a professional CAD tool like a mechanical engineering program or professional 3D-design 

software. Nevertheless VRML is a good way for scientist, hobbyist and application developers to 

produce 3D models for use over the World Wide Web. 

(3) Browsers and VRML 

To present sophisticated multimedia, such as 3D VRML worlds, web 

browsers (like Microsoft Internet Explorer or Netscape Navigator) need help from compatible 

applications, called “plug- ins” that specifically understand content of different file formats. They 

enable users to view non-HTML information within the Web browser window. 

Many VRML plug- ins are available as 3D browsers, including: 

• Nexternet: Pivoron player  http://www.nexternet.com (now defunct) 

• Cosmosoftware: Cosmoplayer http://ca.com/cosmo  

• Parallel Graphics: Cortona player http://www.parallelgraphics.com/cortona 

• Blaxxun: Contact browser  http://www.blaxxun.com 

• Xj3D – Open source browser http://www.web3d.org/TaskGroups/source/Xj3D.html 

VRML remains the preferred language to build non-proprietary virtual 

worlds and to present such work across the internet. 

(4) Creating a Simple Object with VRML 

VRML scenes can be created using a simple text editor. More developed 

VRML editors like X3D-Edit or Parallel Graphics VrmlPad are highly recommended (especially 

for the novice). 



 12

 

Figure 7. Exemplar Scene in Netscape 4.77, Using Pivoron Browser Plugin from 
Nexternet. (Above). VRML Encoding (Left). 

 
b.  X3DScene Graph Editing Tool  

(1) Overview 

X3D-Edit is an Extensible 3D (X3D) graphics file editor that uses the 

X3D Document Type Definition (DTD) in combination with Sun’s Java, IBM’s Xeena XML 

editor building application and an editor profile configuration file. X3D-Edit enables simple 

error- free editing, authoring and validation of X3D or VRML scene-graph files. The author of 

this useful XML editor is Don Brutzman from the Naval Postgraduate School (NPS). 

[http://www.web3d.org/TaskGroups/x3d/translation/README.X3D-Edit.html] 

X3D-Edit is constructed using Xeena, IBM’s tool-building application, 

and uses Xeena interface. Xeena is a valid XML editor and a generic Java application for editing 

valid XML documents derived from any valid DTD. The editor takes as input a given DTD and 

#VRML V2.0 utf8 
Group { 

children [ 
Viewpoint { 

description “initial view” 
position 6 -1 0 
orientation 0 1 0 1.57 

} 
Shape { 

geometry Sphere { 
radius 1 

} 
appearance Appearance { 

texture ImageTexture { url “earth.png” } 
} 

} 
Transformation { 

translation 0 -2 1.25 
rotation 0 1 0 1.57 
children [ 

Shape { 
Geometry Text { 

String [ “Hello” “world!” ] 
} 
appearance Appearance { 

material Material { 
diffuseColor 0.1 0.5 1 

} 
} 

} 
] 

} 
] 

} 

 



 13

automatically builds a palette containing the elements defined in the DTD. Users can create, edit 

and expand any document derived from that DTD, by using a visual tree-directed paradigm. 

Xeena features include: 

• Intuitive viewing and editing of X3D documents in a tree control view. 

• Editing multiple X3D documents. 

• XML source viewer. 

• Direct translation from X3D to VRML97 syntax using XML Styles Sheet 
X3dToVrml97.xsl 

• Direct translation from X3D to documentation Html. 

• Restrictions about adding and editing of features according to the DTD, and 
validity checking of produced documents. 

• Easy customization of display. 

• Element position and attribute value checking 

• Context-sensitive tooltips in multiple languages (English, French, German, 
Spanish) 

Therefore, all those features are automatically included in X3D-Edit. 

Since X3D-Edit is based on Xeena, users also need to install the Java Development Kit (JDK) or 

Java Runtime Environment (JRE), as Xeena is built on top of Java technology. 

(2) X3D-Edit Interface 

X3D-Edit has a user- friendly interface which is intuitive to use. An action 

toolbar allows editing, saving and validating XML files. A toolbar palette exposes various node 

profiles required to build a VRML scene. 

Every time an object (node, field, comment, etc.) is selected and inserted 

by the author, it is inserted as directed using a visual tree-directed paradigm into the active 

document inside the work area. A corresponding attribute array appears in the edit area for the 

selected node. This is the place where field values are inserted. A message area points out 

whether there are syntax errors when validating the constructed scene. 

It is very easy to build a scene with X3D-Edit because it is possible to 

copy, paste and move a node or group of nodes inside the view tree. When you insert a node, 

only children nodes and fields are available in the sidebar palette so as to avoid fatal syntax 



 14

errors. Working with a tree paradigm even allows users who do not know the VRML syntax to 

build scenes. 

Once the X3D file is created, it can be converted into a VRML file. X3D-

Edit can make this conversion and launch the VRML browser (Internet Explorer or Netscape) 

automatically to see the result of the VRML scene. It can also convert XML files into HTML 

files that are easily readable and can be put on the Internet as scene documentation. 

X3D-Edit also includes tooltips that provides users with the fundamental 

basis of VRML syntax as well as node and field definition, type, etc. in a context sensitive way. 

One ongoing objective for X3D-Edit is to further internationalize context-sensitive node and 

field tooltips by translating them in many languages (in the profile configuration). Currently, 

English, French, German and Spanish language tooltips are available. 

 
 



 15

 
Figure 8. X3D-Edit Interface, Annotated. 

 

c. 3D Studio Max 

(1) Overview 

3D Studio Max (3dsmax) is used to build and animate 3D graphics scenes. 

It is one of the leaders in this kind of software. It is frequently used for 3D graphics in general, 

animation movies (like “Shrek” or “Final Fantasy”), architecture or video games. This software 

is developed by Discreet: http://www.discreet.com 

This popular software allows users to: 

VRML & HTML 
converters (XSL) 

Message 
Area 

Edit 
Area 

Tree 
View 

Action 
Toolbar 

Sidebar 
Palette 



 16

• Design 3D objects in two different modes: mesh or nurbs. There are several 
functions which allow creation and modification of the 3D objects. 

• Make very realistic 3D scenes using the powerful material editor and the different 
environmental tools like lights, shadow, special effects, etc… 

• Animate or create fixed scene. 

• Render the 3D scenes in different formats like: jpeg, gif, avi, mpeg, etc… 

• Import or export scenes in several kind of formats like: 3ds, dwg, dxf, iges, 
vrml97, etc… 

• Extensive additional functionality is provided. 

 

 
 

Figure 9. 3D Studio Max Interface Screen-Shot. 

 
(2) Why Use 3dsmax Software? 

X3D-Edit and VRML do not support direct modeling of complex shapes; 

only simple shapes are available like Box, Sphere, Cone, etc. To create complex shapes (like the 

different elements of the submarine), VRML uses different lists to build one by one the 

components of a 3D IndexedFaceSet. 

• one list of points coordinates 



 17

• one list of points indexes 

• one list of normals coordinates 

• one list of normals indexes 

 
The list of Normals gives a smoothly shaded appearance to the shape: 

 

Figure 10. Sphere with Normals and without Normals 

 
For example, to create a simple mesh, VRML97 needs: 

 

 

 

 

 

 

 

 

 

 

Figure 11. IndexedFaceSet Definition Using VRML Syntax. 

 

1 

2 3 

N 

geometry IndexedFaceSet { 
coordIndex [ 1, 2, 3 ] 
normalIndex [ 1, 1, 1 ] 
coord Coordinate { 

point [ x1 y1 z1, x2 y2 z2, x3 
y3 z3 ] 
} 
normal Normal { 

vector [ xN yN zN ] 
} 

With normals Without normals 



 18

Thus, CAD software (like 3dsmax) is needed to make these lists of 

coordinates and indexes. 3dsmax has got many functions to build mesh objects and a VRML97 

exporter which can make these lists. So this software corresponds perfectly for the modeling of 

the robot submarine. 

3. 3D Modeling Using 3D Studio Max 

a. Design and Realization 

This chapter describes the different functions used to create and optimize the 

meshes of the shapes of the AUV. 

Some duplicate 3D elements are modeled just once (fins and propellers) because 

X3D-Edit and VRML allows duplication of shapes using the same definitions (same lists) which 

make the VRML file smaller. 

 
 

Figure 12. Screen-Shot of the Different Elements of the AUV On 3D Studio Max, 
Duplicate Copy-By-Reference Elements Are Not Shown. 

 
(1) Modeling Functions 

To modelize the different parts of the submarine, standard functions were 

used like: 



 19

• Extrude : which make a solid from a 2D profile. 

• Revolution: which make a 3D object by “rotating” 2D splines. 

• Surface : which build a surface from 2 or 4 splines. 

• Boolean operations : add or subtract two objects. 

After the modeling of the submarine, the difficult task of optimization is 

necessary. This additional work is necessary because the standard functions of 3dsmax generate 

forms with a too high level of detail (too many points and meshes) for efficient real-time 

rendering. 

(2) MeshEdit Function 

This function allows users to work directly on the mesh of the shape. 

Every point and face can be created, deleted, moved, and rotated. Since some functions like 

optimize do not always work very well in automatic modes, the user can modify manually the 

mesh of the 3D object to correctly apply optimization according to the function of the object. 

 
Figure 13. Optimization of the Fin Guard. 

 
(3) MeshSmooth Function 

This function allows users to generate the list of normals to smooth the 

surface of the shapes. 

 
Figure 14. Before and After Using the MeshSmooth Function. 



 20

 
(4) Optimize Function 

This function allows users to optimize a shape, this tool will delete 

automatically all the meshes which are not visible, simplify and delete superfluous points and 

meshes without greatly altering the shape. 

 

Figure 15. Before Optimization, 159 Points and 260 Meshes (Left). After Optimization, 
71 Points and 108 Meshes (Right). 

 

(5) The Two Levels of Detail 

In order to optimize and to make the VRML file lighter in calculation, the 

majority of the elements are designed with two levels of detail. When the user is located close to 

an element, this element will appear automatically in high level of detail. On the other hand, 

when the user is located far from an element, an item will appear in a low level of detail. Thus, 

this method reduces the time of calculation for the processor and makes the navigation faster. 

Multiple levels of detail are also possible. However, this method makes the VRML file bigger 

because each element is defined multiple times. We will see how to integrate these levels of 

detail when importing the elements in X3D-Edit. 

The table below shows the list of the elements using two levels of detail: 

 
 
 
 
 
 
 
 



 21

High Level Of Detail Low Level Of Detail 

Screen Shot Points Faces Screen Shot Points Faces 

 

32 54 

 

16 26 

 

160 262 

 

72 108 

 

159 260 

 

71 108 

 

146 276 

 

58 110 

 

59 110 

 

39 74 

 

24 44 

 

12 20 

 

160 290 

 

80 144 

 

94 184 

 

60 116 



 22

 

76 130 

 

28 39 

 

24 24 

 

12 12 

 

28 56 

 

16 32 

 

41 78 

 

18 30 

 

25 36 

 

13 18 

 

25 36 

 

12 16 

 

72 100 

 

36 52 

Figure 16. Meshes and Geometry of Aries Model. 

 
4. Integration Using X3D-Edit 

a. Organization of the Different Files 

In order to increase the legibility of the principal file (AUV.x3d), all elements of 

the robot submarine were created in different files (they are stored in the X3D folder and VRML 



 23

files created in VRMLs folder) and are connected to the main file by the relative URL links 

(thus, it is necessary to not move them). This method offers the advantages of being able to 

modify an element without modify the main file or, for example, being able to create another 

AUV by using only necessary elements. 

There are two others folders: Maps and Wavs which respectively contain the 

textures and the sounds used by the main file AUV.x3d. 

 

Figure 17. The Different Folders and Files of the Project. 

 
b. How to Import the Shapes from 3dsmax 

X3D-Edit has got VRML97 import function which can build the XML schema for 

X3D-Edit from a VRML file. After, we can copy from this new X3D file the parts which interest 

us: for example the different lists of coordinates and indexes and paste them in others files. 

 
Figure 18. X3D-Edit Import Function. 

 
 
 



 24

c. Material and Mapping 

(1) Material 

The nodes Appearance and Material were used to color the elements of the 

submarine using diffuseColor attribute in RGB values. 

 

 

Figure 19. Shape, Appearance and Material Nodes. 

 
(2) Mapping 

To make the scene more realistic, some materials were put on the 

submarine. All these maps were design using Photoshop. The used format is Portable Network 

Graphics (png) because this format allows making transparency effects (for example, here, all 

the white parts of the maps are transparent; only the colored parts are visible). 

 

Figure 20. Texture Maps Used for the AUV. 

 
There are several techniques to apply textures on a 3D object in a VRML, 

such as applying the texture to the polygons but this technique is very complicated when you 

need to put different textures are needed on the same element. In our case, all the surfaces to be 

textured are planes, thus we will use a very simple technique. To make the illusion that the 

texture is mapped on the 3D object, we will create a simple face with a texture mapped on it. 

This simple face will be positioned very close to the 3D object. As the white is transparent in the 

PNG file format, we will have the visual impression that the texture is applied directly on the 

surface and not on another object. 

 
 
 



 25

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Applying the Textures. 

 
d. The Two Levels of Detail 

Objects can have two definitions: one in high level of detail and the other in low 

level of detail (3.3.2 The two levels of detail). X3D-Edit allows user to define from which 

distance, between the object and the camera, the object appear in high or low level of detail. 

0.1 mm 

Simple face with a 
PNG texture on it 

Planar 
3D 

objects 



 26

 
 

 
 

 

Figure 22. High and Low Level Of Detail (LOD) 

 
 
 
 
 
 

Viewpoint 
Range 

HIGH 
RESOLUTION 

MODEL 

LOW 
RESOLUTION 

MODEL 

Camera 



 27

e. Sounds 

 
 
 
 
 
 
 
 
 
 
 

Figure 23. Sound Node is Dependent on Distance to Viewer Location 

 

X3D allows users to place sound source in the scene. Users have to define the 

location and sound limit. The volume changes according to the position of the camera and makes 

stereo effects. 

f. Animations 

 

 

Figure 24. Animations  

 

To animate (translate, rotate, etc.) 3D objects, several nodes need to be included 

in the X3D file: 

• TouchSensor: detects mouse interactions with a shape and sends events. 

SOUND 
NO 

SOUND 



 28

• TimeSensor: specify a timer for the animation. 

• ROUTE: define the steps of the animation. 

• Script: allows creation of EcmaScript (also known as JavaScript) or Java to make 
advanced animations. 



 29

IV. UNDERWATER VEHICLE HYDRODYNAMICS USING JAVA 

A. INTRODUCTION 

This chapter is provides an overview of the Software in charge of realized the 

Hydrodynamics part for an underwater vehicle and in the second time it will explain the 

documentation of this programs realized using JavaDoc.  

B. DYNAMICS ALGORITHM DERIVATION AND IMPLEMENTATION 

1. Aim 

As explained in Chapter II, the Real-time Modeling of the AUV environment is provided 

by three main parts named: Execution, Dynamics and 3D Visualization. This chapter describes 

efforts in hydrodynamics modeling. 

The Dynamics program is a substitute for the natural environment’s effect on the robot 

submarine, and provides an estimation of the AUV’s behavior in the water. This is a very 

important and difficult part in the Real-time Simulation in a Virtual World. 

Many of the effects of the surrounding environment on a robot vehicle are unique to the 

underwater domain. Thus, understanding these forces is a key requirement in the development 

and control of vehicle behavior. This work originally appeared in A Virtual World for an 

Autonomous Underwater Vehicle [Brutzman, 1992]. 

2. The Working of the Dynamics Model 

In the scope of prior related research many of the hydrodynamics models were 

investigated for underwater vehicle development, but no single, general vehicle hydrodynamics 

model was available that proved to be computationally suitable for predicting real-time 

underwater robot dynamics behavior in a virtual world. 

The current hydrodynamics model is based on physical laws and sufficiently accurate to 

allow the study and development of robust control laws that work under a wide range of potential 

vehicle motion. Figure 25 explains how the dynamics interact with the others programs. The 

Execution Program transmits to the dynamics a variety of programs different data composed as 

the Telemetry vector element shown in Figure 26. 

 



 30

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 25. Main Models in the Combined AUV Underwater Virtual World. 

Figure 26. Telemetry State Vector Elements. 

 
3. Hydrodynamics Model Class Hierarchy 

The dynamics program was designed to incorporate the principles of object-oriented 

programming so that it can be easily adapted to other underwater vehicles. As shown in Figure 

27, several classes have been created to compute the 3D posture, which is common to all 

vehicles and can be represented by Euler angles. A class rigid body is subject to Kinematics 

Time 
 
X    Y      Z   PHI  THETA PSI 
U    V      W   P  Q  R 
X_dot    Y_dot     Z_dot  PHI_dot PHI_dot PSI_dot 
 
 
delta_rudder    delta_planes 
propeller_port_rpm   propeller_stbd_rpm 
thruster_bow_vertical   thrusters_stern_vertical 
thrusters_bow_lateral   thrusters_stern_lateral 
 
ST1000_range   ST1000_Bearing ST1000_Strength 
ST725_range   ST725_Bearing ST725_Strength 

Browser 

3D Scene 

DYNAMICS 
Browser 
displaying  
3D Scene 

EXECUTION 

Unicast 
Sockets 

DIS PDU 

Multicast Socket 



 31

equations of motion, which combine velocities with postures and update the posture by 

integrating the velocities. 

There also exists a class for DIS-networked rigid body, which communicates with other 

entities via DIS port communication and using the Protocol Data Unit (PDU). This dynamics 

program creating for a real-time networked virtual world combines the Dynamics equation of 

motion and the network. 

The other class as UUV Model is composed by the different hydrodynamics coefficients 

used for the simulation (see 4-2-5). 

The boxes in Figure 27 are composed of 4 different compartment boxes. The first 

compartment is class name. The second compartment indicates member data fields, the third 

compartment indicates object methods which provide an immediate response, and the fourth 

compartment includes methods which are time-consuming. This diagramming approach 

simplifies the presentation but clarifies the hierarchy design. 



 32

 
Figure 27. Hierarchy Class for AUV Hydrodynamic Response. 



 33

C. EQUATIONS OF MOTION 

1. World Coordinates and Body Coordinate 

In order to realize the simulation of the submarine in an underwater environment, the 

equations of motion must first be defined in the body coordinate system as shown in Figure 28. 

 



























=

r
q
p
w
v
u

V Body][
   



































=

•

•

•

•

•

•

ψ

θ

φ

z

y

x

V
World

][

  (4.1,4.2) 

 









= −1][

0
0
][][

T
R T

Body
V  [R] and [T] = World Rotation Matrix  (4.3) 

 

 

 
 

Figure 28. Coordinate System. 

 
 



 34

2. Force Moments and Acceleration 

Force and accelerations for the six state variables of posture can be grouped together in 

the matrix form of Newton’s Second Law: 

][][ MV
dt
d

F =   (4.4) 

 

Translational forces are applied at the CG and Moments are similarly applied about the 

CG origin of the vehicle body. In the aim of finding the mathematical relation between the 

unknowns of the vehicle state vector and the dynamics equations of motion, this law will be use 

in the body reference. 

)][]]([[][ Bodybodybody VVMF ×+=
•

ω  (4.5) 
 

Within the body coordinate frame the mass matrix [M] is unchanging. Differentiation of 

the velocity matrix [V] reveals effects that are due to the body coordinate frame rotating with 

angular velocity ω  with respect to the world coordinate frame. By multiplied, the equation 

above, by the matrix 1][ −M  we have: 

BodyBodyBody VFMV ][][][][ 1 ×−×= −
•

ω   (4.6) 
 

Then we have all the accelerations grouped together on the left-hand side and all the 

terms on the right-hand sides of the dynamics equations are known at each time step. 

3. Velocities and Posture  

Knowing the value of the body acceleration allows prediction of the new body velocities 

through integration. 

)0(
0

)()0( ][][][ tbody

tto

t
tbodyttbody VdtVV += ∫

+ •

+

δ

δ  (4.7) 

 

Integration of the new body velocities to determine posture is preceded by a 

transformation from the body-fixed coordinate frame to the world coordinate frame. 



 35

( ) dtVdtV
worldbody

tt

t
tbody

tt

t
ttworld

→

++

+ ∫∫ =
δδ

δ

0

0
)(

0

0
)0( ][][  (4.8) 

 

The final integration to determine posture is therefore: 

)0()(

0

0

0

0
)()0( ][][][][ tworldtworld

tt

t

tt

t
tworldttworld PosturedtscurrentOceandtVPosture +⋅+= ∫∫

++

+

δδ

δ  (4.9) 

 
4. The Form of the Equation of Motion 

In many other references, the equations of motion for a submerged vehicle are not usually 

written in the form suggested above. These other derivations have been presented and structured 

in such a way that similar time-dependent acceleration-related terms are presented on both sides 

of the dynamics equations of motion. Because related body acceleration terms are not grouped 

together, direct time integration of both sides of the equation is not mathematically valid. 

This critical point explains why the equations used in the real-time hydrodynamics model 

have mass-related, inertia-related and acceleration body terms on the left hand side and all the 

forces like lift, drag, buoyancy, weight, propulsion, etc on the right-hand side. Separation of 

variables is an essential prerequisite for restructuring the equation of motion. 

 

[ ]

)0(

1

)0(

t

t

motion
of
equations
Dynamics

M

r

q

p

w

v

u



















=



































−

•

•

•

•

•

•

 (4.10) 

 

Given that the origin of the body-fixed coordinate system is located at the center of 

buoyancy, the equation of motion for a rigid body in six degrees of freedom defined in terms of 

body fixed coordinates: 



 36

∑=++−++−+−
•••

extggg Xqprzrpqyrqxwqvrum )]()()([ 22  (4.11) 
 

This equation represents translational motion on the x axis. The term on the right side 

explain the external forces apply on the model on the x axis which are equal at: 

 

controldragliftchydrostatiext FFFFF +++=∑   (4.12) 
 

So for the X axis: 

 

proprrvrqqwq
uuuHSext XrrXvrXqqXwqXuXuuXXX +++++++=

•

•∑  (4.13) 

 

After replacing the right member of the first equation and simplify it to have the 

acceleration on the left side and the other variables on the right side, the equation of motion is 

written as follows:  

 

propgggrrvr

gqqqqwquuHSgg
u

XprmzpqmyrmxXvrmX

qmxXwqmXwqmXuuXXrmyqmzuXm

+−−++++

++−+−++=−+−
•••

•

2

2

)()(

)()()()(

  (4.14) 

Numerous different coefficients are used to predict all the external Force and moments 

(see Chapter 4-2-5). Finally, the body frame velocity matrix can now be updated by numerical 

integration, such as Euler Methods. 

 

)()()0( ][][][ totott VVtV +•=
•

+ δδ   (4.15) 
 

5. Variables and Coefficients 

With the variety of different hydrodynamics, models, studies have produced numerous 

huge sets of several coefficient libraries. This is a serious problem for newcomers to 

hydrodynamics literature, since both names and definitions of key terms may vary. So it’s 

important to describe coefficients using a well-defined nomenclature, which in the AUV case 

corresponds to the standard reference work on ship control (Lewis 88). 



 37

For example 

 

proprrvrqqwq
uuuHSext XrrXvrXqqXwqXuXuuXXX +++++++=

•

•∑  (4.16) 

 
• XHS explain the combined between weight and buoyancy. 

• Xuu explain the Cross-flow Drag 

• 
•
uX explain the Added Mass  

• wqX , qqX , vrX  , rrX  explain the added Mass Cross-term 

• propX  the propeller Thrust 

6. Hydrodynamics Model Algorithm 

Now that the different parts of the general underwater vehicle real-time hydrodynamics 

model have been presented, the following section explains the algorithm used: 

• Estimate and invert mass matrix [M] 

• Initialize hydrodynamics model variables for posture [P], velocities [V] and time 
rates of change of velocities. 

Loop until robot is done: 

• Receive updated state vector from robot, including ordered effectors values for 
rudders, planes, propeller, thrusters and elapsed time. 

• Calculate new values for time rate of change of body velocities, using the current 
vehicle state vector and equation of motion. 

• Update velocity [V]. 

• Perform transformation to [V] coordinates. 

• Update posture [P]using newly-calculated velocities [V] world ocean current 
estimate and previous posture.  

• Return newly-calculated hydrodynamics values to robot via telemetry update of 
the robot state vector. Most calculated velocities and accelerations correspond to 
real-world values provided by inertial, flow and pressure sensor. 

• Wait for next updated state robot vector,  

• shutdown when model is no longer required by robot.  

 

 



 38

 

7. JavaDoc 

a. Introduction 

The Java (SDK) comes with a number of development tools, including: 

• A compiler, which translates source code into Java byte code. 

• The JVM (Java Virtual Machine), which runs Java Programs once they have been 
compiled. 

• A tool called JavaDoc, which reads Java source code and creates HTML files that 
document the corresponding source files. 

This section explains how JavaDoc works and the production of JavaDoc for 

dynamics program. 

b. JavaDoc Commenting Convention 

When the Java compiler translates source code (java files) into binary byte code 

(class files), it ignores all comments. In other words, any text in the source code that is delimited 

by a “/**” at the beginning and a “*/” at the end, or lines beginning with “//” are interpreted as  

as a JavaDoc comment. 

Comments in Java can be categorized as either programmer’s comments or 

JavaDoc comments. The former comment on internal matters of implementation and are 

designed to aid other programmers who might, for example, be maintaining the code in the 

future. There are two kinds of programmer’s comments: 

• single- line comments that are delimited by “//” 

• multiline comments that are delimited by “/*” and “*/”. 

For example: 

 
 
 
 
 
 

 

 

Figure 29. Comments in JavaDoc. 

/** 
  * File : AUVglobal.java is a JavaDoc comment 
  */ 
public class AUVglobals 
{ 
// not a JavaDoc comment since there is no 
asterix //followed by a slant 
} 



 39

JavaDoc extends this rule comparably by enabling special documentation 

comments to appear within text sections bracketed by “/**” and “*/”. 

JavaDoc comments document the functionality of a class or its API and are 

converted into HTML files to be read by people who do not necessarily need to read the source 

code of the HTML elements. Besides the delimiters, JavaDoc comments can employ HTML tags 

to identify different components that need to be organized within the documentation. 

For example, the result of  

 

Figure 29 will appear in JavaDoc HTML file as in Figure 30:  

 
 
 
 
 
 
 
 
 
 
 

Figure 30. Javadoc Results. 

c. Other JavaDoc Conventions 

Additional commenting conventions can be used by JavaDoc; such as “@return”, “@author”, 
“@version” which generate documentation appropriate for the comments. For example, in the 
code listing in  

Figure 31, the “@param” tag is used to document the parameter amount which 

is part of the withdraw method’s signature. The HTML generated by this JavaDoc is shown in 

Figure 32. 

 
 
 
 
 
 
 
 

CLASS AUVGLOBALS 
 java.lang.Object 
 | 
 +--AUVglobals 

public class AUVglobals  
extends java.lang.Object 
 
File: AUVglobals.java is a JavaDoc comment 

/** 
  * Subtracts the specified amount from the 
  * customer's account balance. 
  * @param amount the amount to withdraw 
  */ 
 
public void withdraw(Dollar amount) { 
// code left out in this example 



 40

Figure 31. Javadoc Markup for Tags. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32. HTML Version. 

 

Another possibility for generating JavaDoc is to write directly in the HTML 

format within the JavaDoc comments, will appear directly in the output. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 33. HTML Codes in JavaDoc Source. 

 

<A NAME="withdraw(Dollar)"></A> 
<H3>withdraw</H3> 
<PRE> 
public void <B>withdraw</B>(<A 
HREF="Dollar.html">Dollar</A>&nbsp;amount) 
</PRE> 
<DL> 
<DD>Subtracts the specified amount from the 
customer's account balance. 
<DD> 
<DL> 
<DT><B>Parameters:</B><DD><CODE>amount</CODE> 
- the amount to withdraw</DL> 
</DD> 
</DL> 
<HR> 

Author: Don Brutzman (web.nps.navy.mil/~brutzman)  
Revised: 6 March 1977 - converted to Java by Kevin Byrne and Jeff 
Schmidt 20 February 1998 - Updated by Kevin Byrne  

AUV telemetry state vector Note these are global for direct access by 
any world model. Refer to individual world models for details. Data 
hiding within a private object is not necessary since all values are 
transient and superseded by actual state when it occurs. Additionally, 
half of the state variables are provided only by the AUV 
microprocessor socket, and the other half are provided by respective 
world models. Thus global variables in this design are not vulnerable to 
corruption and side effects, making data hiding unnecessary.  

 Source Code: AUVglobals.java 



 41

Figure 34. JavaDoc Results. 
 

d. Why JavaDoc? 

A software vendor does not usually sell or include the source code with the 

executable binary files. The JavaDoc comments document the functionality of a class or its 

members. Once the source code has been compiled, all that remains that is humanly readable is 

the API and the functionality which the API provides access to. The binary code is packaged in a 

JAR file and is sold to the customer along with the API documentation. 

For example, a software vendor may design and implement a class library that 

may be used by a third party to develop customer relationship management software (CRM). 

There would be classes that represent customers, contact information, service tickets, and so on. 

To use these classes to develop a CRM application, each of the classes would be documented 

using JavaDoc comments. After the source code was processed by JavaDoc, HTML documents 

would be generated and shipped with the binary code. 

Technical writers who are going to document APIs write JavaDoc comments in 

the source code and then use the JavaDoc tool to turn those comments into HTML files. The 

/** 
*<dt> Author: Don Brutzman (<A 
HREF="http://web.nps.navy.mil/~brutzman"><i>web.nps.navy.mi
l/~brutzman</i></A>) 
*<p> 
*<dt>Revised:        6 March 1977 - converted to Java by 
Kevin Byrne and Jeff Schmidt  
*                 20 February 1998 - Updated by Kevin Byrne
*<p> 
*<dt> AUV telemetry state vector 
*          <dd>Note these are global for direct access by 
any world model.  Refer to      
*          <dd>individual world models for details.  Data 
hiding within a private object   
*          <dd>are not vulnerable to corruption and side 
effects, making data hiding       
*          <dd>unnecessary.                                                               
*<dt><b>Source Code:</b> 
*<dd><a href="AUVglobals.java">AUVglobals.java</a> 
*/ 
 



 42

source code that implements the functionality of a class and the documentation that explains that 

functionality exist in one place: the Java source file. This has become so popular, that JavaDoc-

like tools have been developed for C++ APIs, also. 

Practice has shown that inclusion of JavaDoc comments is fundamentally 

important for long-term maintenance of a source base. 

 

D. CONCLUSIONS 

Comments have been added to the different programs of the ‘real-time dynamics model’ 

using the tool JavaDoc. These comments allow a better interpretation and information for the 

future user by describing the different part of the programs, the functions, and the variables and 

coefficients interacting inside the Dynamics model. 

The other utility of the comments is to inform the user, like a standard documentation, 

about different subject as the date, the author, the version and also the aim of the programs. By 

giving this information the modification and comprehension of the ‘real-time dynamics model’ 

will be easier. 

 



 43

V. AUV MISSION VISUALIZATION WORKBENCH 

A. INTRODUCTION 

This chapter describes how the AUV simulation works, and the new Java integrated 

development environment for simulation and development of the AUV source code 

B. REQUIREMENTS 

This graphic explains the different steps of the simulation and the different windows 

(Text editor, DOS windows and Netscape Navigator) used to calculate and display the 

simulation. 

 

 

 

 



 44

 

Figure 35. Interrelationships in the AUV Workbench. 

 
1. The New Interface for the Simulation 

a. Why a New Interface? 

Execution Program 
 
Input:  
- Mission Script File. 
- Hostname. 
- Dynamics repsonses 

 
Output: - Coordinates, angles, speeds 

Dynamics Program 
 
Input: - Execution outputs. 
 - AUV Dynamics coefficients. 
 
Output: - Coordinates and angles after 

apply dynamics coefficients. 

Mission Script File 
 
This text file describes the different 
commands for the mission. 

X3D / VRML player 
 
3D visual simulation of the Mission 
Script. 



 45

This software will be use by the scripts developers and by the thesis students to 

test and edit their simulations. It will also allow for the pre-visualization of in-water missions. 

The new interface was designed to: 

• Simplify and make more easily the utilization of the simulation. 

• Have all the windows in one main window. 

• Allow scripts developers to edit and test their scripts more quickly. 

• Allow AUV software developers to evaluate execution and dynamics 
improvements. 

 

b. Presentation of the New Interface 

 

Figure 36 shows the newly produced integrated development interface. 



 46

 

Figure 36. Interface of the AUV Mission Visualization Workbench. 

Xj3D Viewer 
for X3D 

Mission Script 
Editor 

Execution 
Process 
Output 

Dynamics 
Process 
Output 



 47

2. Details of the Different Parts of the Software  

a. The Mission Script Editor 

 

 

Figure 37. The Mission Script Editor Panel. 

 

The Mission Script Editor is a text editor with which users can create, open or 

save missions. 

When a mission is opened, the software automatically creates a backup of this file 

(with the name of the mission and the date). So, the user can reopen this file in case of a 

modification error. 

The mission opened will be the mission used for the simulation. 

b. Execution and Dynamics Process 

(1) Execution & Dynamics Panel 



 48

 
Figure 38. Execution and Dynamics Panel. 

 
• Start & Stop: launch or stop the simulation of the Mission File in the Mission 

Editor. 

• RealTime : this toggle button allows users to display the simulation in real-time or 
not. 

• Clear: this button allows users to clear the execution and dynamics text area. 

• Save: this button allows users to save the execution and dynamics text area in two 
different files:  

• MissionName_Execution_Date 

• MissionName_Dynamics_Date 



 49

(2) Options Panel 

 

 
 
 

Figure 39. Options Panel. 

 
• Select Execution Program: there are two different programs for the execution 

level (one in C and the other in Java), so the users can select which one to use. 

• Select AUV Model: there are four different AUVs which each have different 
dynamics coefficients, so the users can select which coefficients they want to use 
for the simulation. 

 
(3) How Does the Simulation Process Work? 

The Java language allows developers to execute others programs from a 

Java program. Here, there are two different Threads (one for Execution and one for Dynamics) 

which have launch the programs, catch the output streams, and print them in the two text areas in 

the main window. 

 
 
 
 
 
 
 
 
 

AUV Mini-
Sub 

Submarine AUV 



 50

c. The Xj3D Viewer for X3D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 40. Xj3D Viewer for X3D. 

Xj3D uses all the specification of X3D to be able to display VRML file in a 

program using Java3D. 

However, Xj3D is currently under development, so not all of the X3D nodes are 

integrated in Xj3D (Billboard for example); thus, it is necessary for the users to download and 

install the latest version of the Xj3D package to update the Java classes which are used by the 

program. With time, Xj3D is expected to become fully stable, since it is an open-source project. 

C. HOW TO INSTALL AND RUN THE PROGRAM 
To use this software, users need to setup their computer and install some additional Java 

programs and packages used by the program: 

• Download and install Java Runtime on the computer: http://java.sun.com/j2se 

• Download and install Xj3D-full-Mx.exe which will install Java3D and Xj3D Java 
Class on your computer: http://www.web3d.org/TaskGroups/source/Xj3D.html 

Then unzip AMVW_1.0.zip from the report CD into the c:\auv directory. You need to 

have all these files and folders: 

 

Open the 
VRML file  

For text 
editing 

Launches 
X3D-Edit 



 51

• c:\auv\dynamics\ 

• c:\auv\execution\ 

• c:\auv\bin\ 

• c:\auv\AMVW_1.0.bat 

Also recommended are X3D-Edit, the X3D examples, and the SAVAGE model archive. 

To execute the program, double click on AMVW_1.0.bat. 

D. CONCLUSIONS AND FUTURE WORK 

This project has produced a useful tool for AUV mission visualization and software 

development. 

To make the interface more convivial and customizable by different users, future work 

should consider other layouts, make them savable and selectable like the example is Figure 41. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41. Future Work: Example of a Customized Layout.  

Xj3D Viewer for X3D 

Mission  
Editor Execution Dynamics 



 52

VI. AUV DYNAMICS CONTROL WORKBENCH ON MATLAB 

This section describes how the Dynamics Model was realized using MATLAB and the 

SimuLink tool. It further describes the realization of an interface using the tool of Java and 

MATLAB Guide. It builds on significant work originally produced by Olivier Doucy [October 

2000]. 

A. THE MATLAB DYNAMICS MODEL 

1. Overview 

This part of the report focuses on the simulation tool for an AUV such as Phoenix (Figure 

42) that is easily used to assess vehicle systems design and characteristic. This product is based 

on traditional standard tools of AUV developers control-system interfaced with a real-time 3D 

virtual reality representation. 

To provide a simulation environment for AUV design and assessment the software has 

been created using MATLAB and its temporal domain simulation environment SimuLink. This 

is a common software development environment for mechanical engineering. 

The 3D representation has been realized under VRML 97 (Virtual Reality Modeling 

language) (Brutzman) as a networked viewer. The use of open standards for networking (DIS) 

and 3D representation (VRML) always allows for running on different platforms. 

This section explains the existing SimuLink model, interfacing the virtual world, 

additional options, and the graphical interface.  

 



 53

 

Figure 42. AUV Phoenix. 

 
2. The SimuLink Model 

In order to realize a high-resolution dynamics simulation of the AUV with real-time 

response, the physical behavior of the AUV had to be based on the NPS dynamic model (Healey, 

see 4-2). 

This model can be easily generalized to any AUV when the hydrodynamic coefficients 

which appear in the equations of motion have been modified. 

The architecture of the actual dynamic model of the vehicle has been designed using a 

modular approach allowing easy addition and replacement of functionalities (Figure 43). This 

simplification has been achieved through six main modules.  

 



 54

 

Figure 43. SimuLink Model. 

 

Dynamics: This system embeds the dynamic behavior of the AUV. The model is based 

on the model developed at NPS by Anthony Healey and modified by Jeffrey Riedel for station 

keeping in waves. The Dynamics model includes the simulation of the forces applied based on 

environment simulation and control inputs. The output of the dynamic model is the complete 

vehicle dynamic state. Included in the vehicle state are the actuators related states. Inputs include 

actuator commands provided by the control function and relevant output of Environment. 

Environment: This function embeds the description of the environment. Its output is 

contained in Goto Blocks that are needed as inputs by the dynamic model function, the 

measurement function and control function. 

Sensors: Contains the embedded sensors and different level of model can be introduced. 

Control: This function includes the simulation of Control scheme (including estimation) 

applied to the vehicle. For Input the user may use directly the simulated dynamic state or the 

simulated measurement. The choice will depend on the design stage and the design methods 

used. The output will mainly be actuators command or direct efforts if needed by the user.  

Inspector:  this function includes 2D viewers, dynamic displays of the simulation 

relevant variables and simulation results Storage. As a basis the most important variables, based 



 55

on the existence of To/From blocks have their display. The user is free to add needed displays. 

Viewing functions have to be kept in Inspector to avoid loosing clarity of the model in general. 

3D View: Those blocks provide the interface to the 3D real-time virtual world viewer. 

The behavior of the vehicle can be seeing in the 3D virtual world. 

3. Integration of the Equations and Variables 

The Dynamics blocks are the main block of the simulation, in fact all the equation of 

motion are integrate in this part inside function call S-Function. An S-Function is a MATLAB 

tool easy to integrate in the SimuLink model and in this case created in the C language. So 

different sub-programs as sfun_AUV_Hydrodynamics.dll or sfun_BuoyancyEfforts.dll have 

been created and dialogue with the SimuLink model thought different block parameters. All 

these functions are independent, can be use in another model, created on visual-C++ and compile 

with MATLAB as a MEX-File. 

The value variables are type on an M-file as ‘DynamicsParameters.m’ or 

‘EnvironmentParameters.m’ and then integrate in the Workspace when the program is lunch. 

4. Test Results 

Results are shown in the inspector block. Different information about the commands of 

the fins and thrusters, the buoyancy and thruster effort and also the vector of the position and 

velocity of the submarine are shown on different “scope” output plots. 

The other option in this model is the visualization of the submarine in the 3D virtual 

world. This visualization result from a dialogue between the output of the SimuLink model 

sending the entity vector through the m-file ‘sfun_to_ESPDU’ and the “WaveAUV.wrl” file 

which receives the data and then translates the AUV model in the virtual world. 

5. Interfacing to the Virtual World 

A 3D-virtual real-time representation is available for the analysis of the AUV behavior 

and is realized by the networking module. SimuLink integrates the Java version of the DIS 

protocol and sends the ESPDU (Entity State PDU) which includes linear and rotational values 

for posture, velocity and acceleration. So the DIS details the message sent over the network by 

distributed components which describe the dynamic behavior of entities present in the virtual 

world. The model is then “driven” around in the VRML scene. 



 56

6. The Graphical Interface 

a. GUI Development Environment 

The creation of a interface with MATLAB can be realized by different possible 

approaches. In fact MATLAB is able to import a library (or even class objects) coming from 

Java or C. MATLAB also has its own environment to create a interface: GUIDE. This is the 

preferred approach for building native MATLAB interfaces. 

GUIDE, MATLAB’s Graphical User Interface Development Environment 

provides a set of tools for laying out a Graphical Interface. MATLAB includes a Layout Editor 

which is the control panel for GUIDE. The Figure 44 shows the layout Editor.  

 

Figure 44. Models Layout Editor. 

 

Each GUI display object must be programmed to perform the intended action 

when activated by the user of the GUIDE. 



 57

GUIDE generates a set of layout tools as well as an M-File that contains code to 

handle the initialization and launching of the GUI. This M-File provides a framework for the 

implementation of the function callbacks, which execute the functions that the user activates in 

the GUI. 

There are two file that save and launch the GUI: 

• A FIG: file contains a complete description of the GUI figure and of all its 
children, as well as the values of all object properties. 

• An M-file: contain the functions that launch and control the GUI and the 
callbacks. 

b. MATLAB Tools 

The tools are similar to other GUI interface tool, for example, in Java Swing. The 

codes generated are different even if the concept is the same. 

Each component, like the Push Button and Checkboxes or Edit Text, has 

properties that you can set with the property inspector Figure 45. 

 

Figure 45. Property Inspector. 

 



 58

Moreover each component has automatically a Callback sub function in the 

application M-file created. This sub function created will house all the codes that will be activate 

when the component is: 

The syntax of the Callback Function is: 

 
function varargout = objectTag_Callback(h,eventdata,handles,varargin) 

 

The arguments are listed in the following table: 

 

Callback Function Arguments  

 The handle of the object whose callback is executing. 

eventdata Empty, reserved for future use. 

handles A structure containing the handles of all components in the GUI whose fieldnames 
are defined by the object's Tag property. Can also be used to pass data to other 
callback functions or the main program. 

varargin A variable- length list of arguments that you want to pass to the callback function. 

Figure 46. Callback Function Arguments 

This is the main tool used for the realization of a graphical interface on 

MATLAB. 

c. The AUV Dynamics Control Workbench Functionality 

The AUV Dynamics Control Workbench has been created to allow an easier 

utilization of the MATLAB AUV Dynamics model. This interface has been realized with 

MATLAB and Java. The future customer of this interface will be the students and research 

workers who design and evaluate control code and hydrodynamics models. 

Students gain an overview and introduction to AUV dynamics modeling and can 

experiment with the different parameters and coefficients that interact in the dynamics models. 

The research workers will be able to test the Dynamics model, to change it, and 

also to modify the different parameters, evaluate effectiveness and store the results.  

 

 



 59

d. Description of the AUV Dynamics Control Workbench 

 

Figure 47. Main Windows. 

 

The main window shown in Figure 47 contains 5 parts: Menu bar, 3D 

Visualization, Models, Results and Launch Simulation. 

• Menu Bar:  The Menu bar is composed by 5 Menus items the first one call File 
allow to save data resulting from the simulation, to open new data store in the 
pass and to close the programs. The sub-menu control allow the modification of 
the control parameters, The other menu dynamics can be use for modified and 
read all the coefficient interacting in the simulation, the simulation menu is just a 
short cut to the two SimuLink model (if 3d visualization or not) and the help 
menu is an access to an help about the AUV dynamics SimuLink model and 
MATLAB. 

• Models: Models is composed of three push buttons which load the dynamics 
coefficients of the submersible choose in the workspace and then set the 
SimuLink model for the right AUV. 



 60

• 3D Visualization: this option is use to see the evolution of the submersible on 3D 
VRML. The model can be choosing using the popup menu. 

• Results: by using the different popup menu you can see the different results of the 
simulation like the Vehicle States of the submersible (velocity, position, etc.) the 
forces applied on it (wave effort, buoyancy efforts, etc.) 

• Launch Simulation: starts the simulation after having choosen all the different 
options or change the different parameters to lunch the simulation. 

Other Windows accessing from the main windows have been created to allow an 

easier modification, entrance, interpretation of this SimuLink models. 

7. Modifications  

a. AUV ARIES 

The AUV ARIES is the newest submarine in action presented in the introduction, 

it geometry is clothe to the AUV Phoenix which was the one before. The coefficients of this 

submersible have been integrating in the MATLAB dynamics model and the equations of motion 

are the same that used for the AUV Phoenix. The model used for the 3D Visualisation has also 

been added to the existent AUV PHOENIX 3D Visualisation. 

b. REMUS 

The REMUS (Remote Environmental Monitoring Unit) is a low-cost, modular 

vehicle with applications in autonomous docking, long-range oceanographic survey, and 

shallow-waters mine reconnaissance (Figure 48). [WHOI] 

 

 

Figure 48. Remus AUV [WHOI]. 



 61

The REMUS is different from the ARIES Submersible, the attitude of the REMUS 

vehicle is controlled by two horizontal fins, or stern planes, and two vertical fins or rudder, the 

propulsion is realise by only one thrusters and the geometry is different from the other 

Submersible. The integration of this underwater vehicle in the existing SimuLink model have 

been realised using the thesis of Timothy Presto (Verification of a six-degree of freedom 

Simulation Model for the REMUS Autonomous Underwater Vehicle) which store the different 

coefficients and profile that needs to be use for this model. 

After testing the model in simulation, it seems that the behaviour of the  

submersible is not correct. Because of time restraints, the resolution of this problem must be 

deferred as future work. Either invalid coefficients or mismatched nomenclature are the likely 

causes of this failure. 

B. CONCLUSIONS AND FUTURE WORK 

This work was done with the goal of improving the existing model by allowing easier 

utilisation and interpretation of AUV control- law response and hydrodynamics modelling. The 

tool was further extended to include REMUS hydrodynamics. Unfortunately, the REMUS model 

coefficients are unstable, or else the hydrodynamics algorithm has a previously undiscovered 

flaw. Further work is needed to complete this important functionality. 



 62

VII. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

Many of the major challenges in operating an Autonomous Underwater Vehicle are 

solved. Robust, capable systems are being deployed in both experimental and operational 

contexts. But critical failures in control, software and systems still plague even the best AUVs. 

The thrust of the work presented here has been to make a useable, virtual world complete with 

hydrodynamics modelling, actual robotics software and realistic models to demonstrate 

behaviour indicated by the simulation. These pieces and parts have existed separately for many 

years, relative to the age of the technology in general. Coalescing them into a single tool has 

finally been accomplished. 

By no means is this work finished. There are exciting possibilities in every direction: 

improved dynamics simulations, user reconfiguration of the GUI on demand, documentation, full 

integration with MATLAB, and integration of other simulations and models. 

B. RECOMMENDATIONS FOR FUTURE WORK 

As with all technical endeavours, documentation is the key to passing on knowledge and 

continuing the work. The JavaDoc, while valuable, is only a partial solution. A concerted effort 

should be made to complete the documentation to include: User’s Manual: Software Version 

Description Document that details updates, bug fixes and enhancements; Software Developer’s 

Manual; etc. 

It will be beneficial to compare other dynamics models and simulations. Just one 

hydrodynamics model, albeit a good one, has been employed here. Other models would allow 

users to configure the tool to suit a variety of control algorithms and response characteristics. 

The Inspector function of the MATLAB dynamics model allows a view of the different 

forces apply on the submersible. It also demonstrates the behaviour under different specific 

missions and controls, more precisely targeting the different parameters interacting in the 

models. Integrating this MATLAB function into the workbench would have benefit.  

This work stands on the shoulders of giants in the field of autonomous underwater robots. 

It raises the bar of available functionality, so that exciting and interesting work continues. 



 63



 64

LIST OF REFERENCES 

Access from Different Existing Work from the Home Page of Don Brutzman: 
[http://web.nps.navy.mil/~brutzman/] 

Brutzman, Donald P., “A Virtua l World For An Autonomous Underwater Vehicle”, December 
1994, Dissertation, Naval Postgraduate School. 

Doucy ,Olivier, “Manoeuvring and Station-Keeping for an Autonomous Underwater Vehicle”, 
October 2000, Dissertation, NATO Symposium. 

General Documentation about the JavaDoc Documentation Available on Java Tool Home Page: 
[http://java.sun.com/j2se/javadoc] 

Healy, Anthony J., “Dynamics and Control for AUV’s”, May 2002, Presentation, Naval 
Postgraduate School. 

Help for Creating a General Graphical User Interface on MATLAB (GUIDE): 
[http://www.mathworks.com/access/helpdesk/help/techdoc/creating_guis/creating_guis.shtml] 

Help for Using and Calling Java from MATLAB: 
[http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/ch_java.shtml] 

Marco, David B, and Healy, Anthony J., “Current Developments in Underwater Vehicle Control 
and Navigation: The NPS ARIES AUV”, 2001, Dissertation, Naval Postgraduate School. 

Prestero, Timothy, “Verification of a Six Degree of Freedom Simulation Model for the Remus 
Autonomous Underwater Vehicle”, September 2001, Thesis, University of California at Davis. 



 65

 



 66

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Fort Belvoir, Virginia  
  

2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 
 
3. Thierry Vidal 

Ecole Nationale d'Ingénieurs de Tarbes, France 
thierry@enit.fr 
 

4. Didier Leandri 
University of Toulon, France 
leandri@univ-tln.fr 
 

5. Cristina Russo Dos Santos 
University of Toulon, France  
cristina.russo@eurecom.fr 
 

6. Tom Swean 
Office of Naval Research 
SWEANT@onr.navy.mil 
 

7. Jean-Pierre LeGoff 
Société d’Ingénierie, de Recherches et d’Etudes en Hydrodynamique Navale, Nantes, 
France 
mailto:sirenha@sirenha.ec-nantes.fr 
 

8. Olivier Doucy 
Société d’Ingénierie, de Recherches et d’Etudes en Hydrodynamique Navale, Nantes, 
France 
Olivier.Doucy@sirehna.ec-nantes.fr 
 

9. Eric Chaum 
Naval Undersea Warfare Center 
ChaumE@npt.nuwc.navy.mil 
 

10. Ernie Drew 
Sonalyst, Incorporated 

 ewd@sonalysts.com 
 
 



 67

11. Margaret Bailey 
Sonalyst, Incorporated 
bailey_m@sonalysts.com 

 
12. Dr. Don Brutzman 

Naval Postgraduate School 
brutzman@nps.navy.mil 
 

13. Dr. Tony Healey 
Naval Postgraduate School 
healey@nps.navy.mil 
 

14. CDR Bill Marr, USN 
Naval Postgraduate School 
wjmarr@nps.navy.mil 
 

15. Doug Horner 
Naval Postgraduate School 
dphorner@nps.navy.mil 
 

16. Jeffrey Weekley 
Naval Postgraduate School 
jdweekle@monterey.nps.navy.mil 
 

17. Alastair Cormack 
Seabyte, LLC 
alastair.cormack@seebyte.com 
 
 

 
 


