NPS-ME-02-005

NAVAL POSTGRADUATE SCHOOL
Monterey, California USA

3D MODEL OF THE ARIES
AUTONOMOUS UNDERWATER VEHICLE (AUV),
JAVADOC FOR DYNAMICS, SOFTWARE,
AUV MISSION-VISUALIZATION WORKBENCH, AND
AUV DYNAMICS CONTROL WORKBENCH IN MATLAB

by

Adrien Gruneisen and Y ann Henriet

22 October 2002

Approved for public release; distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, CA and
Ecole Nationae d'Ingénieurs de Tarbes, Tarbes Cedex, France

[This page intentionally left blank]

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison, USN
Superintendent

Richard Elster
Provost

This report was prepared for Naval Postgraduate School, Monterey, CA 93943
and Ecole Nationale d'Ingénieurs de Tarbes, 65016 Tarbes Cedex, France

and funded in cooperation with NPS Center for AUV Research, Naval Postgraduate School,

Monterey, California, USA

Reproductionof all or part of this report is authorized.

This report was prepared by:

Adrien GRUNEISEN
Ecole Nationale d'Ingénieurs de Tarbes

Reviewed by:

Associate Professor Don Brutzman
Undersea Warfare Research Group

Professor Anthony J. Healey
Department of Mechanical Engineering

Yann HENRIET
Ecole Nationae d'Ingénieurs de Tarbes

Released by:

D. W. Netzer
Associate Provost and
Dean of Research

Form approved
OMB No 0704-0188

REPORT DOCUMENTATION PAGE

Publicreporting burden for thiscollection of information isestimated to average 1 hour per response, including thetimefor reviewinginstructions,

sear ching existing data sour ces, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding thisburden estimate or any other aspect of this collection of information, including suggestionsfor reducing thisburden, to Washington
Headquarters Services, Directoratefor information Operationsand Reports, 1215 Jeffer son Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to
the Office of Management and Budget, Paper work Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leaveblank) [2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

21 October 2002 Technical Memorandum, February — July 2002
4. TITLE AND SUBTITLE 5. FUNDING
3D Model of the Aries Autonomous Underwater Vehicle (AUV), JavaDoc for Office of Naval Research (ONR)
Dynamics, Software, AUV Mission-Visualization, and AUV Dynamics Control NO0001401AF00002
Workbench in Matlab
6. AUTHORS
Adrien Gruneisen and Y ann Henriet
7. PERFORMING ORGANIZATION NAMESAND ADDRESSES 8. PERFORMING ORGANIZATION

REPORT NUMBER
Naval Postgraduate School Center for AUV Research, 800 Dyer Road,
Monterey, CA 93943 and NPS-M E-02-005
Ecole Nationale d'Ingénieurs de Tarbes, 47 Avenue d'Azereix BP 1629, 65016
Tarbes Cedex

9. SPONSORING/MONITORING AGENCY NAMEAND ADDRESS 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Naval Postgraduate School, Monterey, CA 93943-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited A
13. ABSTRACT

A 3D Modé of the research vehicle ARIES Autonomous Underwater vehicle (AUV) was developed to
provide more realistic visual smulation capabilities using commercial 3D authoring tools. The model was
then trandated into Virtual Reality Modeling Language/X3D format for web portability and interactivity.
Java code was devel oped and JavaDoc for Dynamics documentation was written to support the ongoing
software development efforts at the Center for AUV Research. A preliminary integration of various tools
used in mission planning and visualization, caled the AUV Mission Visuaization Workbench was
developed to aid in mission planning and visualization. The workbench is afirst pass on an integrated
development environment and graphical user interface for multiple vehicle platforms, using dynamics
algorithms and mission control planning tools. This work aso included the integration of the AUV
Dynamics Control Workbench in MATLAB.

14. SUBJECT TERMS 15. NUMBER OF
Autonomous Underwater Vehicle (AUV), Control Algorithms, Virtual Reality Modeling PAGES
Language (VRML), Extensible 3D Graphics (X3D) 75

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION CLASSIFICATION CLASSIFICATION ABSTRACT
OF REPORT OF THISPAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5800 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18

3D MODEL OF THE ARIES
AUTONOMOUS UNDERWATER VEHICLE (AUV),
JAVADOC FOR DYNAMICS, SOFTWARE
AUV MISSION-VISUALIZATION WORKBENCH, AND
AUV DYNAMICS CONTROL WORKBENCH IN MATLAB

ABSTRACT

Operating an Autonomous Underwater Vehicle (AUV) in real-world conditions is
time consuming, expensive and prone to failure, because of the complexity of the tasks and of
the machinery associated with AUV operations. A virtual world offers many advantages for
testing and development of an AUV. The challenges are fewer and the barriers to practicing in a
virtual world are less strenuous than in the hazardous undersea environment. Yet, it is still
difficult work.

This technical report detaills one approach to modeling AUV operations in a virtual
world. A 3D Modé of the research vehicle ARIES AUV was developed to provide more redlistic
visual simulation capabilities using commercial 3D authoring tools. The model was then
trandated into Virtua Reality Modeing Language/’X3D format for web portability and
interactivity. Java code was developed and JavaDoc for Dynamics documentation was written to
support the ongoing software development efforts at the Center for AUV Research. A
preliminary integration of various tools used in mission planning and visualization, called the
AUV Mission Visudization Workbench was developed to aid in mission planning and
visualization. The workbench is a first pass on an integrated development environment and
graphical user interface for multiple vehicle platforms, using dynamics algorithms and mission
control planning tools. This work also included the integration of the AUV Dynamics Control
Workbench in MATLAB.

3D MODEL OF THE ARIES
AUTONOMOUS UNDERWATER VEHICLE (AUV),
JAVADOC FOR DYNAMICS, SOFTWARE
AUV MISSION-VISUALIZATION WORKBENCH, AND
AUV DYNAMICS CONTROL WORKBENCH IN MATLAB

TABLE OF CONTENTS

N I O 1516 I 0 O 1
A. BACK GROUND ..ottt sttt st nbe e 1
B. MOTIVATION ittt ettt b et st e b s nns 1
C. ORGANIZATION OF THE REPORToitiiiieieiesie et 2
NPS OVERVIEW ...ttt sttt sttt a e aennennesnenne e 3
A. INTRODUCTION ...ttt sttt st ae e b e sns 3
1 AUV ARIES Presentation.........ccoiieerinieseesie e es e sesseeesee e 4

a. ARIES HAraWare........cceeiieieeiesieeieseesee e e esee e eee e sneeneas 4

b. Computer Hardware ArchiteCture.........coccoeveeeveeseeceseese e 6

C. Computer Software ArchiteCture..........cccocveveeeie i, 6

2. ADS CapabilItiBS.....ceeeiieieieie e 8

3D MODELING OF THE ARIES AUV ..ot s 10
A. INTRODUCTION ...ttt sttt st e e nseseesre s 10
1 1Yo A V7= o o RS 10

2. Software and Programming Language..........ccocevevererieeieeneneneseseene 10

a. The VRML LanQUAagE........cccevueieeiieeeeseesie e sreesie e eee e 10

b. X3DScene Graph Editing TOOIoocevieieiiiieeeeeeese e 12

C. 11D IS U0 o 1 1Y, = S 15

3. 3D Modeling Using 3D StUAIO MaX......cccoceereeieeiienieeieseesie e 18

a. Design and Realization...........ccccveiieiiieiie e 18

4. Integration USINg X3D-Editcccooeriiriiiiieriseeseseeeeee e 22

a. Organization of the Different Files.........cccoccvvvevevceveese e, 22

b. How to Import the Shapes from 3dsmax...........cccceeeveevieieeieennnn, 23

C. Material and Mappingcccoceevereererienie e 24

d. The Two Levelsof Detailcovveveeieneeece e 25

e SOUNDS ...ttt sttt b b nne s 27

f. ANIMALIONS ... 27
UNDERWATER VEHICLE HYDRODYNAMICSUSING JAVA.....cccooeiereeeeeee 29
A. INTRODUCTION ..ottt sttt sa e e srenne s 29
B. DYNAMICSALGORITHM DERIVATION AND IMPLEM ENTATION ...29
1 Y 1 0 ST 29

2. The Working of the Dynamics Modelccceoveeeveevncceesecse e 29

3. Hydrodynamics Modd ClassHierarchycccooveveveeiecceseese e 30

C. EQUATIONS OF MOTION ..ottt s sneas 33
1. World Coordinates and Body Coordinate...........cceceeeeeeneenienenesiennenn 33

2. Force Moments and ACCEEr ation..........cceverereneneninenieesee e 34

3. VElOCItieS AN POSLUI€......ouviieiiiesiecee e e 34

4, The Form of the Equation of Motion..........ccceviiinenieneneeeeee, 35

5. Variablesand COeffiCIENTSccevvevieiereee e 36

6. Hydrodynamics Model Algorithm..........cccoeoveeiiccinececeeeee e 37

1. JAVADOC ...ttt s 38

a. gL oo 18 [ox 1 o] 1 38

b. JavaDoc Commenting Convention...........cceceveereeveeseeseeseeseens 38

C. Other JavaD0oC CONVENLIONS.........ccoveereeiinienieeee e 39

d. WHY JAVADIOC?.......ceiiiiieiiierieeiee e 41

D. CONCLUSIONS ...ttt sttt b e nae s 42

V. AUV MISSION VISUALIZATION WORKBENCHcccccvinininenieeiesesie e 43
A. INTRODUCTIONciiiiiiisieietesie ettt ssestesse s e sseeeessessessessessens 43

B. REQUIREMENTS ...ttt snennenne s 43

1. The New Interfacefor the Simulation...........cccoevvvnnciiiencse e 44

a. Why a New INterface?.........cooiriieeieeeee e 44

b. Presentation of the New Interface..........ccooevvvvenieenivnin e 45

2. Details of the Different Parts of the Software.........c.ccocceveveniienenennens 47

a. The Mission SCript EQItOr........cccoovveiiecieece e 47

b. Execution and DynamiCS ProCeSS..........ccceueeerieieenienesesesieenene 47

C. The Xj3D Viewer for X3Dccccveereeiereereeie e eee e 50

C. HOW TO INSTALL AND RUN THE PROGRAMccccoviimirieienene e 50

D. CONCLUSIONSAND FUTURE WORKoooiierieneneseseeeeee e 51

VI. AUV DYNAMICS CONTROL WORKBENCH ON MATLAB.....cccccceerereveeeenene 52
A. THE MATLAB DYNAMICSMODEL ..coooiiiiiiiiseneseseseeee e 52

1 OVEINVIBW ...ttt ettt et sr et et e s aeesbe et e sreenaesneens 52

2 The SIMULINK MOEccoiieeeece e 53

3 Integration of the Equations and Variables..........cccceovvrvvvivenenceseennn. 55

4 TESE RESUITS.. .o e e 55

5 Interfacing to the Virtual World ... 55

6 The Graphical INtErface........ccovveiiieiiece e 56

a. GUI Development ENVironment..........cccccvevveveeviecieeseesiesee s 56

b. MATLAB TOOIS.....cciiiiieieieiese et 57

C. The AUV Dynamics Control Workbench Functionality............. 58

d. Description of the AUV Dynamics Control Workbench.............. 59

7. MOTITICALIONS ...t et 60

a. AUV ARIES......o oottt e 60

b. REMUS ... s 60

B. CONCLUSIONSAND FUTURE WORKoooiiiinierinesenesee e 61

VII. CONCLUSIONSAND RECOMMENDATIONS......ccoeieee et nnens 62
A. CONCLUSIONS ..ottt se b 62

B. RECOMMENDATIONS FOR FUTURE WORKcccctvirieinierienie e 62

LIST OF REFERENCEScooi ottt st sttt ntennenns 64
INITIAL DISTRIBUTION LIST .ottt ettt e snennen 66

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure5.
Figure 6.
Figure7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.

Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.

Table of Figures

Autonomous Underwater Vehicle Acoustic Radio Interactive Exploratory Server.3
Hardware Components of the NPS ARIES. ... 4
Dual Computer SyStem UNIL.c.occuiiieiesieseeie et ae e ae e e e 6
Relational Behavior Model [Brutzman 94]..........coov e 7
The Old ARIES AUV MOEL.........ooiecece et 8
NEW ATTES IMOEL. ...ttt nb e e ae e 9
Exemplar Scene in Netscape 4.77, Using Pivoron Browser Plugin from Nexternet.

(Above). VRML ENCOding (LEFL). ...ccuooueieirierieeeeeeeeeee s 12
X3D-Edit Interface, ANNOLALE.cocoieeeiei it s et e e e s erae e e s e saraeae s 15
3D Studio Max Interface SCreert SNOL.oocvoeieiireee e 16
Sphere with Normals and without NOrmalS...........ccceeiiieiiniineeeeee e 17
IndexedFaceSet Definition USiNg VRML SyNtaXx.cccoeverenenienienieenenese s 17
Screen Shot of the Different Elements of the AUV On 3D Studio Max, Duplicate

Copy-By-Reference Elements Are NOt ShOWN.c.cocvviviiiiecsee e 18
Optimization Of the FiN GUAI.ccooiiiiiiireeee e 19
Before and After Using the MeshSmooth FUNCLION.cccevvevevieneccc e 19
Before Optimization, 159 Points and 260 Meshes (Left). After Optimization, 71

Points and 108 Meshes (RIGNL).cceiiiiriieeeeee e 20
Meshes and Geometry of ArieSMOCEL.ooviiiiiiii e 22
The Different Folders and Files of the Project. ..., 23
X3D-Edit IMPOrt FUNCLION.coiiiiiieiece et 23
Shape, Appearance and Material NOUES.cccooeririieiiiere e 24
Texture Maps Used fOr the AUVt 24
APPIYING the TEXIUIES.couiieiie ettt sre e et e sb e neennes 25
High and Low Level Of Detail (LOD)........cocuririeieieniesiesiesiesiesesee e 26
Sound Node is Dependent on Distance to Viewer LOCation...........cccveveevveviesieesennns 27
F N 111 0= 0] USROS 27
Main Models in the Combined AUV Underwater Virtual World. ... 30
Telemetry State Vector EIEMENtS. ... 30
Hierarchy Class for AUV Hydrodynamic RESPONSE.cccceevveeiievieiieciecee e 32
COOrdINGLE SYSLEIM. ...ttt b et st e sreenbenaeeas 33
ComMMENES IN JAVADIOC.cveeieieeerieeieeeesieee e sreeste s e sseesaeeeesseesseeseesseensesseesseensennenns 38
2 V=0 0o (=S U KSR 39
JavadoC Markup fOF TagS. ...cocuee ettt eene e 40
[I T = o] o PR 40
HTML CodeS in JAVEDOC SOUICE.cccevverieruerierieeieiesiessesiessesiesiesessesssessessesseseessessens 40
JAVADIOC RESUILS. ...ttt st ae s 41
Interrelationships in the AUV Workbench. ... 44
Interface of the AUV Mission Visuaization Workbench.ccocevvecvveeivccvneenen, 46
The Mission Script EAItor Panel. ..o 47
Execution and DYyNamiCS Panel.coooveoiiiiiiiiie e e 438
OPLIONS PANEL. ...ttt r e ae e 49

iv

Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

Xj3D VIEWES TOF X3D . ..eciiciieciieie ettt sttt et e st aesbe e e snnenneennens 50
Future Work: Example of a Customized LayOut.ccocvreenenieneeneeesee e 51
F L Y 00 o 53
SIMULINK MOEL. ...t 54
MOdElS LayOUL EQITOF.cceeeiieieieeie e 56
Property INSPECLOT.coieiiieeeee e 57
Callback FUNCLION ATQUMENESccueeiecieecieeie e s ete st et sae e sre et e e este e sneennenneeas 58
MAIN WINAOWS. ...ttt sttt b e e sae et et ae e bt sne e 59
REMUS AUV [WHON. .ottt st srennenneas 60

l. INTRODUCTION

A. BACKGROUND

Autonomous Underwater Vehicles (AUVS) are designed to independently accomplish
complex tasks either in deep oceans or shalow water. A meticulous design must be followed
during conception of the AUV, since little or no communication with distant human supervisors
is possible during regular operations. Thus, the underwater domain imposes many limitations and
restrictions on hardware.

The Center for AUV Research at the Naval Postgraduate School (NPS) has been working
for 14 years on several AUV prototypes, with each improvement showing further success. The
latest NPS AUV s called Acoustic Radio Interactive Exploratory Server (ARIES) and is fully
operational. Currently ARIES operates for short missions in Monterey Bay, California USA.

During operations, data sets gathered from the ARIES include track positions,

bathymetry (for each sample point), sonar and video data, contact coordinates, image, etc.

All of this data helps to reconstruct what happened during a mission. Nevertheless those
information streams are merely raw data and it is very difficult to observe AUV operations. Thus
an underwater virtual world is needed to comprehensively model all AUV missions and all
characteristics of the real world where the AUV moves around.

B. MOTIVATION

A virtua world using 3D graphics for the ARIES provides an excellent design alternative
to observe and understand its operations. Because of its high level of realism, avirtual world has

the potential to completely change how people observe and analyze post- mission data.

The Virtual Reality Modeling Language (VRML), specially created to design virtual
worlds, is a good choice for designing such tasks. Not only suited to 3D virtual worlds, VRML is
also a good way to share information and make these experiments available via the World Wide
Web. Extensible 3D (X3D) improvements to VRML provide further benefits.

For our purposes, the counterpoint to use the virtual world 3D is the “Reda-time Model.”

Real-time in this context is defined by the requirement that a vehicle maneuvering, within the

1

virtual world, describe essentially the same path and postures as the vehicle maneuvering in the
real world. This requires that the robot hardware and software receive the same responsiveness
from the virtual world as from the real world. To alow the same behavior of the robot, whether
operating in the real world or the virtual world, two software languages have been used: Java and
MATLAB.

C. ORGANIZATION OF THE REPORT

This report describes a number of tools created in order to support AUV software
development and mission visualization. It is organized into seven chapters:

Chapter 1 is the present introduction.

Chapter Il is a NPS AUV overview and a presentation of related works to the
ARIES.

Chapter 111 explains the modeling of the AUV using 3D Studio Max and X3D-
Edit.

Chapter 1V is about the dynamics program which is able to simulate the expected
AUV response in the real environment.

Chapter V describes the new interface for launching the simulation built using
JAVA for robot control-software devel opment.

Chapter VI is about the MATLAB dynamics program and the new interface.
Chapter V11 provides conclusions and recommendations for future work.

Appendices and associated research products comprise the final section of this report.

Il. NPSOVERVIEW

A. INTRODUCTION

Research on Autonomous Underwater Vehicles (AUVS) has been an ongoing project at
the Naval Postgraduate School (NPS) in Monterey, California USA since 1987. Several AUVs
followed one another, increasing operational capabilities and becoming more robust as they

become more sophisticated in terms of hardware and computer software.

Figure 1. Autonomous Underwater Vehicle Acoustic Radio Interactive Exploratory
Server.

The latest NPS vehicle is named Acoustic Radio Interactive Exploratory Server (ARIES).
This vehicle is a student-research test bed for shallowwater minefield- mapping missions,
operating in the literal ocean. Currently the vehicle operates regularly in Monterey Bay.

The following section is a general overview of the NPS AUV. It provides a general

description of the hardware and the software architecture of the vehicle.

1. AUV ARIES Presentation
a. ARIES Hardware

NAVAL POSTGRADUATE SCHOOL
CENTER FOR AUV RESEARCH

ARIES AUV FOR MINE RECONNAISSANCE/
MULTI-VEHICLE CONIMUNICATIONS

STr25 SCANNING

SONAR VIDEQ CAMERA
MAGNETIC SWITCH ACOUSTIC MODEM
PAMEL

RDI DOPPLER
SONAR

SonTek ADV
FIN SERV O (6)

BOW VERTICAL
THRUSTER

DEPTH CELL
TRANSDUCER

BOW SECTION LEAK
DETECTOR

BOW LATERAL

THRUSTER
(TECHNADYNE SYSTRON-DONNER
MODEL 250) ——— MOTION PAK

FORE BALLAST
TANK — |
DUAL QNX PENTIUM

COMPUTERS + CONTROL
BOARDS + HARD DRIVES—\\

ADY PROCESSOR

12 WVOLT BATTERY (6)
SENSOR POWER RELAYS
DC/DC POWER SUPPLIES

MGITAL VIDEQ CASSETTE
RECORDER {DVWC)

MID SECTION LEAK
DETECTOR

AFT BALLAST

TANK — |
STERN VERTICAL

THRUSTER ——M——— |

AshTec GPS RECEIVER

FREEWAWVE RADIO
VEHICLE TO SHORE
COMM. LINK

STERN LATERAL

THRUSTER — —| FREEWAVE RADIO

DGPS LINK
STERN SECTION LEAK GPS ANTENNA
DETECTOR

vawn by D, WErco 2000

STERN PROPULSICON
2 TECHNADYNE
MODEL 520 THRUSTERS)

Figure 2. Har dwar e Components of the NPS ARIES.
4

Dimensions and Endurance: The Vehicle weighs 225 Kg and measures
approximately 3 m long wide and 0.25 m high. The hull is constructed of 6.35 mm thick type
6061 aluminum and forms the main pressure vessel that house all electronics, computers and
batteries. A flooded fiberglass nose is used to house the external sensors, key-controlled power
“on/off” switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is
powered by six 12-volt rechargeable lead-acid batteries. Vehicle endurance is goproximately 4
hours at top speed, with 20 hours endurance under “hotel load” only. The ARIES is primarily
designed for shallow-water operations and can operate safely down to depths of 30 meters.

Propulsion and Motion Control Systems. Main propulsion is ahieved using
twin %2 Hp electric drive thrusters located at the stern. During normal submerged flight, heading
and depth are controlled using upper bow and stern rudders plus a set of bow planes and stern
planes. Since the control fins are ineffective during very dow (or zero) forward-speed
maneuvers, vertica and lateral cross-body thrusters are used to control surge, sway, heave, pitch

and yaw motions.

Navigation Sensors: The sensor suite used for navigations includes a 1200 kHz
Instruments (RDI) Navigator Doppler Velocimeter Log (DVL) that also contains a TCM2
magnetic compass. This instrument measures the vehicle ground speed, atitude, and magnetic
heading. Angular rates and accelerations are measured using a Systron Donner 3-axis Motion
pak IMU. While surfaced, Global Positioning System (GPS) inputs is provided by a carrier-
phase differential GPS (DGPS CP) system, available during surfaced operation to correct any
navigational errors accumulated during the submerged phases of a mission.

Sonar and Video Sensors. Tritech ST725 scanning sonar and an ST21000
profiling sonar is used for obstacle avoidance and target acquisition/reacquisition. The sonar
heads can scan continuously through 360 degree of rotation or swept through a predefined
angular sector. A fixed-focus wide-angle video camera is located in the nose and is connected to
a DVC recorder. The computer is interfaced to the recorder which controls on/off and start/stop
record functions. While recording images, data for date, time, vehicle position, depth and altitude

is superimposed on the video image.

Vehicle/Operator Communications. Radio modems are used for high
bandwidth command, control and system monitoring while the vehicle is deployed and surfaced.
While submerged, an acoustic modem is used for low-bandwidth communications. In the
laboratory environment, a 10 Mbps thinwire Ethernet connection is used for software
devel opment and mission data upload and download.

b. Computer Hardware Architecture

The dual-computer system unit measures approximately 28 x 20 x 20 cm. It
consists of two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM, four serid
ports, a network adapter and a 2.5 GB hard drive each. Two DC/DC voltage converters for
powering both computer systems and peripherals are integrated into the computer package. The
entire computer system draws a nomina 48 Watts. Both systems use TCP/IP sockets over thin
wire Ethernet for inter-processor communications as well as connections to an external LAN.
The sensor data-collection computer is designated QNXT. The second is named QNXE and

executes the various auto-pilots for servo-level control.

Figure3. Dual Computer System Unit.

C. Computer Software Architecture
6

The ARIES AUV has used a tri-level software architecture called the Rational
Behavior Model (RBM). RBM divides responsibilities into areas of opernrended strategic
planning, soft-real-time tactical analysis and hard-real-time executionlevel control. The RBM
architecture has been created as a model of a manned submarine operational structure. The

correspondence between the three levels and a submarine crew is shown in Figure 4 below.

BREM Emphasis Manned
Level Submarine
St[{ta\gm MSB%OH Commanding
Logic Officer
YVehicle Officer of the
Behaviors DECk{W atch
Officems
E H Hardware
xecution Control Watchstanders

Figure4. Relational Behavior M odel [Brutzman 94].

This figure represents the tri-level software hierarchy with level emphasis and
submarine equivalent listed. A functional summary of each level follows.

The Execution Level assures the interface between hardware and software. Its
tasks are to maintain the physical and operational stability of the vehicle, to control the
individual devices and to provide data to the tactical level. These tasks are currently performed
by on-board host QN XS compuiter.

The Tactical Level provides a software level that interfaces with both the
Execution Level and the Strategic Level. Its chores are to give to the Strategic level indications
of vehicle state, completed tasks and execution level commands. The Tactical level selects the

tasks needed to reach the goal imposed by the Strategic level. It operates in terms of discrete
events.

The Strategic Level controls the completion of the mission goals. The mission
gpecifications are inside this level.
2. ADS Capabilities

ADS is the acronym for AUV Data Server system. It is a software system developed at
NPS and used to gather and translate AUV data into a format, suitable for input into the Mine
Warfare Environmental Decision Aids Library (MEDAL) system. Thisformat is used by the US
Navy to evaluate asset positions, mine-like contacts, snipped images of those contacts identified
as mines and bathymetry maps. Thus, data gathered by ADS from the AUV are track positions,
bathymetry at each point, sonar and data video processing, image files for contact as well as their
locations. Data are converted into Message Transfer Format (MTF) message formats and
imported into MEDAL.

& ot i

Figure5. The Old ARIES AUV Moddl.

Fla Lk tew G CoMmmcko Heg

i'-r'iﬁaﬂ-ﬂ:;fgll a

Folzd Huma

Figure6. New AriesModel.

1. 3D MODELING OF THE ARIESAUV

A. INTRODUCTION

This chapter describes how the new virtual ARIES AUV mode is created using the
Virtual Modeling Language (VRML) and 3D Studio Max. The first part presents the VRML
language, X3D-Edit and 3D Studio Max. The second part explains the modeling and the X3D
file.

1. Motivation

The current VRML model of the ARIES AUV was built by Don Brutzman. This model
has the advantage of being very light and thus bearable by the mgority of the computers.
However, the computers are now more and more powerful, so the creation of a more redlistic
model is now possible and makes the virtual simulation more realistic as well.

2. Softwar e and Programming L anguage

a. The VRML Language

(1) VRML History

The Virtua Readlity Modding Language (VRML) was an idea conceived
by Mark Perce and Tony Parig, initially presented at the First International Conference of the
World Wide Web in 1994. VRML was intended to be a platform independent language for web-
based 3D graphics, and implemented on the internet.

The language needed to be able to place objects in 3D space, as well as
include attributes such as shape, color and size. Since VRML was to be used in the Internet, al
platforms needed to be able to support it: UNIX workstations, personal computers, etc.

The Silicon Graphics Open Inventor format was the initial basis for the
VRML file format and after numerous improvements VRML was widely accepted. VRML 1.0
was introduced in 1995. In 1996, VRML 2.0 became the new VRML specification. In 1997, the
revised language was certified by the International Organization for Standardization (1SO) as
| SO/IEC and was commonly referred to as VRML 97 [reference — VRML 97 Specification].

2 Presentation

Using VRML, an author can create 3D virtual worlds for display on the
web. While VRML 1.0 had static worlds, which is to say that it alowed for no arbitrary

10

behaviors for objects in the VRML world, VRML 97 provides for dynamic behaviors by adding
Java and JavaScript support, as well as sound and animation.
The feature of VRML 97 is that it enables to create dynamic worlds and an
interactive environment on the Internet, including the ability to:
animate objects in the VRML world
play sounds and movies
allow users to interact with VRML worlds
control and enhance worlds with scripts
Since authors are able to create effective 3D virtual worlds, VRML is an
appropriate language for moderately complex global scene renderings. Nevertheless VRML is
not a Computer Aided Design (CAD) tool. Creating complex shapes with level of detail implies
using a professional CAD tool like a mechanical engineering program or professional 3D-design
software. Nevertheless VRML is a good way for scientist, hobbyist and application developers to
produce 3D models for use over the World Wide Web.
3 Browsers and VRML
To present sophisticated multimedia, such as 3D VRML worlds, web
browsers (like Microsoft Internet Explorer or Netscape Navigator) need help from compatible
applications, called “plug-ins’ that specifically understand content of different file formats. They
enable users to view nontHTML information within the Web browser window.
Many VRML plug-ins are available as 3D browsers, including:

Nexternet: Pivoron player http://www.nexternet.com(now defunct)

Cosmosoftware: Cosmoplayer http://ca.com/cosmo

Parallel Graphics: Cortona player http://www.parallelgraphics.com/cortona

Blaxxun: Contact browser http://www.blaxxun.com

Xj3D — Open source browser http://www.web3d.org/TaskGroups/source/Xj3D.html
VRML remains the preferred language to build nonproprietary virtual

worlds and to present such work across the internet.

4 Creating a Simple Object with VRML

VRML scenes can be created using a simple text editor. More developed
VRML editors like X3D-Edit or Parallel Graphics VrmlPad are highly recommended (especially
for the novice).

11

#VRML V2.0 utf8
Group {
children[
Viewpoint {
description “initial view”
position 6-10
orientation 0101.57

}
Shape {
geometly Sphere {
radius 1
}
appearance Appearance {
texture ImageTexture { url “earth.png” }
}
}
Transformation {
trandation 0-21.25
rotation 0101.57
children[
Shape {
Geometry Text {
String [“Hello” “world!”]

appearance Appearance { - _ SIAIED O . —f
material Material { e — SRR
diffuseColor 0.10.51
}
}
}
]
}
]
}
Figure7. Exemplar Scenein Netscape 4.77, Using Pivoron Browser Plugin from

Nexternet. (Above). VRML Encoding (L eft).

b. X3DScene Graph Editing Tool

(@) Overview

X3D-Edit is an Extensible 3D (X3D) graphics file editor that uses the
X3D Document Type Definition (DTD) in combination with Sun’'s Java, IBM’s Xeena XML
editor building application and an editor profile configuration file. X3D-Edit enables simple
error-free editing, authoring and validation of X3D or VRML scene-graph files. The author of
this useful XML editor is Don Brutzman from the Naval Postgraduate School (NPS).
[http://www.web3d.org/ TaskGroups/x3d/translation/REA DM E. X 3D- Edit.html]

X3D-Edit is constructed using Xeena, IBM’s tool-building application,
and uses Xeena interface. Xeenaisavalid XML editor and a generic Java application for editing

valid XML documents derived from any valid DTD. The editor takes as input a given DTD and
12

automatically builds a pal ette containing the elements defined in the DTD. Users can create, edit
and expand any document derived from that DTD, by using a visual tree-directed paradigm.
Xeena features include:
Intuitive viewing and editing of X3D documents in atree control view.
Editing multiple X3D documents.
XML source viewer.

Direct trandation from X3D to VRML97 syntax using XML Styles Sheet
X3dToVrml97.xd

Direct trandation from X3D to documentation Html.

Restrictions about adding and editing of features according to the DTD, and
validity checking of produced documents.

Easy customization of display.

Element position and attribute value checking

Context-sensitive tooltips in multiple languages (English, French, German,
Spanish)

Therefore, al those features are automatically included in X3D-Edit.
Since X3D-Edit is based on Xeena, users also need to install the Java Development Kit (JDK) or
Java Runtime Environment (JRE), as Xeenais built on top of Java technology.

2 X3D-Edit Interface

X3D-Edit has a user-friendly interface which is intuitive to use. An action
toolbar allows editing, saving and validating XML files. A toolbar palette exposes various node
profiles required to build a VRML scene.

Every time an object (node, field, comment, etc.) is selected and inserted
by the author, it is inserted as directed using a visua tree-directed paradigm into the active
document inside the work area. A corresponding attribute array appears in the edit area for the
selected node. This is the place where field values are inserted. A message area points out
whether there are syntax errors when validating the constructed scene.

It is very easy to build a scene with X3D-Edit because it is possible to
copy, paste and move a node or group of nodes inside the view tree. When you insert a node,
only children nodes and fields are available in the sidebar palette so as to avoid fatal syntax

13

errors. Working with a tree paradigm even allows users who do not know the VRML syntax to

build scenes.
Once the X3D file is created, it can be converted into a VRML file. X3D-

Edit can make this conversion and launch the VRML browser (Internet Explorer or Netscape)
automatically to see the result of the VRML scene. It can aso convert XML files into HTML
filesthat are easily readable and can be put on the Internet as scene documentation.

X3D-Edit aso includes tooltips that provides users with the fundamental
basis of VRML syntax as well as node and field definition, type, etc. in a context sensitive way.
One ongoing objective for X3D-Edit is to further internationalize context-sensitive node and
field tooltips by trandating them in many languages (in the profile configuration). Currently,
English, French, German and Spanish language tooltips are available.

14

Sidebar
Palette

Action VRML & HTML
Toolbar converters (XSL)

fm Ew wass mon (ueens Teem i

Do miBR| o Cafxsiwn|sj@in] nl-lolE o[-D=lalb] K] v)%|

Hibmaa e | & emperer Elis

Mgy T

5 FE
T
_-I

Ed
L

= [= rwid serssmert s ssmgrury e
FR = DTl 0 PRI I Do oI T 0 B 0 A P 1 T el 0 T AR A L - Bt T

Ciiwa
- il piee N SRR T | ORI R il o B P

A P R R R, el T O O S, R B T e T

- Rl LS S, OO g st o il A e

aln e TEU RS cosenT e e asly rae i g R w00, et ETe ol GEE D ¥e e @ ing e
e DR R, orsnt " b olinis venian et
el vemnp aupd, L e dely of bl e e bt

T R L [ey

T N SRS, CONTENT S T C M 8 A G
Tats PETE SREECCS, CITET Ssnie SRS TS LD JphE RSO NI R s b
in e ropprghl, Lok erie caovight ko s Daswle Cepyr g (o Wek 30 Cormoru e 1041
pam dramrg, ol e 6 gveg Pl e b
Al B ol G R EYpR B YR e
B B a0 WA S T B P MR
i PETS ERO CSrw R See s e e e
i P evordn, cantent "eler L P

v custee] et o o s B i B b e

B
HE
a1

N T

Area

L

Tree Message
View Area

Figure8. X3D-Edit Interface, Annotated.

C. 3D Studio Max

D

3D Studio Max (3dsmax) is used to build and animate 3D graphics scenes.
It is one of the leaders in this kind of software. It is frequently used for 3D graphics in generd,

animation movies (like “Shrek” or “Final Fantasy”), architecture or video games. This software

Overview

is developed by Discreet: http://www.discreet.com

This popular software alows users to:

15

Design 3D objects in two different modes. mesh or nurbs. There are several
functions which allow creation and modification of the 3D objects.

Make very reaistic 3D scenes using the powerful material editor and the different
environmental tools like lights, shadow, special effects, etc...

Animate or create fixed scene.
Render the 3D scenes in different formats like: jpeg, gif, avi, mpeg, €tc...

Import or export scenes in several kind of formats like: 3ds, dwg, dxf, iges,
vrml97, etc...

Extensive additional functionality is provided.

P D MM TR M Ode Malaileey Seiele B R S MUISRReR MEOGE A0

if"&“}:"}'lﬂl (w0 2 e ITI:-HHBQ‘ HHE - GI-

e ey m—

- :-M-L*wua
= Al s m-h-l-w-m Bxl"'ln!-new_l

Figure9. 3D Studio Max I nterface Screen-Shot.

2 Why Use 3dsmax Software?

X3D-Edit and VRML do not support direct modeling of complex shapes;
only simple shapes are available like Box, Sphere, Cone, etc. To create complex shapes (like the
different elements of the submarine), VRML uses different lists to build one by one the
components of a 3D IndexedFaceSet.

one list of points coordinates

16

one list of points indexes
one list of normals coordinates

one list of normals indexes

The list of Normals gives a smoothly shaded appearance to the shape:

With normals Without normals

Figure10. Spherewith Normals and without Normals
For example, to create a smple mesh, VRML97 needs:

1 N

geonetry | ndexedFaceSet {
coordlindex [1, 2, 3]
normal Index [1, 1, 1]
coord Coordi nate {
point [x1 yl1 z1, x2 y2 z2, x3
y3 z3]
}
normal Normal {
vector [XN yN zN]
}

Figurell. IndexedFaceSet Definition Using VRML Syntax.

17

Thus, CAD software (like 3dsmax) is needed to make these lists of
coordinates and indexes. 3dsmax has got many functions to build mesh objects and a VRML97
exporter which can make these lists. So this software corresponds perfectly for the modeling of
the robot submarine.

3. 3D Modeling Using 3D Studio Max
a. Design and Realization

This chapter describes the different functions used to create and optimize the
meshes of the shapes of the AUV.

Some duplicate 3D elements are modeled just once (fins and propellers) because
X3D-Edit and VRML allows duplication of shapes using the same definitions (same lists) which
make the VRML file smaller.

Figure12. Screen-Shot of the Different Elements of the AUV On 3D Studio Max,
Duplicate Copy -By-Refer ence Elements Are Not Shown.

Q) Modeling Functions
To modelize the different parts of the submarine, standard functions were

used like:
18

Extrude: which make a solid from a 2D profile.

Revolution: which make a 3D object by “rotating” 2D splines.
Surface: which build a surface from 2 or 4 splines.

Boolean operations: add or subtract two objects.

After the modeling of the submarine, the difficult task of optimization is
necessary. This additional work is necessary because the standard functions of 3dsmax generate
forms with a too high level of detail (too many points and meshes) for efficient rea-time
rendering.

2 MeshEdit Function

This function alows users to work directly on the mesh of the shape.
Every point and face can be created, deleted, moved, and rotated. Since some functions like
optimize do not always work very well in automatic modes, the user can modify manualy the

mesh of the 3D object to correctly apply optimization according to the function of the object.

Figure13. Optimization of the Fin Guard.

3 MeshSmooth Function
This function alows users to generate the list of normals to smooth the
surface of the shapes.

Figurel14. Beforeand After Using the MeshSmooth Function.
19

(4 Optimize Function
This function alows users to optimize a shape, this tool will delete

automatically all the meshes which are not visible, smplify and delete superfluous points and
meshes without greatly altering the shape.

S~

Figure1l5. Before Optimization, 159 Points and 260 M eshes (L eft). After Optimization,
71 Points and 108 M eshes (Right).

(5) The Two Levds of Detail

In order to optimize and to make the VRML file lighter in calculation, the
majority of the elements are designed with two levels of detail. When the user is located close to
an element, this element will appear automatically in high level of detail. On the other hand,
when the user is located far from an element, an item will appear in alow level of detail. Thus,
this method reduces the time of calculation for the processor and makes the navigation faster.
Multiple levels of detail are also possible. However, this method makes the VRML file bigger
because each element is defined multiple times. We will see how to integrate these levels of
detail when importing the elements in X3D- Edit.

The table below shows the list of the elements using two levels of detail:

20

High Level Of Detail Low Level Of Detalil

Screen Shot Points | Faces Screen Shot Points | Faces

32 54 16 26

- 160 262 - 72 108
- 159 260 - 71 108
-
—JEa B
-
—JRBI [Ee

21

76 130 28 39

24 24 12 12

28 56 16 32

25 36 13 18

25 36 12 16

72 100 36 52

- i § -) i

Figure16. Meshesand Geometry of Aries Model.

4. Integration Using X3D-Edit
a. Organization of the Different Files

In order to increase the legibility of the principal file (AUV.x3d), al elements of
the robot submarine were created in different files (they are stored in the X3D folder and VRML

22

files created in VRMLs folder) and are connected to the main file by the relative URL links
(thus, it is necessary to not move them). This method offers the advantages of being able to
modify an element without modify the main file or, for example, being able to create another

AUV by using only necessary elements.

There are two others folders. Maps and Wavs which respectively contain the

textures and the sounds used by the main file AUV .x3d.

IMaps Wrmls Wi avs x3d Al Al x3d

Figurel7. The Different Foldersand Files of the Project.

i,

b. How to I mport the Shapes from 3dsmax

X3D-Edit has got VRML97 import function which can build the XML schema for
X3D-Edit from a VRML file. After, we can copy from this new X3D file the parts which interest

us: for example the different lists of coordinates and indexes and paste them in others files.

B8 x3p-Edit scene graph editor (x3d-compact. profile.xmil)

Fle Edt Insert Selection Grammar Tools Help
D New coen | (X |4 (|8 8@ R
& ot ST R [T fvrvev
@B openLRL... Geospatial 1.1

Close Cirl+ws | Immersive profile i ;]Fj e
(= = ool
ﬂ.sgve As... = B-=
& save i
& Print XML Source.., Crl+P
BB Print XML Tree..,
Import
fi Exit e
” E_ﬁ YRML 27 (wrl) r

Figure18. X3D-Edit Import Function.

23

C. Material and Mapping
(N} Material
The nodes Appearance and Materia were used to color the elements of the
submarine using diffuseColor attribute in RGB values.

Bg Shape

ERFN copcarance

G | I Material: diffuseColor 000
l'ﬂ@ IndexedFaceSet

Figure19. Shape, Appearance and Material Nodes.

(2 Mapping

To make the scene more redlistic, some materials were put on the
submarine. All these maps were design using Photoshop. The used format is Portable Network
Graphics (png) because this format alows making transparency effects (for example, here, all

the white parts of the maps are transparent; only the colored parts are visible).

R = R
- . 29 NFS

back_opening.png magnetic_switch_pane... middle_opening.png nps_left.png nps_tight.png sCrew_opening.png sCrews.png

Figure20. Texture MapsUsed for the AUV.

There are several techniques to apply textures on a 3D object in a VRML,
such as applying the texture to the polygons but this technique is very complicated when you
need to put different textures are needed on the same element. In our case, al the surfaces to be
textured are planes, thus we will use a very simple technique. To make the illusion that the
texture is mapped on the 3D object, we will create a smple face with a texture mapped on it.
This simple face will be positioned very close to the 3D object. As the white is transparent in the
PNG file format, we will have the visual impression that the texture is applied directly on the
surface and not on another object.

24

Simple face with a
PNG texture on it

0.1 mm

-y o
A Ay
L 4

Planar
3D

objects

Figure2l. Applying the Textures.

d. The Two Levels of Detail

Objects can have two definitions: one in high level of detail and the other in low
level of detail (3.3.2 The two levels of detail). X3D-Edit allows user to define from which
distance, between the object and the camera, the object appear in high or low level of detail.

25

- -~

LOW HIGH
RESOLUTION RESOLUTION
MODEL / MODEL N\
| Viewpoint l‘.
 Rage T i
Camera \ /

~~_ -

—D Group: DEF: doppler_sonar
@@D‘? Inling: url: " Armlsidopplar_sanar

= IE Sound: location: 11500, minFront: 0, minBack: 0, maxFrant: 200, maxBack: 200

E----l AudioClip: DEF: doppler_sonar_sound, utl: " Aavsidoppler_sanarway”, loop: true

Tlgﬁig Scene
& 7F Transfarem: translation: -34.9120
Elq;J LOD: center: 000, range: 200
&'8 Shape: DEF: antenna_high
mg Shape: DEF: antenna_low

Figure22. High and Low Level Of Detail (LOD)

26

e Sounds

NO
SOUND

Figure23. Sound Nodeis Dependent on Distanceto Viewer Location

X3D alows users to place sound source in the scene. Users have to define the
location and sound limit. The volume changes according to the position of the camera and makes
stereo effects.

f. Animations

T—_I?F Transform: DEF: hottom_front_hody

i <-'§Q3_D> Inline: url: " Mrmlsfhottom_front_body sl

4}% TouchSensor: DEF: hottom_frant_body_touch

<E| TimeSensor: DEF: bottarn_front_body_time, cyclelnterval: 1, loop: false

----- & ROUTE: fromiode: bottam_front_body_touch, fromField: touchTime, toMade: bottorm_front_hody_time, toField; set_startTime

3 ROUTE: fromiode: battom_front_body_time, framFigld: fraction_changed, toMode: bottom_front_body_paosition, toField: set_fraction
3 ROUTE: fromMode: bottorn_front_body_position, fromField: value_changed, toMode: bottom_front_hody, toField: set_translation
Script: DEF: bottom_front_body_position

----- = fleld: name; set_fraction, accessType: eventln, type: Float
E--vhﬂeld: name: value_changed, accessType: eventOut, type: Vector3Float
-~ fleld: name: i, accessType: field, type: Integer, walue: 0
i ja\rascript:...
..—2 IE Sound; minFrant 0, minBack: 0, maxFront 1000, maxBack; 1000
., M AudioClip: DEF: bottom_front_hody_opening_sound, url:".Mavs/openway', loop: false

L 3 ROUTE: fromMode: bottorm_frant_body_touch, fromField: touchTime, toMode: hottom_front_hody_opening_sound, toField: set_statTime

Figure24. Animations

To animate (trandlate, rotate, etc.) 3D objects, several nodes need to be included
in the X3D file:

TouchSensor: detects mouse interactions with a shape and sends events.

27

TimeSensor: specify atimer for the animation.
ROUTE: define the steps of the animation.

Script: allows creation of EcmaScript (also known as JavaScript) or Java to make
advanced animations.

28

V. UNDERWATER VEHICLE HYDRODYNAMICS USING JAVA

A. INTRODUCTION

This chapter is provides an overview of the Software in charge of realized the
Hydrodynamics part for an underwater vehicle and in the second time it will explain the
documentation of this programs realized using JavaDoc.

B. DYNAMICS ALGORITHM DERIVATION AND IMPLEMENTATION
1. Aim

As explained in Chapter |1, the Real-time Modeling of the AUV environment is provided
by three main parts named: Execution, Dynamics and 3D Visualization. This chapter describes

efforts in hydrodynamics modeling.

The Dynamics program is a substitute for the natural environment’s effect on the robot
submarine, and provides an estimation of the AUV’s behavior in the water. This is a very

important and difficult part in the Real-time Simulation in a Virtual World.

Many of the effects of the surrounding environment on a robot vehicle are unique to the
underwater domain. Thus, understanding these forces is a key requirement in the devel opment
and control of vehicle behavior. This work originally appeared in A Virtual World for an
Autonomous Underwater Vehicle [Brutzman, 1992].

2. The Working of the Dynamics M odel

In the scope of prior related research many of the hydrodynamics models were
investigated for underwater vehicle development, but no single, general vehicle hydrodynamics
model was available that proved to be computationally suitable for predicting real-time

underwater robot dynamics behavior in a virtua world.

The current hydrodynamics model is based on physical laws and sufficiently accurate to
allow the study and development of robust control laws that work under a wide range of potential
vehicle motion. Figure 25 explains how the dynamics interact with the others programs. The
Execution Program transmits to the dynamics a variety of programs different data composed as

the Telemetry vector element shown in Figure 26.

29

DISPDU Browser
DYNAMICS p displaying
) 3D Scene
Multicast Socket
Unicast P Browser
Sockets
3D Scene
EXECUTION

Figure25. Main Modelsin the Combined AUV Underwater Virtual World.

Time

X Y Z PHI THETA PSI

U Vv w P Q R

X dot Y dot Z dot PHI_dot PHI_dot PSI_dot
delta_rudder delta planes

propeller_port_rpm propeller_stbd rpm
thruster_bow_vertical thrusters_stern_vertical
thrusters_bow_|ateral thrusters_stern_lateral

ST1000 range ST1000 Bearing ST1000_Strength

ST725 range ST725 Bearing ST725_Strength

Figure26. Telemetry State Vector Elements.

3. Hydrodynamics Model Class Hierarchy

The dynamics program was designed to incorporate the principles of object-oriented
programming so that it can be easily adapted to other underwater vehicles. As shown in Figure
27, severa classes have been created to compute the 3D posture, which is common to al

vehicles and can be represented by Euler angles. A class rigid body is subject to Kinematics

30

equations of motion, which combine velocities with postures and update the posture by

integrating the velocities.

There also exists a class for DIS-networked rigid body, which communicates with other
entities via DIS port communication and using the Protocol Data Unit (PDU). This dynamics
program creating for a real-time networked virtual world combines the Dynamics equation of

motion and the network.

The other class as UUV Model is composed by the different hydrodynamics coefficients
used for the simulation (see 4-2-5).

The boxes in Figure 27 are composed of 4 different compartment boxes. The first
compartment is class name. The second compartment indicates member data fields, the third
compartment indicates object methods which provide an immediate response, and the fourth
compartment includes methods which are time-consuming. This diagramming approach

simplifies the presentation but clarifies the hierarchy design.

31

- permanent -
Tﬂlj_ll_,gyg:gy | e | UUVModel
y accelerations - o
: . ~ ‘ hydrodynamics
ARG, BULR [\ model coefficients
initialize
invert mass matrix
| integrate equations of mutmn. AUVSocket
virtual world interface : communications with
dynamics response :
dead reckoning response " hetworked AUV
| i
inherits
DlS-NetwurkEdRigiﬂBud}': _
DIS port connection data AUVglobals
Protocol Data Unit (PDU)
time_of_last_PDU = e i | telemetry state vector
TR alternatel ed b
initialize and inspection ownership robot ﬂnd}rl:ﬁ 5
connect and disconnect

send PDU

stay-alive send PDU
inherits

dBody

quaternion orientation
h-transform-matrix posture
posture: position, orientation
body velocities

rotate and translate
(step or incremental)

operators

inspection methods

Not shown: Vector3D class

—<

horizontal transform

matrix with posture

Euler angles
rotate and translate
(step or incremental)

HTransformMatrix

~ Quaternion

go q1 q2 @
(euler parameters)

rotate

(step or incremental)
operators

set velocities operators inspection methods
inspection methods
sel posture
update posture using camera, scale functions
velocities
Figure27. Hierarchy Classfor AUV Hydrodynamic Response.

32

C. EQUATIONS OF MOTION
1 World Coordinates and Body Coor dinate

In order to realize the smulation of the submarine in an underwater environment, the
equations of motion must first be defined in the body coordinate system as shown in Figure 28.

éu é u
é\/ a é™u
&V u e u
Bl &y u (4.1,4.2)
— < é-a
[V]e, = €0 ez
éru [V] =é.q
eq U World éf l]
e u e a
e o & U
& g
3
f
4R 0 U . .
V], =&—|—==i [R] and [T] = World Rotation Matrix (4.3)
Body X () [T]‘ X
e u
linear translation angular rotation
{right hand rule rotations, in order)
x-axis = Morth
" x coordinate i
roll Euler angle
:i . Y-AxIS - East ‘1 - theta 8
¥ coordinate = pitch Euler angle
z-axis = Depth psl
¢ coordinate vaw Euler angle
linear velocities angular velocities
(right-hand rule rotations)
hody =
" longitudinal ks
axis: p. roll rate
n. surge
-
1:' ' body 1? = g, pitch rate
lateral axis: -
body Vo BN r, yaw rate
vertical axis:

w, heave

Figure28. Coordinate System.

33

2. Force Moments and Acceleration

Force and accelerations for the six state variables of posture can be grouped together in

the matrix form of Newton’s Second Law:

-4a
[F]=2 M) (4.

Translational forces are applied at the CG and Moments are similarly applied about the
CG origin of the vehicle body. In the am of finding the mathematical relation between the
unknowns of the vehicle state vector and the dynamics equations of motion, this law will be use
in the body reference.

[Floogy = [IMI([V] oty *W V1) (45)

Within the body coordinate frame the mass matrix [M] is unchanging. Differentiation of
the velocity matrix [V] reveals effects that are due to the body coordinate frame rotating with
angular velocity w with respect to the world coordinate frame. By multiplied, the equation

above, by the matrix [M] " we have:

Vaoy =IMT Y [Flaogy - W Vgoq, (4.6)

Then we have all the accelerations grouped together on the left-hand side and all the
terms on the right- hand sides of the dynamics equations are known at each time step.

3. Velocities and Posture
Knowing the value of the body acceleration allows prediction of the new body velocities
through integration.

to+dt |

[\/] body(t 0+dt) = b [V] body(t) dt + [V] body(t0) (4 7)
to

Integration of the new body velocities to determine posture is preceded by a
transformation from the body-fixed coordinate frame to the world coordinate frame.

tO+dt to+

6\/ Lworiaoray At = C V]body(t)) dt (4.8
to

to body® world

The final integration to determine posture is therefore:

tO-+dt tO+ck
[POStUre], o iqcto+ay = d\/]world(t)dt+ docean)currmts’]wor|d(t)dt+[P051ure]wor|d(t0) (4.9
t0 t0

4, The Form of the Equation of M otion

In many other references, the equations of motion for a submerged vehicle are not usualy
written in the form suggested above. These other derivations have been presented and structured
in such a way that similar time-dependent acceleration-related terms are presented on both sides
of the dynamics equations of motion. Because related body acceleration terms are not grouped

together, direct time integration of both sides of the equation is not mathematically valid.

This critical point explains why the equations used in the rea-time hydrodynamics model
have mass-related, inertia-related and acceleration body terms on the left hand side and all the
forces like lift, drag, buoyancy, weight, propulsion, etc on the right-hand side. Separation of

variables is an essential prerequisite for restructuring the equation of motion.

é u

e G

é u

évu , . .

8. 0 éDynamics U

ewu _15equations

e. u = [M i]g l:' 4.10
épd eof u (4.10)
é u e*motion o

éq a e U(to)

e u

€ u

€ Huo

Given that the origin of the body-fixed coordinate system is located at the center of
buoyancy, the equation of motion for a rigid body in six degrees of freedom defined in terms of

body fixed coordinates:

35

mu- vr+wg- X, (@ +12)+y, (pg- 1)+, (pr+q)] =& X, (4.11)

This equation represents trandational motion on the x axis. The term on the right side
explain the external forces apply on the model on the x axis which are equal at:
é.Fact:F + Fy + Fyog +F

drag control

(4.12)

hydrostatt

So for the X axis;

[o]

8 X = Xus + Xgyulu]+ X U+ X, W + X oG + X, VI + X 1T+ X, o (413)

prop
After replacing the right member of the first equation and smplify it to have the
acceleration on the left side and the other variables on the right side, the equation of motion is

written as follows:

(M- X)u+mz, g my,r =X+ XUMlM +(Xyq - MW (X - MWEF (X +mx)of

+ (X, +mvr+ (X, +m>g,)r2 - my,pg- mz,pr+X, . (4.149)

Numerous different coefficients are used to predict al the external Force and moments
(see Chapter 4-2-5). Findly, the body frame velocity matrix can now be updated by numerical
integration, such as Euler Methods.

[V]ora) =dt- N](to) +[V] o (4.15)

5. Variables and Coefficients

With the variety of different hydrodynamics, models, studies have produced numerous
huge sets of several coefficient libraries. This is a serious problem for newcomers to
hydrodynamics literature, since both names and definitions of key terms may vary. So it's
important to describe coefficients using a well-defined nomenclature, which in the AUV case
corresponds to the standard reference work on ship control (Lewis 88).

36

For example

o

XHS explain the combined between weight and buoyancy.

Xuu explain the Cross-flow Drag

X u explain the Added Mass

X Xogr Xy » X,, explain the added Mass Cross-term

wq qq’

X rop the propeller Thrust

6. Hydrodynamics Model Algorithm

Now that the different parts of the general underwater vehicle real-time hydrodynamics

model have been presented, the following section explains the algorithm used:

Estimate and invert mass matrix [M]

Initialize hydrodynamics model variables for posture [P], velocities [V] and time

rates of change of velocities.

Loop until robot is done:

Receive updated state vector from robot, including ordered effectors values for

rudders, planes, propeller, thrusters and elapsed time.

Calculate new values for time rate of change of body velocities, using the current

vehicle state vector and equation of motion.
Update velocity [V].

Perform transformation to [V] coordinates.

Update posture [PJlusing newly-calculated velocities [V] world ocean current

estimate and previous posture.

Return newly-calculated hydrodynamics values to robot via telemetry update of
the robot state vector. Most calculated velocities and accelerations correspond to

A KXo = Xus + Xu|u|u|u|+ X u+ XogWa+ X,,aq + X, vr+ X rr + X

prop

real-world values provided by inertial, flow and pressure sensor.

Wait for next updated state robot vector,
shutdown when model is no longer required by robot.

37

(4.16)

1. JavaDoc

a. I ntroduction

The Java (SDK) comes with a number of development tools, including:

A compiler, which translates source code into Java byte code.

The VM (Java Virtual Machine), which runs Java Programs once they have been
compiled.

A tool called JavaDoc, which reads Java source code and creates HTML files that
document the corresponding source files.

This section explains how JavaDoc works and the production of JavaDoc for
dynamics program.

b. JavaDoc Commenting Convention

When the Java compiler translates source code (java files) into binary byte code
(class files), it ignores all comments. In other words, any text in the source code that is delimited
by a“/**” at the beginning and a “*/” at the end, or lines beginning with “//” are interpreted as

as a JavaDoc comment.

Comments in Java can be categorized as either programmer’s comments or
JavaDoc comments. The former comment on internal matters of implementation and are
designed to aid other programmers who might, for example, be maintaining the code in the
future. There are two kinds of programmer’s comments:

sngle-line comments that are delimited by “//”

multiline comments that are delimited by “/*” and “*/”.

For example:

/**
* File : AUvgl obal .java is a JavaDoc coment
*/

public class AUvgl obal s

{

/'l not a JavaDoc comrent since there is no

asterix //followed by a sl ant

1

Figure29. Commentsin JavaDoc.
38

JavaDoc extends this rule comparably by enabling special documentation

comments to appear within text sections bracketed by “/**” and “*/”.

JavaDoc comments document the functionality of a class or its APl and are
converted into HTML files to be read by people who do not necessarily need to read the source
code of the HTML elements. Besides the delimiters, JavaDoc comments can employ HTML tags

to identify different components that need to be organized within the documentation.

For example, the result of

Figure 29 will appear in JavaDoc HTML file asin Figure 30:

CLASSAUVGLOBALS
j ava. | ang. Obj ect

|
+- - AUVgl obal s

public class AUV globals
extends java.lang.Object

File: AUVglobasjava is a JavaDoc comment

Figure30. Javadoc Results.
C. Other JavaDoc Conventions

Additional commenting conventions can be used by JavaDoc; such as* @return”, * @author”,

“@version” which generate documentation appropriate for the comments. For example, in the
code listing in

Figure 31, the “@param” tag is used to document the parameter anount which

is part of the withdraw method’s signature. The HTML generated by this JavaDoc is shown in
Figure 32.

/**
* Subtracts the specified amount fromthe
* custoner's account bal ance.

* @aram anount the anmount to withdraw
*/

public void withdraw Dol |l ar anount) {
/1l code left out in this exampl e

39

Figure3l. Javadoc Markup for Tags.

</ A>

<H3>wi t hdr aw</ H3>

<PRE>

public void w t hdraw/ B>(Dol | ar </ A> anount)
</ PRE>

<DL>

<DD>Subtracts the specified anount fromthe
custoner's account bal ance.

<DD>

<DL>

<DT>Par anet er s: </ B><DD><CCODE>anpunt </ CODE>
- the ampbunt to w t hdraw</ DL>

</ DD>

</ DL>

<HR>

Figure32. HTML Version.

Another possibility for generating JavaDoc is to write directly in the HTML
format within the JavaDoc comments, will appear directly in the output.

Author: Don Brutzman (web.nps.navy.mil/~brutzman)
Revised: 6 March 1977 - converted to Java by Kevin Byrne and Jeff
Schmidt 20 February 1998 - Updated by Kevin Byrne

AUV telemetry state vector Note these are global for direct access by
any world model. Refer to individual world models for details. Data
hiding within a private object is not necessary since al vaues are
transient and superseded by actual state when it occurs. Additionaly,
half of the state variables are provided only by the AUV
microprocessor socket, and the other half are provided by respective
world models. Thus global variables in this design are not vulnerable tc
corruption and side effects, making data hiding unnecessary.

Sour ce Code: AUV globas.java

Figure33. HTML Codesin JavaDoc Source.

40

/**

*<dt > Aut hor: Don Brutzman (<i >web. nps. navy. m
| / ~brut zman</i ></ A>)
*<p>
*<dt >Revi sed: 6 March 1977 - converted to Java by
KeV|n Byrne and Jeff Schm dt
20 February 1998 - Updated by Kevin Byrne

*<p>
*<dt> AUV telenetry state vector
* <dd>Note these are global for direct access by
any worl d nodel. Refer to

<dd>i ndi vidual world nodels for details. Data
h|d|ng wWithin a private object

<dd>are not vulnerable to corruption and side
ef fects, maki ng data hiding
* <dd>unnecessary.
*<dt >Sour ce Code: </ b>
*<dd>AUVgl obal s. j ava</ a>
*/

Figure 34. JavaDoc Results.
d. Why JavaDoc?

A software vendor does not usually sell or include the source code with the
executable binary files. The JavaDoc comments document the functionality of a class or its
members. Once the source code has been compiled, al that remains that is humanly readable is
the API and the functionality which the API provides access to. The binary code is packaged in a
JAR file and is sold to the customer along with the APl documentation.

For example, a software vendor may design and implement a class library that
may be used by a third party to develop customer relationship management software (CRM).
There would be classes that represent customers, contact information, service tickets, and so on.
To use these classes to develop a CRM application, each of the classes would be documented
using JavaDoc comments. After the source code was processed by JavaDoc, HTML documents
would be generated and shipped with the binary code.

Technical writers who are going to document APIs write JavaDoc comments in

the source code and then use the JavaDoc tool to turn those comments into HTML files. The

41

source code that implements the functionality of a class and the documentation that explains that
functionality exist in one place: the Java source file. This has become so popular, that JavaDoc-
like tools have been developed for C++ APIs, also.

Practice has shown that inclusion of JavaDoc comments is fundamentally

important for long-term maintenance of a source base.

D. CONCLUSIONS

Comments have been added to the different programs of the ‘real-time dynamics model’
using the tool JavaDoc. These comments allow a better interpretation and information for the
future user by describing the different part of the programs, the functions, and the variables and

coefficients interacting inside the Dynamics model.

The other utility of the cmmments is to inform the user, like a standard documentation,
about different subject as the date, the author, the version and also the aim of the programs. By
giving this information the modification and comprehension of the ‘real-time dynamics model’

will be easier.

42

V. AUV MISSION VISUALIZATION WORKBENCH

A. INTRODUCTION

This chapter describes how the AUV simulation works, and the new Java integrated
development environment for simulation and development of the AUV source code
B. REQUIREMENTS

This graphic explains the different steps of the simulation and the different windows
(Text editor, DOS windows and Netscape Navigator) used to calculate and display the

simulation.

43

X3D/VRML player

Mission Script File

c
o
B
£
Q
<
5
n
e
&
£
£
38

8 g5 b
m ,mm
5 5
E 48 58
— = ©
g 28 £¢
3 S8 g5
m mDy mw,
5 §3 53
2 i< O &
L =
u —
g 3
&
s § B
s T og f
5 & g g
(@] r.vl >
&g ALy g
- mm.m o
(@) . [c
= Agc o]
> o= O =
8 BI=IA S
_I_XI_ m___ P_V
y
o
=
o

Interrelationshipsin the AUV Workbench.

Figure 35.

The New Interfacefor the Simulation

1

Why a New | nterface?

a.

This software will be use by the scripts developers and by the thesis students to
test and edit their simulations. It will also allow for the pre-visualization of in-water missions.
The new interface was designed to:

Simplify and make more easily the utilization of the smulation.

Have al the windows in one main window.

Allow scripts developers to edit and test their scripts more quickly.

Allow AUV software developers to evaluate execution and dynamics
improvements.

b. Presentation of the New | nterface

Figure 36 shows the newly produced integrated development interface.

45

Xj3D Viewer

Mission Script
for X3D

Editor

L L m———

ou s 2T00
R 10

fumy 12 H0E

cou
sl 10

il
Bnziern-oof

a0 g g Tl Semen i

I T T R L T
B Baursd srmbied = rue [BLENT]

R i 8 i e i P e
T Tagan TRACE = fFales)

T T CLAMP = ey

start & argumeniz = §
T T N e

B _rrwmare_ira
O R B e L

lamze srzuran s rwinzice mmE e oot et |
. W bsharcrc whcirivn [83_resd_clnna i
G EIOH miamon s el b e schiandd LW B8 TG T =
SR U Y R R ST perrendages (1 0, 005

aathb] s el

Bo eassm sl
Bimatan_ k=

&R ve Royas Mocksl. Frecasss ot e e cuirsnily (DFF

e 0 vy WAl SR ol 4111

ridE; ML

Bt J00dsid i =i D8 D starids cp=n, oo
s il i 1
o arbasl_mutid_ e

T et e e | - O MIOSTEm B e - o M

o] rccoet =l e P

Dynamics
Process
Output

Execution
Process
Qutput

Figure36. Interfaceof the AUV Mission Visualization Workbench.

46

2. Details of the Different Parts of the Software
a. The Mission Script Editor

Ll L hra

ks e T B

Figure37. TheMission Script Editor Pandl.

The Mission Script Editor is a text editor with which users can create, open or

save missions.

When a mission is opened, the software automatically creates a backup of thisfile
(with the name of the mission and the date). So, the user can reopen this file in case of a

modification error.

The mission opened will be the mission used for the smulation.

b. Execution and Dynamics Process
@ Execution & Dynamics Panel

47

|/ Execution & Dyvhamics

Stop |

Figure38. Execution and Dynamics Panel.

Start & Stop: launch or stop the simulation of the Mission File in the Mission
Editor.

Real Time: this toggle button allows users to display the smulation in real-time or
not.

Clear: this button allows users to clear the execution and dynamics text area.

Save: this button allows users to save the execution and dynamics text areain two
different files:

MissionName_Execution_Date

MissionName_Dynamics Date

48

2 Options Panel

("-EkEtHﬁﬂ'ﬁ'-&-l}EitlﬂﬁiiEs? | Options |
Select Execution Program

'@ Use ExecutioninC () Use Execution in Java

Select AUV Model

® Phoenix SDV-9 O Los Angeles 0 Aries

i P i P

AUV Mini- Submarine AUV
Sub

Figure39. Options Panel.

Select Execution Program: there are two different programs for the execution
level (onein C and the other in Java), so the users can select which one to use.

Select AUV Model: there are four different AUVs which each have different
dynamics coefficients, so the users can select which coefficients they want to use
for the simulation.

3 How Does the Simulation Process Work?

The Java language allows developers to execute others programs from a
Java program. Here, there are two different Threads (one for Execution and one for Dynamics)
which have launch the programs, catch the output streams, and print them in the two text areas in

the main window.

49

C. The Xj3D Viewer for X3D

Open the Launches
VRML file X3D-Edit
For text

editing Nz T

Figure40. Xj3D Viewer for X3D.

Xj3D uses al the specification of X3D to be able to display VRML file in a
programusing Java3D.

However, Xj3D is currently under development, so not all of the X3D nodes are
integrated in Xj3D (Billboard for example); thus, it is necessary for the users to download and
install the latest version of the Xj3D package to update the Java classes which are used by the
program. With time, Xj3D is expected to become fully stable, since it is an open-source project.
C. HOW TO INSTALL AND RUN THE PROGRAM

To use this software, users need to setup their computer and install some additional Java
programs and packages used by the program:
Download and install Java Runtime on the computer: http://java.sun.com/j2se

Download and install Xj3D-full-Mx.exe which will install Java3D and Xj3D Java
Class on your computer: http://www.web3d.org/TaskGroups/source/X[3D.html

Then unzip AMVW _1.0.zip from the report CD into the clauv directory. You need to
have all these files and folders:

50

c\auv\dynamics\
c:\auv\execution
c\auv\bin\
clauv\AMVW _1.0.bat

Also recommended are X3D-Edit, the X3D examples, and the SAVAGE model archive.

To execute the program, double click on AMVW _1.0.bat.
D. CONCLUSIONSAND FUTURE WORK

This project has produced a useful tool for AUV mission visualization and software
devel opment.

To make the interface more convivial and customizable by different users, future work

should consider other layouts, make them savable and selectable like the example is Figure 41.

Xj3D Viewer for X3D

Mission
Editor Execution Dynamics

Figure4l. FutureWork: Example of a Customized L ayout.

51

VI. AUV DYNAMICSCONTROL WORKBENCH ON MATLAB

This section describes how the Dynamics Model was realized using MATLAB and the
SimuLink tool. It further describes the redlization of an interface using the tool of Java and
MATLAB Guide. It builds on significant work originally produced by Olivier Doucy [October
2000].

A. THE MATLAB DYNAMICS MODEL

1. Overview

This part of the report focuses on the ssmulation tool for an AUV such as Phoenix (Figure
42) that is easily used to assess vehicle systems design and characteristic. This product is based
on traditional standard tools of AUV developers control-system interfaced with a real-time 3D
virtual reality representation.

To provide a ssimulation environment for AUV design and assessment the software has
been created using MATLAB and its temporal domain ssimulation environment SimuLink. This

is a common software development environment for mechanical engineering.

The 3D representation has been realized under VRML 97 (Virtual Reality Modeling
language) (Brutzman) as a networked viewer. The use of open standards for networking (DIS)

and 3D representation (VRML) aways alows for running on differert platforms.

This section explains the existing SimuLink model, interfacing the virtual world,

additional options, and the graphical interface.

52

Figure42. AUV Phoenix.

2. The SimuLink Model

In order to realize a high-resolution dynamics simulation of the AUV with real-time
response, the physical behavior of the AUV had to be based on the NPS dynamic model (Healey,
see 4-2).

This model can be easily generdized to any AUV when the hydrodynamic coefficients
which appear in the equations of motion have been modified.

The architecture of the actual dynamic model of the vehicle has been designed using a
modular approach allowing easy addition and replacement of functionalities (Figure 43). This

simplification has been achieved through six main modules.

53

=

=Sl b | b b . =io
I K rioeg

A Edt Wan Smuabon Famat Took Helo

OFEH&E 7R S0°C REYS & p " oo =

B s i L]
- —=— —=,
Al _L:j‘_ o A
Ly -3 ‘ L
g Coatrol Ingpectar
e [PE i 4%%
Eni ponwnt EynamiCs Ml View

Figure43. SimuLink Model.

Dynamics: This system embeds the dynamic behavior of the AUV. The model is based
on the model developed at NPS by Anthony Healey and modified by Jeffrey Redel for station
keeping in waves. The Dynamics model includes the ssmulation of the forces applied based on
environment simulation and control inputs. The output of the dynamic model is the complete
vehicle dynamic state. Included in the vehicle state are the actuators related states. Inputs include

actuator commands provided by the control function and relevant output of Environment.

Environment: This function embeds the description of the environment. Its output is
contained in Goto Blocks that are needed as inputs by the dynamic mode function, the

measurement function and control function.
Sensor s: Contains the embedded sensors and different level of model can be introduced.

Control: This function includes the smulation of Control scheme (including egtimation)
applied to the vehicle. For Input the user may use directly the simulated dynamic state or the
simulated measurement. The choice will depend on the design stage and the design methods

used. The output will mainly be actuators command or direct efforts if needed by the user.

Inspector: this function includes 2D viewers, dynamic displays of the simulation

relevant variables and simulation results Storage. As a basis the most important variables, based

on the existence of To/From blocks have their display. The user is free to add needed displays.

Viewing functions have to be kept in Inspector to avoid loosing clarity of the model in general.

3D View: Those blocks provide the interface to the 3D real-time virtual world viewer.
The behavior of the vehicle can be seeing in the 3D virtua world.

3. Integration of the Equations and Variables

The Dynamics blocks are the main block of the ssimulation, in fact all the equation of
motion are integrate in this part inside function cal SFunction. An SFunction isa MATLAB
tool easy to integrate in the SimuLink model and in this case created in the C language. So
different sub-programs as sfun AUV_Hydrodynamics.dll or sfun_BuoyancyEfforts.dll have
been created and dialogue with the SimuLink model thought differert block parameters. All
these functions are independent, can be use in another model, created on visua-C++ and compile
with MATLAB asa MEX-File.

The vaue variables are type on an M-file as ‘DynamicsParametersm’ or
‘EnvironmentParameters.m’ and then integrate in the Workspace when the program is lunch.
4, Test Results

Results are shown in the inspector block. Different information about the commands of
the fins and thrusters, the buoyancy and thruster effort and also the vector of the position and

velocity of the submarine are shown on different “scope” output plots.

The other option in this model is the visualization of the submarine in the 3D virtua
world. This visualization result from a dialogue between the output of the SimuLink model
sending the erntity vector through the mfile ‘sfun_to ESPDU’ and the “WaveAUV.wrl” file
which receives the data and then trand ates the AUV model in the virtual world.

5. Interfacing to the Virtual World

A 3D-virtual real-time representation is available for the analysis of the AUV behavior
and is realized by the networking module. SimuLink integrates the Java version of the DIS
protocol and sends the ESPDU (Entity State PDU) which includes linear and rotational values
for posture, velocity and acceleration. So the DIS details the message sent over the network by
distributed components which describe the dynamic behavior of entities present in the virtual
world. The modél is then “driven” around in the VRML scene.

55

6. The Graphical Interface
a. GUI Development Environment

The creation of a interface with MATLAB can be realized by different possible
approaches. In fact MATLAB is able to import a library (or even class objects) coming from
Java or C. MATLAB aso has its own environment to create a interface: GUIDE. This is the
preferred approach for building native MATLAB interfaces.

GUIDE, MATLAB’s Graphical User Interface Development Environment
provides a set of tools for laying out a Graphical Interface. MATLAB includes a Layout Editor
which is the control panel for GUIDE. The Figure 44 shows the layout Editor.

Alignment Tool Menu Editor Property Inspector Object Browser Flgure Actlvator

J HAGUILay2ut fig
Ede Edit Layout Tosls
DNEW| e o P M| H

h Select PP, PP . MPci b/ PRIl b/ PRl AP o AP PP W

(] Push Buttan
[Toggle Button
& Radio Button
[Checkbox
(= Edif Ten
{ | v Btatic Test
Component < ac= Slider
1
1

—

I
Pl i

Fal]
Ael

| Frame

Layout Area

20
|

Palette
| | [EB Listbox

= Popup Menu

i Axes

1%
e Tk

ke
Pl Byl
I

T
" mrrr

Figure44. ModelsLayout Editor.

Each GUI display object must be programmed to perform the intended action
when activated by the user of the GUIDE.

56

GUIDE generates a set of layout tools as well as an M-File that contains code to
handle the initidlization and launching of the GUI. This M-File provides a framework for the
implementation of the function callbacks, which execute the functions that the user activates in
the GUI.

There are two file that save and launch the GUI:

A FG: file contains a complete description of the GUI figure and of al its
children, as well as the values of all object properties.

An M-file contain the functions that launch and control the GUI and the
callbacks.

b. MATLAB Tools

The tools are similar to other GUI interface tool, for example, in Java Swing. The

codes generated are different even if the concept is the same.

Each component, like the Push Button and Checkboxes or Edit Text, has
properties that you can set with the property inspector Figure 45.

Es Property Inspector M= E3
[] uvicontroel
¥ Background Color gl: -
| Callback
Enabile w | on
Fant Anghe ﬂ“m|
— Font Name IS Sams Serit
Farit Size gb
— Font Units: w | points
Fort iasght _:I rormnal
+— Foreground Caler gl_ Ju!

— Honzontal Migriment ﬂmrmer

Usthox Top 10
— Max 1o
b oo
+— Position M0 1520 212.0 34.0)
Strrg !] Push Butteh
— Style jpushbutton
#i— SliderStep 001 0.] ‘I

Figure45. Property Inspector.

57

Moreover each component has automatically a Callback sub function in the
application M-file created. This sub function created will house al the codes that will be activate

when the component is:

The syntax of the Callback Function is:
functionvarargout = objectTag_callback(h,eventdata,handles,varargin)

The arguments are listed in the following table:

Callback Function Arguments

The handle of the object whose callback is executing.

‘eventdata Empty, reserved for future use.

‘handl es | A structure contai ning the handles of all components in the GUI whose fieldnames
are defined by the object's Tag property. Can also be used to pass data to other
callback functions or the main program.

varargin |A vaiable- length list of arguments that you want to pass to the callback function.

Figure46. Callback Function Arguments

This is the main tool used for the readlization of a graphical interface on
MATLAB.
C. The AUV Dynamics Control Workbench Functionality

The AUV Dynamics Control Workbench has been created to allow an easier
utilization of the MATLAB AUV Dynamics model. This interface has been realized with
MATLAB and Java. The future customer of this interface will be the students and research

workers who design and evaluate control code and hydrodynamics models.

Students gain an overview and introduction to AUV dynamics modeling and can

experiment with the different parameters and coefficients that interact in the dynamics models.

The research workers will be able to test the Dynamics model, to change it, and

also to modify the different parameters, evaluate effectiveness and store the results.

58

d. Description of the AUV Dynamics Control Workbench

} AUY DYNAMICS CONTROL WORKBENCH g

File Control Dwnamics Parameters simulation Help

=101 %

I Wisualization 30

[~ Wisualization Besult

Sensor Wehicle State Applied Forces

Aoouztic Doppler "v"Ell:uj |>< &[] Raoll Fitch Yj I'W'ave Effort Wector j

Figure47. Main Windows.

The main window shown in Figure 47 contains 5 partss Menu bar, 3D

Visuaization, Models, Results and Launch Simulation

Menu Bar: The Menu bar is composed by 5 Menus items the first one call File
allow to save data resulting from the simulation, to open new data store in the
pass and to close the programs. The sub-menu control allow the modification of
the control parameters, The other menu dynamics can be use for modified and
read all the coefficient interacting in the simulation, the simulation menu is just a
short cut to the two SimuLink model (if 3d visuaization or not) and the help
menu is an access to an help about the AUV dynamics SimuLink model and
MATLAB.

Models: Models is composed of three push buttons which load the dynamics
coefficients of the submersible choose in the workspace and then set the
SimuLink model for the right AUV.

59

3D Visualization: this optionis use to see the evolution of the submersible on 3D
VRML. The model can be choosing using the popup menu.

Results: by using the different popup menu you can see the different results of the
simulation like the Vehicle States of the submersible (velocity, position, etc.) the
forces applied on it (wave effort, buoyancy efforts, etc.)

Launch Simulation: starts the ssimulation after having choosen all the different
options or change the different parameters to lunch the smulation.
Other Windows accessing from the main windows have been created to alow an
easier modification, entrance, interpretation of this SimuLink models.
7. M odifications
a AUV ARIES

The AUV ARIES is the newest submarine in action presented in the introduction,
it geometry is clothe to the AUV Phoenix which was the one before. The coefficients of this
submersible have been integrating in the MATLAB dynamics model and the equations of motion
are the same that used for the AUV Phoenix. The model used for the 3D Visualisation has aso
been added to the existent AUV PHOENIX 3D Visualisation.

b. REMUS

The REMUS (Remote Environmental Monitoring Unit) is a low-cost, modular
vehicle with applications in autonomous docking, long-range oceanographic survey, and

shallow-waters mine reconnaissance (Figure 48). [WHOI]

SWAY (Z) wY

PITCH (5} q.M N
HEAVE {3): w2 NS SURGE (1) uX

AW (B): .M ROLL (4) p.K I8

Figure48. RemusAUV [WHOI].

60

The REMUS is different from the ARIES Submersible, the attitude of the REMUS
vehicle is controlled by two horizontal fins, or stern planes, and two vertical fins or rudder, the
propulsion is redlise by only one thrusters and the geometry is different from the other
Submersible. The integration of this underwater vehicle in the existing SimuLink model have
been realised using the thesis of Timothy Presto (Verification of a six-degree of freedom
Simulation Model for the REMUS Autonomous Underwater Vehicle) which store the different

coefficients and profile that needs to be use for this model.

After testing the moddl in simulation, it seems that the behaviour of the
submersible is not correct. Because of time restraints, the resolution of this problem must be
deferred as future work. Either invalid coefficients or mismatched nomenclature are the likely
causes of this failure.

B. CONCLUSIONSAND FUTURE WORK

This work was done with the goal of improving the existing model by allowing easier
utilisation and interpretation of AUV control-law response and hydrodynamics modelling. The
tool was further extended to include REMUS hydrodynamics. Unfortunately, the REMUS model
coefficients are unstable, or else the hydrodynamics algorithm has a previously undiscovered
flaw. Further work is needed to complete this important functionality.

61

VIl. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Many of the magor challenges in operating an Autonomous Underwater Vehicle are
solved. Robust, capable systems are being deployed in both experimental and operational
contexts. But critical failures in control, software and systems still plague even the best AUVSs.
The thrust of the work presented here has been to make a useable, virtual world complete with
hydrodynamics modelling, actual robotics software and realistic models to demonstrate
behaviour indicated by the simulation. These pieces and parts have existed separately for many
years, relative to the age of the technology in general. Coaescing them into a single tool has
finaly been accomplished.

By no means is this work finished. There are exciting possibilities in every direction:
improved dynamics simulations, user reconfiguration of the GUI on demand, documentation, full
integration with MATLAB, and integration of other simulations and models.

B. RECOMMENDATIONS FOR FUTURE WORK

As with all technical endeavours, documentation is the key to passing on knowledge and
continuing the work. The JavaDoc, while vauable, is only a partial solution. A concerted effort
should be made to complete the documentation to include: User’s Manua: Software Version

Description Document that details updates, bug fixes and enhancements; Software Developer’s
Manual; etc.

It will be beneficia to compare other dynamics models and simulations. Just one
hydrodynamics model, albeit a good one, has been employed here. Other models would allow

users to configure the tool to suit a variety of control algorithms and response characteristics.

The Inspector function of the MATLAB dynamics model allows a view of the different
forces apply on the submersible. It also demonstrates the behaviour under different specific
missions and controls, more precisely targeting the different parameters interacting in the
models. Integrating this MATLAB function into the workbench would have benefit.

This work stands on the shoulders of giants in the field of autonomous underwater robots.

It raises the bar of available functionality, so that exciting and interesting work continues.
62

63

LIST OF REFERENCES

Access from Different Existing Work from the Home Page of Don Brutzman:
[http://web.nps.navy.mil/~brutzman/]

Brutzman, Donad P., “A Virtual World For An Autonomous Underwater Vehicle’, December
1994, Dissertation, Naval Postgraduate School.

Doucy ,Olivier, “Manoeuvring and Station-Keeping for an Autonomous Underwater Vehicle’,
October 2000, Dissertation, NATO Symposium.

General Documentation about the JavaDoc Documentation Available on Java Tool Home Page:
[http://java.sun.com/j2se/javadoc]

Healy, Anthony J., “Dynamics and Control for AUV’S’, May 2002, Presentation, Naval
Postgraduate School.

Help for Creating a General Graphical User Interface on MATLAB (GUIDE):
thttp://www.mathworks.com/access/hel pdesk/hel p/techdoc/creating guis/creating guis.shtmly

Help for Using and Calling Javafrom MATLAB:
[http://www.mathworks.com/access hel pdesk/hel p/techdoc/matlab_external/ch java.shtml]

Marco, David B, and Healy, Anthony J., “ Current Developments in Underwater Vehicle Control
and Navigation: The NPS ARIES AUV”, 2001, Dissertation, Naval Postgraduate School.

Prestero, Timothy, “Verification of a Six Degree of Freedom Simulation Model for the Remus
Autonomous Underwater Vehicle’, September 2001, Thesis, University of Californiaat Davis.

65

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Fort Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Thierry Vida
Ecole Nationale d'Ingénieurs de Tarbes, France
thierry@enit.fr

Didier Leandri
University of Toulon, France
|eandri @univ-tIn.fr

Cristina Russo Dos Santos
University of Toulon, France
cristina.russo@eurecom.fr

Tom Swean
Office of Naval Research
SWEANT @onr.navy.mil

Jean-Pierre LeGoff

Société d'Ingénierie, de Recherches et d’Etudes en Hydrodynamique Navale, Nantes,
France

mailto:sirenha@sirenha.ec-nantes.fr

Olivier Doucy

Société d'Ingénierie, de Recherches et d’Etudes en Hydrodynamique Navale, Nantes,
France

Olivier.Doucy @sirehna.ec- nantes.fr

Eric Chaum
Nava Undersea Warfare Center
ChaumE@npt.nuwc.navy.mil

Ernie Drew
Sonalyst, Incorporated
ewd@sonalysts.com

66

11.

12.

13.

14.

15.

16.

17.

Margaret Bailey
Sonalyst, Incorporated
bailey m@sonalysts.com

Dr. Don Brutzman
Naval Postgraduate School
brutzman@nps.navy.mil

Dr. Tony Hedley
Naval Postgraduate School
heal ey @nps.navy.mil

CDR Bill Marr, USN
Naval Postgraduate School
wjmarr@nps.navy.mil

Doug Horner
Naval Postgraduate School
dphorner@nps.navy.mil

Jeffrey Weekley
Naval Postgraduate School
jdweekle@monterey.nps.navy.mil

Alastair Cormack
Seabyte, LLC
alastair.cormack@seebyte.com

67

