

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

TECHNICAL REPORT

Approved for public release, distribution is unlimited

XML Schema-based Binary Compression (XSBC)
and Forward Error Correction (FEC) Functionality for

AUV Workbench (AUVW) Mission File Archiving

by

Terry D. Norbraten

23 May 2005

Technical Report NPS-MV-2005-00X

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing
and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,
Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
May 2005

3. REPORT TYPE AND DATES COVERED
Technical Paper

4. TITLE AND SUBTITLE: XML Schema-based Binary Compression
(XSBC) and Forward Error Correction (FEC) Functionality for
AUV Workbench (AUVW) Mission File Archiving
6. AUTHOR: Terry D. Norbraten

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
MOVES Institute, Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
NPS-MV-2005-00X

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES : The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This paper will detail instructions for operation of the XSBC and FEC Server panels within the AUV Workbench

and will also show the concept and design for XSBC and FEC operation within the source code and configuration files
used to configure the AUV Workbench for operational and / or educational use.

XSBC gives the user / designer the ability to tokenize XML documents to reduce fi le size and FEC provides the
data-healing capability for transmitted document packet erasure instances. Channel capacity optimizations are realized
with a combination of these two technologies.

15. NUMBER OF
PAGES

35

14. SUBJECT TERMS: XML Schema-based Binary Compression (XSBC), Forward Error
Correction (FEC), Extensible Modeling and Simulation Framework (XMSF), Modeling, Virtual
Environments and Simulation (MOVES)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

 ABSTRACT

This paper will detail instructions for operation of the XSBC and FEC

Server panels within the AUV Workbench and will also show the concept and

design for XSBC and FEC operation within the source code and configuration

files used to configure the AUV Workbench for operational and / or educational

use.

XSBC gives the user / designer the ability to tokenize XML documents to

reduce file size and FEC provides the data-healing capability for transmitted

document packet erasure instances. Channel capacity optimizations are realized

with a combination of these two technologies.

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

TABLE OF CONTENTS

I. INTRODUCTION.. 1
A. XSBC.. 1
B. FEC... 1
C. PAPER LAYOUT ... 2

II. FEC SERVER PANEL OPERATION ... 3
A. OPERATION OF THE FEC SERVER PANEL... 3
B. FEC LIBRARY REQUIRED FILES... 5
C. FILES MODIFIED OR CREATED TO FACILITATE FEC

OPERATIONS.. 5
D. PROCESS OF FEC OPERATIONS WITHIN THE AUVW...................... 6

1. Chain of events for the FECTransferOptionsType.................. 7
2. Manual conversions .. 9

E. CONCLUSIONS... 9

III. XSBC SERVER PANEL OPERATION ..11
A. OPERATION OF THE XSBC SERVER PANEL.....................................11
B. OPERATION OF THE XSBC COMPARISON TOOL13
C. XSBC LIBRARY REQUIRED FILES..14
D. FILES CREATED TO FACILITATE XSBC OPERATIONS..................15
E. PROCESS OF XSBC OPERATIONS WITHIN THE AUVW.................16

1. Chain of events for the XSBCTransferOptionsType.............17
2. Manual conversions ..17

F. CONCLUSIONS...18

APPENDIX A. LIST OF ABBREVIATIONS ...19

LIST OF REFERENCES...21

INITIAL DISTRIBUTION LIST ...23

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

LIST OF FIGURES

Figure 1. AUV Workbench Screenshot Showing FEC Server Panel...................... 3
Figure 2. FecTransferOptionsType Element Defined in

ConfigurationSchema.xsd Parsed by the XJC Target During the
AUV Workbench Build Process ... 6

Figure 3. Predator FEC Configuration Element and Parameter Attributes
Defined in the PredatorControlConfiguation.xml Vehicle
Configuration File ... 7

Figure 4. AUV Workbench Screenshot Showing XSBC Server Panel.................11
Figure 5. Snapshot of the XSBC Comparison Tool...13
Figure 6. XsbcTransferOptionsType Element Defined in

ConfigurationSchema.xsd Parsed by the XJC Target During the
AUV Workbench Build Process ...16

Figure 7. Predator XSBC Configuration Element and Parameter Attributes
Defined in the PredatorControlConfiguation.xml Vehicle
Configuration File ...16

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

 ACKNOWLEDGMENTS

Associate professor Donald P. Brutzman, PhD., of the Naval Postgraduate

School’s Modeling, Virtual Environments and Simulation (MOVES) Institute is a

major proponent of open source, open standards technology for use within DOD

Information Technology (IT) programs. His inner motivation and personal

insights for use of open source and open standards has spawned many creative

student ideas that add every quarter to the furtherance of Extensible Modeling

and Simulation Framework (XMSF) efforts. Dr. Brutzman has opened my eyes

to these e fforts and has helped me realize that the end user – our Soldiers,

Sailors, Airmen and Marines, have research scientists and technical experts

working diligently to produce and further technologies that save DOD enormous

amounts of money and attempt, with passion, to enable that war-fighter to train

and fight with better equipment that leverages the best of our technological edge.

My thanks goes out to Professor Brutzman for taking the time to show me

a few things about the Modeling and Simulation world; to Alan Hudson of

Yumetech, Inc., for his time and knowledge given to me of XSBC, to the late Dr.

Richard Hamming, PhD., for his NPS sponsored course Hamming on Hamming:

Learning to Learn and for his discovery of FEC; to CDR Duane Davis for his

mentoring and direction concerning the AUVW and to my daughters Amanda,

Melinda and Brittany for their unending support for me.

 x

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. XSBC

XML Schema-based Binary Compression (XSBC) has been developed as

a general approach to binary serialization of XML documents. Elements and

attributes are replaced via a tokenization scheme, which carefully preserves valid

XML document structure [Husdon 2004]. XSBC uses XML schema as the basis

for determining key document parameters such as legal elements, attributes and

data types. Binary serialization of XML via XSBC appears suitable for both

message streams and document-storage streams. Type-specific algorithms can

compress attribute and leaf-node data. Ongoing work includes possible further

annotation of schema to include binary compression parameters such as

significant digits, significant bits (or bytes), skip-ability, lossy / lossless, etc.

Refinements to the XSBC algorithm and open-source implementation are

ongoing. XSBC can further incorporate geometric-compression algorithms, and

is being used to implement the forthcoming Compressed Binary Encoding [See

Compressed Binary Encoding] for the ISO-approved Extensible 3D (X3D)

Graphics. Further information on XSBC is available online at the Extensible

Modeling and Simulation Framework (XMSF) project webpage [See Extensible

Modeling and Simulation Framework].

B. FEC

Forward Error Correction (FEC) has been around since the mid 1940's. It

was invented by the late Richard W. Hamming, PhD., while he worked at Bell

Telephone Laboratories in New Jersey. As a mathematician, he was never

satisfied with computers that could tell you there were errors in a particular

encoding, but would not tell you where that error was and would not do anything

to fix it [Hamming 1997]. Since the time of his invention of the first Binary Digit

(BIT) error correction algorithms, many other adaptations and variations of FEC

have taken root. From the music we listen to encoded onto Compact Discs

(CD)’s to deep space probes communicating data back to earth with very low

2

power transmission capabilities; these data transmitters utilize some type of FEC

to correct BIT errors (Reed-Solomon codes) [See Reed-Solomon codes] and / or

packet erasure instances (dropped packet data reconstruction / data healing

algorithms) [Rizzo 1997].

Further information on the Java based FEC implementation used in this

project is available online at Onion Networks, Inc. Developers Java FEC Library

1.0.3 [See Onion Networks].

C. PAPER LAYOUT

Chapter I is concerned with FEC Server panel operations detailing how to

operate the panel, what to expect and details the process of the source code

methods written to perform FEC operations.

Chapter II details the same information given as above concerning XSBC

operations. The XSBC utility feature was first implemented within the AUV

Workbench to facilitate efficient mission results file archiving. The FEC utility

feature was designed using the existing XSBC feature as a model.

Appendix A gives a list of all abbreviations and acronyms used throughout

this paper.

3

II. FEC SERVER PANEL OPERATION

A. OPERATION OF THE FEC SERVER PANEL

Operation is as follows:

Figure 1. AUV Workbench Screenshot Showing FEC Server Panel

1) Once the AUVW is up and running, select the Tools menu and select

FEC services. A separate Graphical User Interface (GUI) panel will become

visible.

2) To enable mission results file archiving, select the FEC server enable

checkbox. This will start a separate decoding server thread that will allow

receiving of encoded repair packets via User Datagram Protocol (UDP). A built-

in dropped packet, or packet erasure simulation will be invoked exercising the

FEC decoder’s ability to repair the erasures and reconstruct the entire

transmitted data file. Close the dialog.

4

3) Deselect Multiple loops (an option to facilitate quick demonstration of

FEC operations only).

4) Select Start to run the default mission profile of the Predator Unmanned

Arial Vehicle (UAV). You can run the entire mission until “quit,” or, you can select

stop to watch the process: XML -> XSBC (serialize) -> GZip -> FEC (encode) ->

UDP Transmit -> FEC (decode) -> Un-GZip -> XSBC (de-serialize) -> XML ->

save to disc in both lower console windows.

5) The default FEC Parameters will work very well with very large files (30

MB+). The UDP listening port is also set by default to 4040.

6) Manual conversions (encoding / decoding) can be completed by

selecting an XML or other file from the file chooser (../dataweb/results) path

within the Manual conversions panel. Select or manually name a file with an

*.fec extension to encode to.

7) Press Encode once a file is selected.

8) To decode that file, select the Decode to File tab, select the *.fec file

and select or name a test file to decode to. Press Decode once a file is named.

9) Select the help button for more information concerning this panel from

the JavaHelp menu.

This panel can be used in conjunction with the XSBC server panel to

manually serialize / encode -> decode / de-serialize *.xml files generated by the

AUVW.

5

B. FEC LIBRARY REQUIRED FILES

To run FEC routines within the AUV Workbench the following JAR files

were placed in the lib/ path during Current Versioning System (CVS) upload to

the xmsf project at Sourceforge.net:

• concurrent-jaxed.jar

• log4j-1.2.9.jar

• onion-common.jar

• onion-fec.jar

These files can be obtained in binary form from the Onion Networks, Inc. site

[See Onion Networks] or by manually building the source code also obtained

from that site.

C. FILES MODIFIED OR CREATED TO FACILITATE FEC OPERATIONS

The following files either were created from scratch, or modified (using the

XSBC process as a model) in the existing source code base to enable FEC

operations:

• execution/Execution.java

• execution/RuntimeFlags.java

• execution/auv/AuvExecution.java

• execution/auv/AuvFlags.java

• execution/fec/FecEncoder.java

• execution/mission/Mission.java

• execution/uav/UavExecution.java

• execution/uav/UavFlags.java

• worbench/main/AMVWmenuBar2.java

• workbench/main/FECservicesDialog.java

6

• workbench/main/MissionExecAndDynamicsHandler.java

• workbench/main/MultiMissionController.java

• workbench/xmlutilities/FecDecoder.java

• workbench/xmlutilities/FecServer.java

D. PROCESS OF FEC OPERATIONS WITHIN THE AUVW

 The main schema to configure the AUV Workbench is the

ConfigurationSchema.xsd located in the configuration/ path. This schema

defines the element <xsd:complexType name="FecTransferOptionsType"> that

is parsed during the build process by the Java Architecture for XML Binding

(JAXB) Binding Compiler (XJC) target to create various java files that are placed

in the configuration/jaxb source package path. The JAXB generated class files

define parameters that facilitate FEC operation within the AUV Workbench.

Figure 2. FecTransferOptionsType Element Defined in ConfigurationSchema.xsd

Parsed by the XJC Target During the AUV Workbench Build Process

????????
 <!-- Implement Forward Error Correction (FEC) 13 APR 05 (tdn) -->
 <xsd:complexType name="FecTransferOptionsType">
 <xsd:annotation>
 <xsd:documentation>Element used to specify options for the UDP transfer of
compressed/serialized mission results files encoded with Forward Error Correction (FEC) back to
the workbench.</xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="transfer" type="xsd:boolean" use="required"/>
 <xsd:attribute name="host" type="xsd:string" use="required"/>
 <xsd:attribute name="port" type="xsd:positiveInteger" use="required"/>
 <xsd:attribute name="schema" type="xsd:string" use="required"/>
 <xsd:attribute name="feck" type="xsd:positiveInteger" use="required"/>
 <xsd:attribute name="fecn" type="xsd:positiveInteger" use="required"/>
 <xsd:attribute name="fecpacketsize" type="xsd:positiveInteger" use="required"/>
 <xsd:attributeGroup ref="commonAttributes"/>
 </xsd:complexType>

7

The AriesControlConfiguration.xml and PredatorControlConfiguration.xml

vehicle configuration files, also located in the configuration/controlCoefficients

path, define FEC operational parameters and are parsed during a mission start to

begin a selected vehicle’s execution process that refer to those FEC parameters.

Figure 3. Predator FEC Configuration Element and Parameter Attributes Defined in
the PredatorControlConfiguation.xml Vehicle Configuration File

1. Chain of events for the FECTransferOptionsType

By default, the above figure states that the transfer option is set to

true. This causes the vehicle runtime flag “FECTRANSFER” to be true. Once a

vehicle has completed a mission, or is stopped by the AUVW operator, an FEC

mission archive transfer operation initiates. The FecEncoder is passed these

FEC parameters and begins an XSBC / GZip process to compress the mission

results XML file to its smallest possible file size. A reference to the *.xsbc.gz file

path is maintained by the FecEncoder and the encoding process begins. A

Message-Digest Algorithm 5 (MD5) is invoked to calculate file hash values.

These file hashes are transmitted to the FecDecoder for later file verification

required by the FECFile decoding process. Next, the size of the *.xsbc.gz file is

transmitted to the FecDecoder. This is the last FECParameter required by the

FecDecoder that was not given by each vehicle configuration file as each mission

results file size is unique and can not be known until generated at the completion

of each mission.

The next process is for the FecEncoder to break up the *.xsbc.gz

into individual encoding blocks of which the total number is calculated by:

blockCount = filesize / (k * packetSize)

<!-- Modified for Forward Error Correction (FEC) functionality 19 APR 05 -->
<FEC transfer="true" host="localhost" port="4040" schema="Scripts/AVCL.xsd" feck="16"
 fecn="32" fecpacketsize="1024"/>

8

After the blockCount has been determined, each block is given an n vector of

indices for Galois Field (GF) 28 encoding within an (n * k) dimension

Vandermonde matrix. (GF) 28 is automatically invoked by the default n

parameter hard coded in each vehicle’s configuration file. (GF) 216 is also

available by defining an n parameter > 256. However, this will result in a

significant overhead in order of operations as the required matrices will be too

large to be contained in resident memory. For a (GF) 28 operation occupied

memory for the required logarithmic table sizes are only 28 * 28 * 8 bits = 64k of

memory [Chapweske 2000]. For each block, its n vector of indices is transmitted

to the FecDecoder.

The final encoding process step is that each block is encoded per

the 1…n indice in which each of the n indices index an encoded repair packet of

size packetSize = 1024 B. The 1024 B size vector conforms to most Maximum

Transmission Units (MTU)’s of < 1500 B is size. Once each block’s n vector

indices and encoded repair packets have been transmitted, the FecEncoder’s

operation are complete.

If the FecServer has not been enabled as instructed above, these

packets will be lost and the console will output that connection to the FecServer

could not be established. If the FEC Server is enabled, then the FecDecoder will

capture (receive) the file’s hash values, fileSize, block indice values and repair

packets. The decoder then generates an FECFile to decode (write) to. The

reverse process of encoding takes place by placing each repair packet in its

block indice within the decoding matrix, decoding each block and writing the file

back to an *.xsbc.gz extension, un-gzipping the file, de-serializing by XSBC de-

serialization process, verifying the MD5 hash values and then finally archiving the

mission results file to local disc.

Receiving any k subset of the n repair packets transmitted is

sufficient to reproduce the original file and this exact process is simulated by

receiving all n repair packets, along with their corresponding indices, and

selecting a random k subset of those repair packets along with their matching

9

indice. This code is considered systematic in that receiving k indice values < the

maximum k value will represent repair packets in their original un-encoded form

which saves cycles in the decoding process. Further information of what a

systematic code is can be investigated from [Norbraten 2004].

2. Manual conversions

The process of using the FEC Server panel’s Manual conversions

tab is essentially the same except that no packets are being transmitted. An

FECFile is saved to local disc that contains the encoding data of a file that was

manually selected to encode. The decoding process then streams in the

encoded *-manual.fec file and writes back to the same directory a *-manual.fec.*

file.

The FEC Server does not need to be enabled to perform manual

encodings of selected files.

E. CONCLUSIONS

The incorporation of an FEC utility process within the AUV Workbench

gives the designer / researcher the ability to ensure redundancy in the

transmitted file data so that in the event of packet erasure instances, the received

packets will contain enough information to enable reconstruction back to the

original file. Even very large file sizes (20 MB+) have no problem being

transmitted as each file is broken up into blocks each containing repair packets of

size 1024 B which satisfy most MTU restrictions.

Machine performance issues using the Java based FEC 1.0.3 library are

explained in more detail in [Chapweske 2000].

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. XSBC SERVER PANEL OPERATION

A. OPERATION OF THE XSBC SERVER PANEL

Operation is as follows:

Figure 4. AUV Workbench Screenshot Showing XSBC Server Panel

1) Once the AUVW is up and running, select the Tools menu and select

XSBC services. A separate GUI panel will become visible.

2) To enable mission results file archiving, select the XSBC server

enabled checkbox. This will start a separate de-serializing server thread that will

allow receiving of streamed packets via Transmission Control Protocol (TCP).

Close the dialog. The default TCP listening port is set to 9090 by default.

3) Deselect Multiple loops (an option to facilitate quick demonstration of

XSBC operations only).

4) Select Start to run the default mission profile of the NPS Aries AUV.

You can run the entire mission until “quit,” or, you can select stop to watch the

12

process: XML -> XSBC (serialize) -> GZip -> TCP Transmit -> Un-GZip -> XSBC

(de-serialize) -> XML -> save to disc in both lower system output console

windows.

5) Manual conversions (serializing / de-serializing) can be completed by

selecting an XML file from the file chooser (../dataweb/results) path within the

Manual conversions panel. Select or manually name a file with an *.xsbc

extension to serialize.

6) Press Compress XML with XSBC once a file is selected.

7) To de-serialize that file, select the XSBC to XML tab, select the *.xsbc

file and select or name a test file to de-serialize to. Press Generate XML from

XSBC once a file is named.

8) Select this tab to launch the XSBC ComparisonTool.

9) Select the help button for more information concerning this panel and

the XSBC Comparison Tool panel from the JavaHelp menu.

This panel can be used in conjunction with the FEC server panel to

manually serialize / encode -> decode / de-serialize *MissionOutput*.xml files

generated by the AUVW.

13

B. OPERATION OF THE XSBC COMPARISON TOOL

Operation is as follows:

Figure 5. Snapshot of the XSBC Comparison Tool

1) Select File / Open to display the JFileChooser.

2) The file choose will open up to the dataweb / results directory by

default. The vehicle type mission file must be selected as it contains a reference

to the AVCL.xsd which is required by XSBC to perform serializations.

3) The Comparison Tool will load the file, read the location of the schema

file defining the structure of this file, Scripts/AVCL.xsd in this case, and display

the name of the file along with its original file size.

4) Select Process to begin the serialization process.

14

5) Observer the process outcome statistics in this area. File loading,

read / parse and combined processing times will be displayed as well as the

corresponding compressed file sizes for comparison. Note: A build of GZIP must

be installed on your system to view GZIP compression results.

 6) Select View to call the de-serialized file to load into XMLSpy for

viewing. The process goes through a quick demonstration of FEC encoding /

decoding before loading into XMLSpy. The resulting file is renamed as foo.xml

which is placed in the dataweb/results directory.

C. XSBC LIBRARY REQUIRED FILES

To run XSBC routines within the AUV Workbench the following JAR files

were placed in the lib/ path during CVS upload to the xmsf project at

Sourceforge.net:

• batlik-util.jar

• dom4j-full.jar

• xercesImpl.jar

• xsbc.jar

These files can be obtained in binary form from the xmsf project site [See XMSF

project] or by manually building the source code from the xsbc directory at this

site.

 Since the XSBC application and example files call certain FEC routines as

well as the embedded FedTestFiles that come embedded with the current XSBC

build, the required jar files for FEC mentioned above will also be needed to

properly build XSBC.

15

D. FILES CREATED TO FACILITATE XSBC OPERATIONS

The following files were created from scratch to enable XSBC operations:

• execution/Execution.java

• execution/RuntimeFlags.java

• execution/auv/AuvExecution.java

• execution/auv/AuvFlags.java

• execution/xsbc/XsbcSerializer.java

• execution/mission/Mission.java

• execution/uav/UavExecution.java

• execution/uav/UavFlags.java

• worbench/main/AMVWmenuBar2.java

• workbench/main/MissionExecAndDynamicsHandler.java

• workbench/main/MultiMissionController.java

• workbench/main/XSBCservicesDialog.java

• workbench/xmlutilities/XsbcTransaction.java

• workbench/xmlutilities/XsbcServer.java

There are a host of additional files created by the XJC process during the

AUW Workbench build process. These files are contained in the

configuration/jaxb path and are subject to be cleared and re-built with each AUV

Workbench build process initiated.

16

E. PROCESS OF XSBC OPERATIONS WITHIN THE AUVW

 The main schema to configure the AUV Workbench is the

ConfigurationSchema.xsd located in the configuration/ path. This schema

defines the element <xsd:complexType name="XsbcTransferOptionsType"> that

is parsed during the build process by the XJC target to create various java files

that are placed in the configuration/jaxb source package path. The JAXB

generated class files define parameters that facilitate XSBC operation within the

AUV Workbench.

Figure 6. XsbcTransferOptionsType Element Defined in ConfigurationSchema.xsd

Parsed by the XJC Target During the AUV Workbench Build Process

The AriesControlConfiguration.xml and PredatorControlConfiguration.xml

vehicle configuration files, also located in the configuration/controlCoefficients

path, define XSBC operational parameters and are parsed during a mission start

to begin a selected vehicle’s execution process that refer to those XSBC

parameters.

Figure 7. Predator XSBC Configuration Element and Parameter Attributes Defined
in the PredatorControlConfiguation.xml Vehicle Configuration File

<xsd:complexType name="XsbcTransferOptionsType">
 <xsd:annotation>
 <xsd:documentation>Element used to specify options for the transfer of compressed

mission results back to the workbench.</xsd:documentation>
 </xsd:annotation>
 <xsd:attribute name="transfer" type="xsd:boolean" use="required"/>
 <xsd:attribute name="host" type="xsd:string" use="required"/>
 <xsd:attribute name="port" type="xsd:positiveInteger" use="required"/>
 <xsd:attribute name="schema" type="xsd:string" use="required"/>
 <xsd:attributeGroup ref="commonAttributes"/>
</xsd:complexType>

<XSBC transfer="true" host="localhost" port="9090" schema="Scripts/AVCL.xsd"/>

17

1. Chain of events for the XSBCTransferOptionsType

By default, the above figure states that the transfer option is set to

true. This causes the vehicle runtime flag “XSBCTRANSFER” to be true. Once

a vehicle has completed a mission, or is stopped by the AUVW operator, an

XSBC mission archive transfer operation initiates. The XsbcSerializer is passed

these XSBC parameters and begins an XSBC / GZip process to compress the

mission results XML file to its smallest possible file size.

If the XsbcServer has not been enabled as instructed above, the

transfer process will halt and the console will output that connection to the

XsbcServer could not be established. If the XSBC Server is enabled, then the

XsbcTransaction will receive, via TCP, the serialized file to un-gzip back to an

*.xsbc extension, then de-serialize by XSBC de-serialization process before

archiving the mission results file to local disc.

The serialization and de-serialization processes use the AVCL.xsd

schema in the Script/ path to build XML tree representations in memory. Further

information on these particular processes can be investigated from [Serin 2003].

2. Manual conversions

The process of using the XSBC Server panel’s Manual conversions

tab is essentially the same except that no files are being transmitted. A mission

results file saved to local disc is manually selected to serialize. The de-

serialization process then de-serializes the file and writes back to the same

directory a *-manual.xsbc.* file.

The XSBC Server does not need to be enabled to perform manual

serializations of selected files.

18

F. CONCLUSIONS

The incorporation of an XSBC utility process within the AUV Workbench

gives the designer / researcher the ability to ensure channel capacity issues are

dealt with efficiently by utilizing the dual compression algorithms available in the

XSBC utility. While it is noted that parsing speeds are not increased by the

XSBC process, XSBC does add to channel capacity efficiencies by significantly

reducing the verboseness of terse XML documents.

Current streaming limitations have been identified in XML files > 20MB in

that not enough Java Virtual Machine (JVM) heap size can be allocated for the

enormous table sizes needed to reconstruct / de-serialize those size files. JVM

heap size allocation, of course, is an independent machine capability issue.

19

APPENDIX A. LIST OF ABBREVIATIONS

AUV Autonomous Un-manned Vehicle

AUVW AUV Workbench

B Byte

BIT Binary Digit

CD Compact Disc

CVS Current Versioning System

FEC Forward Error Correction

JAXB Java Architecture for XML Binding

GL Galois (pronounced “gal wah”) Field

GNU Recursive Acronym for “GNU's Not UNIX”

GUI Graphical User Interface

GZIP GNU Zip

ISO International Standards Organization

IT Information Technology

JVM Java Virtual Machine

M&S Modeling and Simulation

MD5 Message-Digest Algorithm 5

MOVES Modeling, Virtual Environments and Simulation

MTU Maximum Transmission Unit

NPS Naval Postgraduate School

PhD Doctor of Philosophy

SAVAGE Scenario Authoring and Visualization for Advanced

 Graphical Environments

20

TCP Transmission Control Protocol

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UUV Un-manned Underwater Vehicle

USW Undersea Warfare

X3D Extensible 3D

XJC JAXB Binding Compiler

XML Extensible Markup Language

XMSF Extensible Modeling and Simulation Framework

XSBC XML Schema-based Binary Compression

21

LIST OF REFERENCES

Chapweske, J.F., (2000), “Forward Error Correction Performance”, paper
 contained in the docs folder of the binary fec-1.0.3.zip file in .pdf format
 titled “FECPerformance”.

Compressed Binary Encoding. Retrieved April 2005 from
 http://www.web3d.org/x3d/specifications/ISO-IEC-19776-3-CD-
 X3DEncodings-CompressedBinary/index.html

Extensible 3D (X3D) Graphics. Retrieved April 2005 from:
 http://www.web3d.org/x3d

Extensible Modeling and Simulation Framework (XMSF). Retrieved April 2005
 from: http://www.movesinstitute.org/xmsf/xmsf.html#Projects-XSBC

Hamming, R.W., The Art of Doing SCIENCE and Engineering: Learning to
 Learn. Amsterdam B.V., The Netherlands: Gordon and Breach Science
 Publishers, 1997.

Hudson, A. XSBC concept excerpt from the Sourceforge CVS site for XSBC
 source code retrieved April 2005 from
 http://cvs.sourceforge.net/viewcvs.py/xmsf/xsbc/docs/
 xsbc.html?rev=1.2&view=markup

Norbraten, T.D., “Utilization Of Forward Error Correction (FEC) Techniques With
 Extensible Markup Language (XML) Schema-Based Binary Compression
 (XSBC) Technology”, Master’s Thesis, Naval Postgraduate School, Monterey,
 CA, December 2004. Last accessed April 2005 from:
 http://theses.nps.navy.mil/04Dec_Norbraten.pdf

Onion Networks, Inc. Retrieved April 2005 from
 http://www.onionnetworks.com/about.php

Reed-Solomon Codes, (n.d.), “An introduction to Reed-Solomon codes:
 principles, architecture and implementation”, Last accessed April 2005
 from http://www.4i2i.com/reed_solomon_codes.htm

Rizzo, L., “Effective erasure codes for reliable computer communication
 protocols”, ACM Computer Communication Review, Vol. 27, n. 2, April 1997.
 Also available as DEIT Technical report LR-970115, retrieved April 2005
 from http://www.iet.unipi.it/~luigi/fec.html

22

Serin, E., “Design and Test of the Cross-Format Schema Protocol (XSFP) for
 Network Virtual Environments”, Master’s Thesis, Naval Postgraduate
 School, Monterey, CA, March 2003. Retrieved December 2004 from
 http://www.movesinstitute.org/Theses/Serinthesis.pdf

23

INITIAL DISTRIBUTION LIST

1. Dr. Donald P. Brutzman
Naval Postgraduate School
Monterey, CA

2. LT Terry D. Norbraten, USN(Ret)

U.S. Navy
Aptos, CA

3. CDR Duane T. Davis, USN
Naval Postgraduate School
Monterey, CA

4. Margaret Bailey

Sonalysts
Waterford, CT

5. Alan Hudson

Yumetech, Inc.
Seattle, WA

