
NAVAL POSTGRADUATE SCHOOL
Monterey California

Approved for public release; distribution is unlimited

 Prepared for: Center for Autonomous Underwater Vehicle (AUV) Research
 Naval Postgraduate School, Department of the Navy

EXTENSIBLE 3D (X3D) GRAPHICS: SCENE DESIGN FOR

AUTONOMOUS UNDERWATER VEHICLE (AUV)
MISSION VISUALIZATION

by

Frederic Roussille

September 2001

NPS-ME-01-008

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2001

3. REPORT TYPE AND DATES COVERED
Project report

4. TITLE AND SUBTITLE: Extensible 3D (X3D) Graphics: Scene Design for
Autonomous Underwater Vehicle (AUV) Mission Visualization

5. FUNDING NUMBERS

6. AUTHOR Frederic Roussille

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Autonomous Underwater Vehicle (AUV) Research
Mechanical Engineering Department
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT

The NPS Center for AUV Research is a leader in this field and has been working for 14 years on several AUV pr ototypes. Its latest

AUV is designated the Acoustic Radio Interactive Exploratory Server (ARIES) and is fully operational.

Because it is sometimes difficult to observe and understand AUV behavior during mission operations, an underwater virtual world can

comprehensively model all AUV missions and environment. This report contributes towards real and virtual AUV software development. Indeed,

thoughts about a virtual world for AUVs are among the next steps in general AUV development.

This research report is a study and an experiment to transform AUV mission data into visible scenes. These scenes will build up a set of

3D mission archives that could be used later. The chosen programming language is the Virtual Reality Modeling Language (VRML). The

programming editor tool is called X3D-Edit, based on XD3 graphics technology and recently upgraded with a French version (French tooltips).

This report also provides 3D VRML/X3D models for the AUV and underwater mine models to improve AUV virtual world realism.

15. NUMBER OF
PAGES

99

16. SUBJECT TERMS VRML, X3D, Virtual world, AUV

16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison, USN Richard Elster
Superintendent Provost

This report was prepared for Ecole Nationale des Ingenieurs de Tarbes (ENIT), France.

This report was prepared by:

Frederick Roussille
Ecole Nationale de Ingenieurs de Tarbes

Reviewed by: Released by:

________________________ __________________________
Professor Anthony J. Healey D. W. Netzer
Department of Mechanical Engineering Associate Provost and
 Dean of Research

Associate Professor Don Brutzman
Undersea Warfare Academic Group

 iii

ABSTRACT

The NPS Center for AUV Research is a leader in underwater robotics and has been

working for 14 years on several AUV prototypes. Its latest AUV designated the Acoustic

Radio Interactive Exploratory Server (ARIES) and is fully operational.

Because it is sometimes difficult to observe and understand AUV behavior during

mission operations, an underwater virtual world can comprehensively model all AUV

missions and environment. This report contributes towards real and virtual AUV software

development. Indeed, thoughts about a virtual world for AUVs are among the next steps in

general AUV development.

This research report is a study and an experiment to transform AUV mission data

into visible scenes. These scenes will build up a set of 3D mission archives that can provide

post-mission visualization. The chosen programming language is the Virtual Reality

Modeling Language (VRML) encoded in Extensible 3D (x3d) Graphics format. The

programming editor tool is called X3D-Edit, based on XD3 graphics technology and

recently upgraded with a French version (French tooltips).

This report also provides 3D VRML/X3D models for the AUV and underwater

mine models to improve AUV virtual world realism.

 iv

ACKNOWLEDGEMENTS

I have to thank many people for helping me for this final project.

First of all, I would like to thank Dr. Donald Brutzman, Professor Anthony Healey,

Dr. David Marco from the Naval Postgraduate School, M. Thierry Vidal from the Ecole

Nationale d’Ingenieurs de Tarbes (France) and the ENIT’s international relations for giving

the opportunity to come to Monterey (California) for my final project working within the

Mechanical Engineering Department of the Naval Postgraduate School.

Secondly, I would like to thank so much again Dr. Donald Brutzman for being my

supervisor and for the unconditional support he gave me throughout this project. He

answered every question I asked with a constant patience and kindness and always stayed

listening to my requests.

I thank M. Thierry Vidal a lot for being my supervisor in France and for the help

and advices he gave me during this internship period.

 v

THIS PAGE LEFT INTENTIONALLY BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. MOTIVATION ..1
C. ORGANIZATION OF THE REPORT..2

II. RELATED WORK..3
A. INTRODUCTION..3
B. VEHICLE PRESENTATION...3

1. ARIES Hardware ...3
2. Computer Hardware Architecture ...6
3. Computer Software Architecture...6

C. AUV DATA SERVER (ADS)..8
D. SUMMARY ..9

III. VRML GRAPHICS ...11
A. INTRODUCTION..11
B. PRESENTATION OF VRML ..11

1. VRML History..11
2. Presentation..11
3. Browsers and VRML ...12
4. Creating a Simple Object with VRML ..12

C. SUMMARY ..16

IV. X3D GRAPHICS..17
A. INTRODUCTION..17
B. XML ENCODING ...17
C. X3D-EDIT...18

1. Presentation..18
2. X3D-Edit Interface...19

D. SUMMARY ..21

V. MODELING PHYSICAL OBJECTS IN A VIRTUAL OCEAN..........................23
A. INTRODUCTION..23
B. THE ARIES PROTOTYPE..23

1. AUV Hull ..23
2. Propellers ..25
3. The Fin and the DGPS...26
4. The NPS Logo...26
5. The Complete VRML ARIES Model...27
6. Another ARIES Prototype ..28

C. THE WAYPOINT TRACK GENERATOR..28
1. Problem Statement...28
2. Designing the Waypoint Track Generator Prototype29

a. Proto Instance Declaration...29
b. Prototype Body: The Switch Node..31

 vii

c. Proto Type Body: Interpolators and Sensor Nodes31
d. Proto Type Body: Script Nodes...31
e. Outside the Prototype..42
f. Complete Diagram of the Program..42

D. MINE CONTACTS ...43
1. Introduction..43
2. The Manta Prototype ...44

E. SUMMARY ..46

VI. EXPERIMENTAL RESULTS..47
A. EVALUATION OF OUTPUTS ..47
B. SPECIFIC EXAMPLE MISSION..47
C. SUMMARY ..50

VII. CONCLUSIONS AND FUTURE WORK...51
A. CONCLUSIONS ..51
B. RECOMMENDATIONS FOR FUTURE WORK......................................51

APPENDIX A. ARIES AUV X3D MODEL ...53

APPENDIX B. WAYPOINT FRENCH GENERATOR X3D MODEL65

APPENDIX C. MANTA UNDERWATER MINE X3D MODEL....................................73

LIST OF REFERENCES ..84

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. The NPS ARIES AUV “On the Hook,” Being Lowered into the Water.3
Figure 2. Hardware Components of the NPS ARIES..5
Figure 3. Dual Computer System Unit. ...6
Figure 4. Relational Behavior Model [Holden 1995]..7
Figure 5. Dual Computer Software Architecture [REF]. ..8
Figure 6. Block Diagram of the ADS and its Connection to MEDAL..............................9
Figure 7. Sphere with Changing Colors Animated Using VRML, Shown in Two

Different Browsers...16
Figure 8. X3D-Edit Interface with Multi-Language Tooltips. ..21
Figure 9. The ARIES Hull with creaseAngle Value = 3.14. ...24
Figure 10. The ARIES Hull with creaseAngle Value = 0. ..24
Figure 11. A 3D VRML Propeller inside a Shroud. ..26
Figure 12. The VRML ARIES Model (Top and Aft Quarter Views).27
Figure 13. The VRML ARIES Model (Side View). ...28
Figure 14. The ADS Software Analyzes AUV Mission Data and Produces 3D Scenes

using the 3D Models Presented in this Chapter. ..29
Figure 15. Manta Model Body Extrusion. ...44
Figure 16. Manta Model Ring Extrusion (ring + column). ...45
Figure 17. Manta Model Ring Support..45
Figure 18. 3D Manta Mine Model...45
Figure 19. AUV Path Made with Points using VRML. ..49
Figure 20. AUV Path Made with Lines using VRML...50

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF DIAGRAMS

Diagram 1. Diagram of the Function CompletePointSetValue_changed().........................37
Diagram 2. Diagram of the Function set_completePointSetColorArray().38
Diagram 3. Diagram of the Function mappedColorPointCreator().41
Diagram 4. Complete Diagram of the Program Waypoint Track Generator.43

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Coordinates and Time-Stamps Values. ..48

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Autonomous Underwater Vehicles (AUVs) are designed to independently accomplish

complex tasks either in deep oceans or shallow water. A meticulous design must be followed

during conception of the AUV, since little or no communication with distant human supervisors

is possible. Thus, the underwater domain imposes many limitations and restrictions about

hardware and software components selection, as well as hardware and software architecture.

The Center for AUV Research at the Naval Postgraduate School has been working for 14

years on several AUV prototypes, with each improvement showing further success. The latest

NPD AUV is called Acoustic Radio Interactive Exploratory Server (ARIES) and is fully

operational. Currently ARIES operates for short missions in Monterey Bay.

During operations, data sets, gathered from the ARIES include track positions,

bathymetry (for each sample point), sonar and video data, contact coordinates, image, etc. All of

this data helps to reconstruct what happened during a mission. Nevertheless those information

streams are merely data and it is very difficult to observe AUV operations. That is why an

underwater virtual world is needed to comprehensively model all AUV missions and all

characteristics of the real world where it moves around.

B. MOTIVATION

A virtual world using 3D graphics for the ARIES, provides an excellent design

alternative to observe and understand its operations. Because of its high level of realism, a virtual

world has the potential to completely change how people observe and analyze post-mission data.

The Virtual Reality Modeling Language (VRML), specially created to design virtual

worlds, is a good choice for such tasks. Not only suited to 3D virtual worlds, VRML is also a

good way to share information and make these experiments available via the World Wide Web.

Extensible 3D (X3D) improvements to VRML provide further benefits.

The main purpose of this project is to demonstrate how transform data into visible

information such as the AUV path, AUV models, submerged contact models, etc. Additional

functionality is to provide user interactivity during playback: missions displayed “in real time” or

 2

not, choosing display parameters, etc. Together These scenes can build up a set of 3D mission

archives for long-term use.

C. ORGANIZATION OF THE REPORT

This report is organized into seven chapters:

• Chapter I is the present introduction.

• Chapter II is a presentation of related works pertinent to the ARIES AUV
(hardware and software components), and AUV Data Server (ADS) software that
collects and transforms mission data from the AUV.

• Chapter III is an overview of VRML and an introductory tutorial to VRML syntax
and VRML worlds.

• Chapter IV is a presentation of Extensible 3D (X3D) graphics technology and a
X3D based tool, X3D-Edit, used to create VRML/X3D worlds.

• Chapter V describes the VRML/X3D scene, which generates AUV paths
according to AUV mission data in a 3D virtual world. This chapter also contains
3D models for individual objects such as the ARIES, underwater mines, etc.

• Chapter VI shows VRML/X3D experimental results derived from AUV operation
data.

• Chapter VII provides conclusions and recommendations for future work.

Appendices and associated research products are the final part of this report.

 3

II. RELATED WORK

A. INTRODUCTION

Research on Autonomous Underwater Vehicles (AUVs) has been an ongoing project at

the Naval Postgraduate School (NPS) in Monterey, California USA since 1987. Several AUVs

followed one another, increasing operational capabilities and becoming more robust as they

become more sophisticated in terms of hardware and computer software. The latest NPS vehicle

is named Acoustic Radio Interactive Exploratory Server (ARIES). This vehicle is a student-

research test bed for shallow-water minefield-mapping missions, operating in the littoral ocean.

The hull has recently become fully operational, and at the present time, only software

enhancements are required. Currently the vehicle operates regularly in Monterey Bay.

The following section is a general overview of the NPS AUV. It provides a general

description of the hardware and the software architecture of this vehicle. These descriptions of

the ARIES AUV are derived from personal observation and the paper “Current Developments in

Underwater Vehicle Control and Navigation: The NPS ARIES AUV” [Marco and Healey, 2001].

Figure 1. The NPS ARIES AUV “On the Hook,” Being Lowered into the Water.

B. VEHICLE PRESENTATION

1. ARIES Hardware

Dimensions and Endurance. The vehicle weighs 225 Kg and measures approximately 3 m

long, 0.4 m wide and 0.25 m high. The hull is constructed of 6.35 mm (¼”) thick type 6061

aluminum and forms the main pressure vessel that houses all electronics, computers and

batteries. A flooded fiberglass nose is used to house the external sensors, key-controlled power

 4

“on/off” switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is

powered by six 12 volt rechargeable lead-acid batteries. Vehicle endurance is approximately 4

hours at top speed, with 20 hours endurance under hotel load only. The ARIES is primarily

designed for shallow water operations and can operate safely down to depths of 30 meters.

Propulsion and Motion Control Systems. Main propulsion is achieved using twin ½ Hp

electric drive thrusters located at the stern. During normal submerged flight, heading and depth

are controlled using upper bow and stern rudders plus a set of bow planes and stern planes. Since

the control fins are ineffective during very slow (or zero) forward-speed maneuvers, vertical and

lateral cross-body thrusters are used to control surge, sway, heave, pitch, and yaw, motions

[Marco and Healey, 2001].

Navigation Sensors. The sensor suite used for navigation includes a 1200 kHz RD

Instruments Navigator Doppler Vedocimeter Log (DVL) that also contains a TCM2 magnetic

compass. This instrument measures the vehicle ground speed, altitude, and magnetic heading.

Angular rates and accelerations are measured using a Systron Donner 3-axis Motion Pak IMU.

While surfaced, Geographic Positioning System (GPS) inputs is provided by a carrier-phase

differential GPS (DGPS CP) system available during surfaced operation to correct any

navigational errors accumulated during the submerged phases of a mission [Marco and Healey,

2001].

Sonar and Video Sensors. A Tritech ST725 scanning sonar and an ST1000 profiling

sonar is used for obstacle avoidance and target acquisition/reacquisition. [Tritech 2001] The

sonar heads can scan continuously through 360
o
 of rotation or swept through a predefined

angular sector. A fixed-focus wide-angle video camera is located in the nose and connected to a

DVC recorder. The computer is interfaced to the recorder which controls on/off and start/stop

record functions. While recording images, data for date, time, vehicle position, depth and altitude

is superimposed on the video image.

 5

Figure 2. Hardware Components of the NPS ARIES.

Vehicle/Operator Communications. Radio modems are used for high-bandwidth

command, control, and system monitoring while the vehicle is deployed and surfaced. While

submerged, an acoustic modem is used for low-bandwidth communications. In the laboratory

environment, a high-speed thin-wire Ethernet connection is used for software development and

mission data upload/download [Marco and Healey 2001].

 6

2. Computer Hardware Architecture

The dual-computer system unit measures approximately 28 x 20 x 20 cm. It consists of

two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM, four serial ports, a

network adapter, and a 2.5 GB hard drive each. Two DC/DC voltage converters for powering

both computer systems and peripherals are integrated into the computer package. The entire

computer system draws a nominal 48 Watts [Marco and Healey 2001].

Both systems use TCP/IP sockets over thin-wire Ethernet for inter-processor

communications as well as connections to an external LAN. The sensor data-collection computer

is designated QNXT. The second is named QNXE and executes the various auto-pilots for servo-

level control.

Figure 3. Dual Computer System Unit.

3. Computer Software Architecture.

The ARIES AUV has used a tri-level software architecture called the Rational Behavior

Model (RBM). RBM divides responsibilities into areas of open-ended strategic planning, soft-

real-time tactical analysis, and hard-real-time execution-level control. The RBM architecture has

been created as a model of a manned submarine operational structure. The correspondence

between the three levels and a submarine crew is shown in the figure below [Lalaque 1999].

Figure 4 represents the tri-level architecture hierarchy with level emphasis and submarine

equivalent listed. A functional summary of each level follows.

 7

Tactical

Execution

Mission
Logic

Commanding
Officer

Vehicle
Behaviors

Hardware
Control

Officer of the
Deck

Watch-
standers

RBM Level Emphasis Manned
Submarine

 Strategic

Figure 4. Relational Behavior Model [Holden 1995].

The Execution Level assures the interface between hardware and software. Its tasks are

to maintain the physical and operational stability of the vehicle, to control the individual devices,

and to provide data to the tactical level. These tasks are currently performed by on-board host

QNXS [Lalaque 1999].

The Tactical Level provides a software level that interfaces with both the Execution

level and the Strategic level. Its chores are to give to the Strategic level indications of vehicle

state, completed tasks and execution level commands. The Tactical level selects the tasks needed

to reach the goal imposed by the Strategic level. It operates in terms of discrete events [Lalaque

1999].

The Strategic Level controls the completion of the mission goals. The mission

specifications are inside this level [Lalaque 1999].

A diagram outlining the modular, multi-rate, multi-process software architecture is shown

in the figure below. The architecture is designed to operate using a single computer processor or

two independent, cooperating processors linked through a network interface. Splitting the

processing between two computers can significantly improve computational load balancing and

software segregation. In the ARIES, each processor assumes different tasks for mission operation

[Marco and Healey 2001].

Both computers run the QNX real time operating system (QNX 2001) using synchronous

socket sender and receiver network processes for data sharing between the two. Inter-process

communication is achieved using semaphore-controlled shared memory structures .

 8

All vehicle sensors are interrogated by separate, independently controlled processes, and

there is no restriction on whether concurrent processes operate synchronously or asynchronously.

Since various sensors gather data at different rates, each process may be tailored to operate at the

acquisition speed of the respective sensor. All processes are written in the C programming

language [Marco and Healey 2001].

Figure 5. Dual Computer Software Architecture [REF].

To allow synchronous sensor fusion, each process contains a unique shared memory data

structure that is updated at the specific rate of each sensor. All sensor data are accessible to a

synchronous navigation process through shared memory and is a main feature of the software

architecture proposed [Marco and Healey 2001].

C. AUV DATA SERVER (ADS)

ADS is the acronym for AUV Data Server (ADS) system. It is a software system

developed at NPS and is used to gather and translate AUV data into a format, suitable for input

into the Mine Warfare Environmental Decision Aids Library (MEDAL) system. This format is

used by the U.S. Navy to evaluate asset positions, mine-like contacts, snippet images of those

contacts identified as mines, and bathymetry maps. Thus, data gathrered by ADS from the AUV

are track positions, bathymetry at each point, sonar and data video processing, image files for

contact as well as their locations. Data are converted into Message Transfer Format (MTF)

message formats and imported into MEDAL [Healey, Wu, Brutzman 2000].

 9

Figure 6 below shows the connectivity for the use of the NPS TDA (the ADS) and its

linkage to a stand alone MEDAL station.

Figure 6. Block Diagram of the ADS and its Connection to MEDAL.

D. SUMMARY

ARIES AUV hardware and software architectures are described in this chapter. The AUV

Data Server (ADS) program used for data gathering is also described.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. VRML GRAPHICS

A. INTRODUCTION

This chapter includes two sections. The first is a presentation of the Virtual Reality

Modeling Language (VRML). The second section shows and explains how to make a simple

VRML scene, constructed with essential VRML nodes.

B. PRESENTATION OF VRML

1. VRML History

The Virtual Reality Modeling Language (VRML) was an idea by Mark Perce and Tony

Parisi initially presented at the First International Conference of the World Wide Web in 1994.

VRML was intended to be a platform independent language for web-based 3D graphics, and

implemented on the Internet. The language needed to be able to place objects in 3D space, as

well as include attributes such as shape, color, and size. Since VRML was to be used in the

Internet, all platforms needed to be able to support it: UNIX workstations, personal computers,

etc. The Silicon Graphics Open Inventor format was the initial basis for the VRML file formats,

and after numerous improvements VRML was widely accepted. VRML 1.0 was introduced in

1995. In 1996 VRML 2.0 become the new VRML specification. In 1997, the revised language

was certified by the International Organization for Standardization (ISO) as ISO/IEC and was

commonly referred to as VRML 97 [Refraction 2001].

2. Presentation

Using VRML, an author can create 3D virtual worlds for display on the web. While

VRML 1.0 had static worlds, which is to say that it allowed for no arbitrary behaviors for objects

in the VRML world, VRML 97 provides for dynamic behaviors by adding Java and Ecmascript

(Javascript) support, as well as sound and animation. The main feature of VRML 97 is that it

enables to create dynamic worlds and an interactive environment on the Internet, including the

ability to:

• animate objects in the VRML world

• play sounds and movies

• allow users to interact with VRML worlds

• control and enhance worlds with scripts

 12

Since authors are able to create effective 3D virtual worlds, VRML is an appropriate

language for moderately complex global scene renderings. Nevertheless VRML is not a

Computer Aided Design (CAD) tool. Creating complex shapes with a high level of detail implies

using a professional CAD tool like a mechanical engineering program or professional 3D-design

software. Nevertheless VRML is a good way for scientists, engineers, hobbyist and application

developers to produce composable 3D models for use over the World Wide Web.

3. Browsers and VRML

To present sophisticated multimedia, such as 3D VRML worlds, web browsers (like

Microsoft Internet Explorer or Netscape Navigator) need help from compatible applications,

called plug-ins, that specifically understand content of different filetype formats. They enable

users to view non-HTML information within the Web browser window.

Many VRML plug-ins are available as 3D browers, including Silicon

Graphics’/Cosmosoftware’s Cosmoplayer, Parallel Graphics’ Cortona and Blaxxun’s Contact

browser. VRML remains the preferred language to build non-proprietary virtual worlds and to

proesent such work across the Internet.

4. Creating a Simple Object with VRML

Creating a simple scene is a good way to understand the basic principles of VRML

syntax. The following example shows different basic nodes and fields for appearance, geometry,

sensor and interpolator, ROUTE and viewpoint.

VRML scenes can be created using a simple text editor. More developed VRML editors

like X3D-Edit or Parallel Graphics’ VrmlPad are highly recommended (especially for the

novice).

A VRML 97 file always starts with the line:

#VRML V2.0 utf8

This is the VRML header, which is required in any VRML file. It must be the first line of the

file and it must contain the exact text shown above. The UTF-8 character set (Universal

Character Set Transform Format) is a standard way of typing characters in many languages. An

example excerpt follow.s

 13

Viewpoint {
 description "First viewpoint"
 position 0 0 20
}
Viewpoint {
 description "Second viewpoint"
 position 0 0 10
}

In a virtual world, the location of a user’s viewpoint can be represented by an avatar,

which is a symbolic virtual-world representation of a real world person. With viewing and

navigation represented avatar, the user moves through the virtual world, seeing what the avatar

sees and interacting by telling the avatar what to do. The virtual camera representing a user’s

perspective can see the scene from the position and orientation described by the current

Viewpoint. The Viewpoint node defines a specific location in the local coordinate system from

which the user may view the scene. Authors can create as many viewpoints as desired. Users can

navigate through the virtual world by moving from one viewpoint to another, often via the

navigation control panel. Viewpoints are important to display object movements or special

relationships and it is important to add pertinent Viewpoint nodes when creating complex 3D

shapes.

Each Viewpoint collects a variety of related information, described as follows. The

description field value specifies a text string used to describe the viewpoint. This text string is

displayed by the browser control panel. The position field specifies a 3D coordinate for the

viewpoint location in the current coordinate system. The Orientation field describes direction.

The Shape node contains the appearance and geometry characteristics of a renderable

shape. A typical shape/appearance/geometry example follows.

Shape {
 appearance Appearance {
 material DEF SphereColor Material {
 diffuseColor 0 1 0 #Green
 }

 }

 geometry Sphere {
 radius 2 #Meters

 14

 }
}

The Appearance node specifies appearance atributes, including the Material node. This

node includes material attributes as diffuseColor, which defines a Red Green Blue (RGB) color

for the material. “0 1 0” means that the shape color is full-intensity green with no red or blue

color components.

The Sphere node is one of the primitive geometry nodes provided by VRML. This node

creates a sphere-shaped geometry. In the above example, radius value is 2 meters.

The DEF keyword is used to define a label for a node. For example:

DEF ClickOnIt TouchSensor {}

This TouchSensor node creates a sensor to detect viewer actions and convert them to

outputs suitable for triggering actions. The events produced by this particular node (with a DEF

name defined as ClickOnIt) are connected to another node via a ROUTE.

The ROUTE written above sends an event from the TouchSensor node (called ClickOnIt

by the DEF syntax) to the TimeSensor node (called Clock). IsOver means the value “TRUE” is

sent to the TimeSensor when the cursor is over the sphere. The value “TRUE” makes the

TimeSensor turn on by sending the value “TRUE” to the Clock node’s field named set_enabled.

ROUTE ClickOnIt.isOver TO Clock.set_enabled

The ColorInterpolator node describes a list of key colors available for use in an

animation. The value of the key field specifies a list of keys (ranging between 0 and 1) that are

used to define relative times matching the functional outputs defined by the keyValue field. By

retrieving the corresponding pair of key colors to an input key value, the interpolator computes

an intermediate interpolating color between the key colors. In this example, corresponding colors

to the input keys “0, 0.5, 1” are green, blue, green (“0 1 0, 0 0 1, 0 1 0”).

DEF ColorPath ColorInterpolator {
 key [0, 0.5, 1]
 keyValue [0 1 0, 0 0 1, 0 1 0] #Green, Blue, Green
}

 15

The TimeSensor node creates a clock that generates time events to control animations.

The cycleInterval field specifies the time length in seconds that the TimeSensor takes to vary its

fractional time output from fractional time 0 to 1. The enabled field specifies whether the

TimeSensor is turned on or off. The loop field specifies whether the TimeSensor loops (i.e.

repeats) or not. The TimeSensor node allows time intervals of arbitrary length, modifying the

default time intervals of Interpolators nodes, which are unit length.

DEF Clock TimeSensor {
 cycleInterval 3
 enabled FALSE
 loop TRUE
}

Behaviors are defined as changing a value in a scene graph. Animation is accomplished

by careful design of behaviors, thereby changing parameters of interest. Behaviors are

accomplished by event passing: a source value is routed to change another value somewhere in

the scene graph. Thus the ROUTEs used in this example animate the sphere. ROUTEs make a

one-way circuit to send and receive events between nodes. Each ROUTE remains dormant until

an event is sent. A further ROUTE example follows.

ROUTE Clock.fraction_changed TO ColorPath.set_fraction

Once the TimeSensor is enabled, a time fraction between 0 and 1 is sent from the

TimeSensor to the ColorInterpolator node (called ColorPath). The value is put in the fraction

field and compared to key values. An interpolated color value is their output and sent along the

ROUTE. TimeFraction corresponds to the end of the cycle time, in this case 3 seconds.

ROUTE ColorPath.value_changed TO SphereColor.set_diffuseColor

The interpolated color value is sent to the Material node (called SphereColor). Sphere

color is changed, getting this new color value. Finally, it results that when the cursor is over the

sphere shape, its color fades from green to blue, and after that, from blue to green and so on until

the cursor is no longer over the shape. See Figures 7 and 8.

 16

ParallelGraphic’s Cortona 3D Browser

CosmoPlayer 3D Browser

Figure 7. Sphere with Changing Colors Animated Using VRML, Shown in Two
Different Browsers. The Color Animates when the Mouse is Over the Object.

C. SUMMARY

The Virtual Reality Modeling Language is presented in this chapter. A simple 3D

example-scene shows the capabilities of this language.

 17

IV. EXTENSIBLE 3D (X3D) GRAPHICS

A. INTRODUCTION

This chapter introduces the E-3D (X3D) graphics technology. It includes a presentation

of Ext-M-L (XML), the markup language used by X3D graphics tools as well as a presentation

of X3D-Edit, an X3D graphics file editor. This section explains briefly how X3D-Edit was made,

its main features, and how internationalization support was created.

B. EXTENSIBLE MARKUP LANGUAGE (XML)

Development of the Extensible Markup Language (XML) started in 1996, but in fact the

technology isn't completely new. Before XML there was the Standard Generalized Markup

Language (SGML), developed in the early '80s. SGML has been an ISO standard since 1986 and

is widely used for large documentation projects. The Hypertext Markup Language (HTML),

whose development started in 1990 is also originally based on SGML. The designers of XML

simply took the best parts of SGML, guided by the experience with HTML, and produced

something that is no less powerful than SGML, but vastly more regular and simpler to use

[Bosak and Bray 2001].

XML is a markup language for documents containing structured information. Structured

information contains different types of content (words, pictures, etc.) and some indication of

what role this content plays. As a markup language, it is a mechanism to identify structures in a

document. The XML specification defines a standard way to add markup to documents.

XML looks a bit like HTML but is not HTML. Like HTML, XML uses tags and

attributes, but XML uses the tags only to delimit pieces of data, and leaves the interpretation of

the data completely to the application that reads it. Thanks to tags and attributes, authors can

easily debug applications using a simple text editor to fix a broken XML file. XML isn't meant to

be authored by most users but often an XML document can be by deciphered anyone.

Why and when to choose XML? XML was created for richly structured documents that

can be used over the web. The only other alternatives, HTML and SGML, are not practical for

this purpose.

• HTML is linked with a set of page-presentation layout semantics and does not
provide arbitrary structure.

 18

• SGML provides arbitrary structure, but is too complex and difficult to implement
for a web browser.

Thus XML is a good choice as a basis for X3D. XML is achieving wide acceptance,

which in turn makes more tools available for X3D.

C. X3D-EDIT

1. Overview

X3D-Edit is an Extensible 3D (X3D) graphics file editor that uses the X3D Document

Type Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor building

application, and an editor profile configuration file. X3D-Edit enables simple error-free editing,

authoring and validation of X3D or VRML scene-graph files. The author of this useful XML

editor is Don Brutzman from the Naval Postgraduate School (NPS) [Brutzman 2001].

X3D-Edit is constructed using Xeena, IBM’s tool-building application, and uses Xeena

interface [Brutzman 2001]. Xeena is a visual XML editor and a generic Java application for

editing valid XML documents derived from any valid DTD. The editor takes as input a given

DTD and automatically builds a palette containing the elements defined in the DTD. Users can

thus create/edit/expand any document derived from that DTD, by using a visual tree-directed

paradigm. Xeena features include:

• Intuitive viewing and editing of X3D documents in a tree control view.

• Editing of multiple X3D documents.

• XML source viewer.

• Direct translation from X3D to VRML 97 syntax using X3D VRML 97.xsl.

• Direct translation from X3D to documentation-quality color-coded HTML.

• Restrictions about adding and editing of features according to the DTD, and
validity checking of produced documents.

• Easy customization of display.

• Element-position and attribute-value checking.

Therefore, all those features are automatically included in X3D-Edit. Since X3D-Edit is

based on Xeena, users also need to install a Java Development kit (JDK) or Java Runtime

Environment (JRE), as Xeena is built on top of Java technology.

 19

2. X3D-Edit Interface

X3D-Edit has a user-friendly interface which is intuitive to use. An action toolbar allows

editing/saving/validating XML files. A toolbar palette exposes various node profiles required to

build a VRML scene. Major palette sidebar choices include:

• Allowed nodes: context-sensitive display of valid X3D, nodes, fields are available
in order to build a valid VRML scene. Nodes appear inside the side bar.

• DIS Java-VRML nodes: the IEE Distributed Interactive Simulation (DIS)
protocol is a behavior protocol tuned for physics-based interactions. Java is the
programming language used to inplement the DIS protocol, to perform
calculations, to communicate with the network as well as the VRML scene.
VRML 3D graphics are used to model and render both local and remote entities in
shared virtual world.

• Geo VRML: tool created to built complex models of geographic grounds and
relief.

• H-Anim: Humanoid Animation Nodes.

Every time an object (node, field, comment, etc) is selected and inserted by the author, it

is inserted as directed using a visual tree-directed paradigm into the active document inside the

work area. A corresponding attribute array appears in the edit area for the selected node. This is

the place where field values are inserted. A message area points out whether there are syntax

errors when validating the constructed scene.

It is very easy to build a scene with X3D-Edit because it is possible to copy/paste/move a

node or a group of nodes inside the view tree. When you insert a node, only children nodes and

fields are available in the sidebar palette so as to avoid fatal syntax errors. Working with a tree

paradigm even allows users who do not know the VRML syntax to build complex scenes.

Once the X3D file is created, it can be converted into a VRML file VRML-only

browsers. X3D-Edit can make this conversion and launch the VRML browser. It can also convert

XML files into pretty-printed HTML files that are easily readable and can be put on the Internet

as scene documentation.

X3D-Edit also includes tooltips that helps you to remind the fundamental bases of VRML

syntax as well as node/field definition, type, etc.

One ongoing objective for X3D-Edit is to further internationalize context-sensitive node

and field tooltips by translating them in many languages (in the profile configuration file).

 20

Currently, English, Spanish and French language tooltips are available and other languages are

planned.

To make tooltips in another language different than English, several steps have to be

followed. Firstly, a duplication of the file called x3d-compact.profile is necessary (renamed

“x3d-compact.profileLanguageName”). Within the file, for each “attribute tooltip” tag, (<>) a

tooltip sentence is written. This sentence needs to be replaced by a new one with the desired

language. Secondly, once the new x3d-compact-profile file created a corresponding. BAT file

launching X3D-Edit with the new language version. The code of this BAT file is presented in

Figure 8 below:

@ECHO OFF > NUL

REM Batch file: X3D-Edit-LanguageName.bat
REM
http://www.web3D.org/TaskGroups/x3d/translation/X3D-Edit-
LanguageName.bat
REM Author: Author name
REM Revised: revision date
REM Description: Launch X3D-Edit profile for x3d-
compact.profileLanguageName

SET X3dLanguagePreference=LanguageName
x3d-edit %1 %2 %3 %4

Figure 8. Generic X3D Edit .BAT Template for Different Tooltip Languages.

These two files are put into the X3D-Edit directory. The new BAT file must be run to

launch X3D-Edit with the right language version. Figure 9 gives an illustration of X3D-Edit use

with French tooktips.

 21

Sidebar
palette

VRML & HTML
converters

French tooltip

Action toolbar

Toolbar
palette

Edit Area

Message Area

Figure 9. X3D-Edit Interface with Multi-Language Tooltips.

D. SUMMARY

XD3 graphics technology is summarized in this chapter, as well as XML, JAVA and the

Xeena software used by X3D-Edit. The X3D authoring tool X3D-Edit is described along with an

explanation of how to personalize X3D-Edit tooltips for languages other than English.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

V. MODELING PHYSICAL OBJECTS IN A VIRTUAL OCEAN

A. INTRODUCTION

This chapter describes a virtual environment for the ARIES Autonomous Underwater

Vehicle (AUV) of which the main objective is to design a virtual world using the Virtual

Modeling Language (VRML). The first section explains the construction of a 3D object

modeling the ARIES. The second section presents how the ARIES waypoint tracks and

bathymetry can be integrated in the VRML world. Finally, the third section shows authoring of

underwater mine contacts, illustrated by a 3D underwater mine example.

B. THE ARIES PROTOTYPE

One of the first VRML models of the Phoenix AUV was built by Don Brutzman and

thesis student Martin Whitfield. The ARIES prototype, recently created, is quite similar to the

Phoenix model.

The ARIES prototype for this report was designed with X3D-Edit, using VRML/X3D

technology. The following paragraphs explain the structure of the 3D AUV object. The body of

the AUV is formed by assembling multiple components:

• hull

• propellers

• 8 fins

• Differential Global Positioning System (DGPS)

• NPS logo

1. AUV Hull

The hull is the hardest part of the conception of the AUV model. Because of its complex

shape, it has been designed by using an IndexedFaceSet node. The IndexedFaceSet node is

declared inside a Shape node. Each 3D point coordinate, constituting the actual shape, is written

inside the Coordinate node. In total, 38 points are necessary to define the hull. The coordIndex

field specifies a connectivity list of coordinate indexes, relative to the points, describing the

perimeter of the faces and thus creating the faces. A simple example follows.

 24

Shape {
 appearance Appearance {
 material Material {
 diffuseColor 0.9 0.9 0.9
 }
 }
 geometry IndexedFaceSet {
 coordIndex [Index values here]
 creaseAngle 3.14
 coord Coordinate {
 point [Point coordinates here]
 }
 }
}

Note that the creaseAngle value gives a smoothly shaded appearance to the hull. When

the angle between adjacent polygons exceeds this value, angles formed by adjacent faces appear

sharp.

Figure 10. The ARIES Hull with creaseAngle Value = 3.14.

Figure 11. The ARIES Hull with creaseAngle Value = 0.

 25

2. Propellers

As might be assumed, a propeller shape is not so difficult to design. Actually, only one

blade is defined and others are replications of the first one. Relative orientations merely change

for other blades.

The first blade is built with an IndexedFaceSet node. The procedure is strictly the same as

the hull. Seven points are defined for this shape. The propeller shaft is a cylinder placed adjacent

to an end-cap cone.

The shading cylinder is made with an Extrusion node. This requires several steps. First,

the crossSection field specifies a list of 2D coordinate (on the XZ plane) values that define a

section, and is extruded along a spine. Both scale and spine fields define the path of the extrusion

applying a scale factor on the section and that, along each part of the spine. beginCap and

endCap fields indicate whether the beginning and ending faces are drawn or not. In this case, a

circular cross-section is extruded along the outer and then inner surfaces of the shroud. Example

VRML source follows. A picture of the assembled propeller shroud appears in Figure 12.

Shape {
 geometry Extrusion {
 beginCap FALSE
 creaseAngle 2
 crossSection [1.00 0.00, 0.92 -0.38,
 0.71 -0.71, 0.38 -0.92,
 0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 0.38,
-0.71 0.71, -0.38 0.92,
 0.00 1.00, 0.38 0.92,
 0.71 0.71, 0.92 0.38,
 1.00 0.00]
 endCap FALSE
 scale [0.08 0.08, 0.07 0.07, 0.06 0.06, 0.07 0.07, 0.08 0.08]
 spine [-0.08 0 0, 0.08 0 0, 0.08 0 0, -0.08 0 0, -0.08 0 0]
 }
 appearance Appearance {
 material Material {
 diffuseColor 0 0 1
 }
 }
 }

 26

Figure 12. A 3D VRML Propeller inside a Shroud.

3. The Fin and the DGPS

Like the propeller blades and the hull, the fin and DGPS are drawn using the

IndexedFaceSet nodes. One specified fin shape is defined and replicated seven times. With the

syntax USE preceding the node name, it is possible to efficiently use a node again and again.

4. The NPS Logo

The NPS logo includes several stripes adjacent to text for the acronym “NPS.” Stripes are

IndexedFaceSet nodes whereas the text uses a Text node.

 27

Different fields allow the creation of text geometry: the string field specifies lines of text

to build, the FontStyle node defines the style of the text, etc.

5. The Complete VRML ARIES Model

The figure below shows the VRML model of the ARIES that includes all the different

nodes described in previous chapters. Some of them are replicated as USE nodes when needed.

A DGPS antenna was added atop the aft upper fin.

This model can be reused in other VRML X3D worlds as desired for example scenes

simulating AUV operations.

Figure 13. The VRML ARIES Model (Top and Aft Quarter Views).

 28

The complete source code of this model is presented in Appendix A.

6. Another ARIES Prototype

Figure 14. The VRML ARIES Model (Side View).

Jane Wu and Don Brutzman created this improved prototype. The two prototypes are

similar because they are based on the same ARIES dimensions. Also included are sonar steering

and beam-cone visualizations of thruster flow.

C. THE WAYPOINT TRACK GENERATOR

1. Problem Statement

The purpose of this project is to create a simple scene based on the Virtual Reality

Modeling Language (VRML). From inputs that include coordinate data (location + bathymetry)

plus time data, the path that followed the AUV during operations needs to be recreated in a 3D

virtual world. A simple browser like Netscape Navigator or Internet Explorer might then display

this world easily and quickly.

Several alternatives have to be considered. Firstly, the path of the AUV is displayed with

a large quantity of points that are coordinate points. Each point is colored, to indicate the depth

of the AUV at this point. All the points are displayed at the same time, without caring about the

time references in the point list.

Secondly, the path of the AUV is similarly displayed with a quantity of points that are

coordinate points, but each point is associated to a time reference (also called “time fractions” or

“time stamps”). The bathymetry is still symbolized by colors but points appear sequentially

 29

according to their respective time fractions, matching the “real time” of the original data

collection.

Thirdly, the path is shown with line segments with a single color. There is no color

representation of the bathymetry. Lines are drawn according to their respective time fractions as

the second solution.

Coordinate points come from a data file generated by the ADS software (described in

Chapter II). ADS further constructs complete VRML X3D scenes for each mission using these

3D models, producing a set of mission archive 3D scenes.

ADS 3D Scenes

Mission data
from AUVs

Figure 15. The ADS Software Analyzes AUV Mission Data and Produces 3D Scenes
using the 3D Models Presented in this Chapter.

2. Designing the Waypoint Track Generator Prototype

a. Prototype Declaration and Instantiation

A ProtoDeclare declaration defines a new Prototype node. Like any other

VRML/X3D node, a ProtoDeclare can contain fields, eventIn, eventOut, Shapes, Groups,

interpolators and more. A Prototype node can be reused by external VRML scenes as often as

wished, through instantiation using ProtoInstance nodes. By specifying field values, it is easy for

authors to change ProtoInstance properties and thus to configure these new nodes at run time.

For these reasons, Prototypes are used to define the customizable waypoint track generator.

A ProtoInstance statement instantiates a prototype node in the scene. It is

comprised of two major parts: the node interface and the body that contains other nodes. The

node interface includes four types of fields:

• field defines variables that have no interaction with the outside (ROUTEs or script
code).

 30

• eventIns are receiver variables, which wait for events from the outside and take
them in to be handled.

• eventOut are transmitter variables, which send events from the node to the
outside.

• exposedFields are essentially a combination of field eventIn and eventOut
functionality.

field MFVec3f pointPositionsArray [0 0 0, 10 -4 0, 25 -
6 0, 30 -8 5, 38 -15 5, 45 -18 5, 55 -22 5, 60 -25 15, 60 -27 22, 55 -
30 35, 48 -35 35, 35 -35 35, 25 -45 35, 20 -55 35, 15 -70 35, 3 -70
35, -5 -72 40, -5 -75 50, 0 -80 55, 15 -75 55, 30 -70 55, 35 -60 55,
40 -50 55, 50 -34 55, 65 -23 70]
pointPositionsArray provides point coordinates in meters, referenced
to local coordinate system origin
field MFTime pointTimesArray [1, 3, 6, 8, 10, 12, 14,
15, 17, 18, 23, 28, 35, 37, 39, 43, 45, 47, 48, 53, 58, 60, 61, 65, 70
]
pointTimesArray provides point times in seconds for local exercise
clock (each time is clock time in seconds, not in interval durations).
Both point coordinates and times are initially provided as a full
set of values.
eventOut SFTime totalDuration
totalDuration is derived from the pointTimesArray, and used to set
cycleInterval on a controlling TimeSensor clock outside the
PointTrackGenerator ProtoInstance.
exposedField SFInt32 displayPointsMode 0
displayPointsMode settings: -1 = none, 0 = some points (active
interval, default value), 1= all the points, 2 = some lines (active
interval).
 eventIn SFTime durationActivePoints
 # durationActivePoints is in seconds, default initialization value
is totalDuration
 eventIn SFTime timeLatestActivePoint
 # timeLatestActivePoint is in seconds, default initialization value
is the final point time
 eventOut SFTime getStartTime
 # getStartTime is the time when the TimeSensor must start
 eventOut SFTime getStopTime
 # getStopTime is the time when the TimeSensor must stop
 eventIn SFTime mappedColorPointCreator
 # mappedColorPointCreator is a function receiving the time fractions
of the TimeSensor
 exposedField MFString auvName ["auv_ax_xml.wrl"]
 # auvName refers to an external VRML file name that has 3D AUV models
]

 31

b. Prototype Body: The Switch Node

The Switch node gives a choice to select one of several different groups of nodes,

each contained as distinct children within the Switch node. The VRML browser displays only

one shape (or group of shapes) selected. By providing different visualization possibilities as

distinct children of a Switch node, the Waypoint Track Generator can render waypoints in

different ways.

Using this node is important for the scene to have the choice in the way to display

the AUV path (points, lines, linked to time fractions or not). whichChoice starts with 0 for the

first child. If no childe is desired, whichChoice can be set to –1. Note that all children of the

Switch node continue to receive and send events regardless of the choice specified by

whichChoice.

Inside the Switch node body are three nodes that can independently display points

or line for the visual reproduction: two PointSet nodes and one IndexedLineSet node. The

PointSet node creates point geometry while the IndexedLineSet node creates polyline geometry.

In this scene, the Switch node is followed by an Inline node, which opens a VRML file specified

by the URL and renders its contents. On that account, it is easily feasible to include whatever is

wanted into the scene (e.g. any types of AUV or even other types of vehicles) which might

follow the lines.

c. Prototype Body: Interpolators and Sensor Nodes

Two ColorInterpolator nodes are required for assigning colors to points. From a

set of referenced colors (compared to a set of depth values), these nodes interpolate the input

depth value and compute an RGB color, which can be sent to other nodes or variables. This is a

concise and efficient way to map arbitrary values (such as depth) to a color value.

The scene use two ColorInterpolator nodes to avoid confusion when the different

script functions send values to the interpolators at the same time.

A TimeSensor node generates time events to control a script function: actually,

this sensor is really useful or else the script function (completePointSetValue_changed) cannot

start itself. Thus the TimeSensor drives the simulation clock and has a cycle time corresponding

to the time duration of a complete traversal.

d. Prototype Body: Script Nodes

 32

Script nodes are essential to perform complex actions. They receive input, process

computations and avoid output values to Interpolators, Sensor and Shape nodes in the scene.

There is only one essential script node in this prototype. It contains many different functions that

are the scene core. This script node is named DrawPointScript.

A bit like a Proto Instance, a Script node has a field declaration for variable

initialization and declaration, and the URL field that encloses EcmaScript (Javascript) source-

coded functions. In a Script node, declaration types are field, eventIn and eventOut. Note that

exposeField is not allowed in Script nodes, which is a significant inconvenience and will

hopefully be changed in future version of the X3D spec.

field MFVec3f pointPositionsArray IS pointPositionsArray
This variable is linked to pointPositionsArray from the Proto
Instance field declaration
field MFTime pointTimesArray IS pointTimesArray
This variable is linked to pointTimesArray from the Proto Instance
field declaration
field MFVec3f newPointPositionsArray []
It is a new point coordinate array when the last point coordinate
chosen is different from the latest pointPositionsArray coordinate.
Otherwise, newPointPositionsArray = pointPositionsArray by default
field MFTime newPointTimesArray []
It is a new time fraction array when the last time fraction chosen
is different from the latest newPointTimesArray fraction. Otherwise,
newPointTimesArray = pointTimesArray by default
field SFInt32 lineIndex 1
Integer that is incremented to add new values in coordIndex_changed
array
eventIn SFTime mappedColorPointCreator IS mappedColorPointCreator
This variable is linked to mappedColorPointCreator from the Proto
Instance field declaration

field SFInt32 index 0
Integer that is incremented to add new values in several arrays
(coordinate, time, color arrays)

field SFInt32 completeIndex 0
Integer that is incremented to indicate how much coordinate and
colors values have to be added
eventOut SFBool ConditionComplete
Boolean that stops function working during ColorInterpolator
processing
field SFNode ActivePointSetCoordinateNode USE
ActivePointSetCoordinateNode
this variable is linked to ActivePointSetCoordinateNode and allows
to acquire and put values in it

 33

field SFNode ActivePointSetColorNode USE
ActivePointSetColorNode
this variable is linked to ActivePointSetColorNode and allows to
acquire and put values in it
FIELD SFNODE COMPLETEPOINTSETCOORDINATENODE USE
COMPLETEPOINTSETCOORDINATENODE

this variable is linked to ActivePointSetColorNode and allows to
acquire and put values in it
field SFNode CompletePointSetColorNode USE
CompletePointSetColorNode
this variable is linked to CompletePointSetCoordinateNode and allows
to acquire and put values in it
field SFNode ColorMapInterpolator USE ColorMapInterpolator
this variable is linked to ColorMapInterpolator and allows to
acquire and put values in it
FIELD SFNODE COLORMAPINTERPOLATORFORCOMPLETEPOINTSSET USE
COLORMAPINTERPOLATORFORCOMPLETEPOINTSSET

this variable is linked to ColorMapInterpolatorForCompletePointsSet
and allows to acquire and put values in it
field SFNode ActiveLineSetCoordinateNode USE
ActiveLineSetCoordinateNode
this variable is linked to ActiveLineSetCoordinateNode and allows to
acquire and put values in it
field SFNode ActiveLineSetColorNode USE ActiveLineSetColorNode
this variable is linked to ActiveLineSetColorNode and allows to
acquire and put values in it
field SFNode auvTransform USE auvTransform
this variable is linked to auvTransform and allows to acquire and
put values in it
eventOut SFTime totalDuration IS totalDuration
This variable is linked to totalDuration from the Proto Instance
field declaration
eventOut SFTime getStartTime IS getStartTime
This variable is linked to getStartTime from the Proto Instance
field declaration
eventOut SFTime getStopTime IS getStopTime
This variable is linked to getStopTime from the Proto Instance field
declaration
eventOut MFInt32 coordIndex_changed
This is a coordinate array used for the ActiveLineSetCoordinateNode
node
eventIn SFTime durationActivePoints IS durationActivePoints
This variable is linked to durationActivePoints from the Proto
Instance field declaration
eventIn SFTime timeLatestActivePoint IS timeLatestActivePoint
This variable is linked to timeLatestActivePoint from the Proto
Instance field declaration
eventIn SFTime completePointSetValue_changed
This function computes depth values from coordinate values
eventIn SFColor set_completePointSetColorArray

 34

Function that puts coordinate and color values in arrays for the
CompletePoinSet Node

(1) The function initialize(). After the field declaration follows

the JavaScript code written inside the URL field (or a containing CDATA block in X3D form).

The code consists of four functions. The function initialize() is the first function of the

code to be read by the browser and the only one to start without receiving an output value. All

initializations and setup choices for the scene rendering are made inside this function.

javascript:

function initialize() {
 totalDuration = pointTimesArray[pointTimesArray.length-1];
 var today = new Date();
 getStartTime = Math.round(today.getTime() / 1000);
 getStopTime = getStartTime + totalDuration;
 var m = 1;

totalDuration is the AUV operation total duration. Its value is equal to the

last time fraction of the pointTimesArray. Thus initial value of pointTimesArray should be zero.

getStartTime takes the current time value when the code line is read. As

getTime() returns a value in milliseconds, Math.round(today.getTime() / 1000) is used to convert

the value in seconds. The getStartTime value served as time reference for the TimeSensor called

DisplayingTimer, located outside the Proto Instance. This sensor sends time values to the eventIn

function mappedColorPointCreator.

getStopTime is equal to the getStartTime plus the total duration. It is the

time when the TimeSensor must stop.

//default values for durationActivePoint and timeLatestActivePoint
 durationActivePoint = totalDuration;
 timeLatestActivePoint = pointTimesArray[pointTimesArray.length-1];

durationActivePoint and timeLatestActivePoint allow to the user to choose

what range of values to display on screen. durationActivePoint gets the totalDuration value by

default (it means all the points are considered). It is possible to reduce the interval of values as

 35

wished. timeLatestActivePoint is the latest time fraction (and thus also latest point coordinate)

that has to be displayed on the scene. The default value is the last time fraction of

pointTimesArray.

if(timeLatestActivePoint == durationActivePoint) {
 newPointTimesArray = pointTimesArray;
 newPointPositionsArray = pointPositionsArray;
 print('newPointTimesArray = ' + newPointTimesArray);
 }

newPointTimesArray and newPointPositionsArray are clones of

pointTimesArray and pointPositionsArray when values are chosen by default. Those two new

variables will be used to feed the coordinate and color fields of ActivePointnode and

ActiveLineSetNode.

if(timeLatestActivePoint > durationActivePoint) {
 var firstTime = latestTime = k = 0;
 while((timeLatestActivePoint - durationActivePoint) !=
pointTimesArray[firstTime]) {
 firstTime++;
 }
 while(timeLatestActivePoint != pointTimesArray[latestTime]) {
 latestTime++;
 }
 for(var j = firstTime ; j <= latestTime ; j++) {
 newPointTimesArray[k] = pointTimesArray[j] -
pointTimesArray[firstTime] + 1;
 newPointPositionsArray[k] = pointPositionsArray[j];
 k++;
 }
 print('newPointTimesArray = ' + newPointTimesArray);
 }

If timeLatestActivePoint and durationActivePoint get new values,

newPointTimesArray and newPointPositionsArray must change and receive new values. This

condition searches for the first time fraction (last specified time fraction minus specified

duration) and puts selected values in the new newPointTimesArray and newPointPositionsArray

arrays.

“newPointTimesArray[k] = pointTimesArray[j] - pointTimesArray[firstTime] + 1”.

 36

Means the first point chosen by the user is not displayed according to its corresponding time but

starts at the beginning (users don’t have to wait until the right time). All new time values are

shifted. Note the value “1” is added; it is a trick and otherwise the program is in trouble since it

has no prior time to compute properly the first values.

if(timeLatestActivePoint < durationActivePoint) {
 print('Fatal error : timeLatestActivePoint < durationActivePoint
!');
 }
 ConditionComplete = false;
}

The last condition helps the user if he makes a mistake by reminding him

that timeLatestActivePoint < durationActivePoint is a nonsense condition. Error messages

appear in the 3D browsers VRML console.

(2) The function completePointSetValue_changed()

function completePointSetValue_changed() {
 if(ConditionComplete == false && completeIndex <=
(pointPositionsArray.length-1)) {
 ColorMapInterpolatorForCompletePointsSet.set_fraction = -
pointPositionsArray[completeIndex][1] / 100;

print('ColorMapInterpolatorForCompletePointsSet.set_fraction['+complet
eIndex+'] = ' +
ColorMapInterpolatorForCompletePointsSet.set_fraction);
 ConditionComplete = true;
 }
}

This function is written to put a modified value, which symbolizes the

depth value of a specified point, in the ColorInterpolator called

ColorMapInterpolatorForCompletePointsSet. This one uses a list a key values and key colors in

its key and keyValue fields. When it receives a value, it uses linear interpolation to compute

intermediate colors. The input fraction value is usually within a range of [0…1], which is why

depth values are converted.

The function completePointSetValue_changed() cannot be self-executed

and cannot work several times without an external input event. Its field is SFTime. A

 37

TimeSensor (CompletePointSetTimeSensor) controls the execution of this function by sending

time signals all the time.

All depth values are computed one after the other, waiting until the color

interpolator finishes to compute color value, thanks to the Boolean ConditionComplete (loop if

inactive until ConditionComplete = false).

completePointSetValue_changed()

ConditionComplete == false &
completeIndex <= (pointPositionsArray.length-1)

Converted depth value sent to
ColorMapInterpolatorForCompletePointsSet

for an interpolation of a color value

YES

ConditionComplete = true stops the working
function until ConditionComplete = false

NO

Output time events

Diagram 1. Flowchart Function for the Function CompletePointSetValue_changed().

(3) The function set_completePointSetColorArray(). After computing,

the color interpolator sends a color value, which travels through a ROUTE to the eventIn

set_completePointSetColorArray() function. The color value is stored in the

CompletePointSetColorNode color array. Point coordinates are also stored in the

 38

CompletePointSetCoordinateNode point array. Thus, thanks to coordinate and color values, a

colored point is displayed on screen.

The ConditionComplete value changes to reactivate the if() condition

inside the completePointSetValue_changed().

function set_completePointSetColorArray(Value) {
 CompletePointSetColorNode.color[completeIndex] = Value;
 CompletePointSetCoordinateNode.point[completeIndex] =
pointPositionsArray[completeIndex];
 completeIndex++;
 ConditionComplete = false;
}

set_completePointSetColorArray()

CompletePointSetColorNode.color[completeIndex] = color Value
CompletePointSetCoordinateNode.point[completeIndex] =

pointPositionsArray[completeIndex] (point coordinate)
ConditionComplete = false

Interpolated color value from
ColorMapInterpolatorForComplet

ROUTE

Diagram 2. Diagram of the Function set_completePointSetColorArray().

(4) The function mappedColorPointCreator(). This function provides

coordinate and color values for ActivePointSet and ActiveLineSet nodes. This is the biggest

function of the DrawPointScript script.

MappedColorPointCreator receives continuously time fractions sent by a

TimeSensor (Displaying Timer) thanks to a ROUTE. The received value is compared to the time

fractions of the newPointTimesArray array. If one of them is equivalent, it means the point

corresponding to the time fraction has to be displayed on screen. Then the condition if() is

executed. Note that the input time value is rounded because it cannot match exactly with a time

fraction (in newPointTimesArray) if not.

 39

function mappedColorPointCreator(fractionValue) {

 ColorMapInterpolator.set_fraction = -
newPointPositionsArray[index][1] / 100;
 /need to initialize ColorMapInterpolator.set_fraction with the first
point color otherwise the value is shifted
if(Math.floor(fractionValue) == (newPointTimesArray[index] +
getStartTime)) {
 ActivePointSetColorNode.color[index] =
ColorMapInterpolator.value_changed;
 ActivePointSetCoordinateNode.point[index] =
newPointPositionsArray[index];
 auvTransform.translation = newPointPositionsArray[index];

A converted depth value is put in the color interpolator node for color

interpolation. When the output color is interpolated, it is stored in the color field of the

ActivePointSetColorNode node. At the same time point coordinate is put in the point fields of the

ActivePointSetCoordinateNode node and of the ActiveLineSetCoordinateNode node. This

coordinate value also feeds the position field of the AUV transform node. In this way, the AUV

will move each time a new point is added. Nevertheless, the motion of the AUV will appeaer

jerky because there is no interpolation for it (this choice could be conceivable in future versions).

 if(index <= 1) {
 ActiveLineSetCoordinateNode.point[index] =
newPointPositionsArray[index];
 coordIndex_changed[index] = index;
 ActiveLineSetColorNode.color[index][0] = 1;
 ActiveLineSetColorNode.color[index][1] = 1;
 ActiveLineSetColorNode.color[index][2] = 1;
 auvTransform.translation = newPointPositionsArray[index];
 if(index == 1) {
 ActiveLineSetCoordinateNode.point[index] =
newPointPositionsArray[index];
 coordIndex_changed[index] = index;
 coordIndex_changed[index+1] = -1;
 ActiveLineSetColorNode.color[index-1][0] = 1;
 ActiveLineSetColorNode.color[index-1][1] = 0;
 ActiveLineSetColorNode.color[index-1][2] = 0;
 ActiveLineSetColorNode.color[index][0] = 1;
 ActiveLineSetColorNode.color[index][1] = 1;
 ActiveLineSetColorNode.color[index][2] = 1;
 }
 }

 else {

 40

 ActiveLineSetCoordinateNode.point[index] =
newPointPositionsArray[index];
 coordIndex_changed[index+lineIndex] =
coordIndex_changed[index+lineIndex-2];
 coordIndex_changed[index+lineIndex+1] = index;
 coordIndex_changed[index+lineIndex+2] = -1;
 ActiveLineSetColorNode.color[index-1][0] = 1;
 ActiveLineSetColorNode.color[index-1][1] = 0;
 ActiveLineSetColorNode.color[index-1][2] = 0;
 ActiveLineSetColorNode.color[index][0] = 1;
 ActiveLineSetColorNode.color[index][1] = 1;
 ActiveLineSetColorNode.color[index][2] = 1;
 lineIndex += 2;

 }
 index ++;
 }
}

The data processing is a little bit more complex regarding the

ActiveLineSet coordIndex field, due to the fact that the syntax is special: this field specifies

indices describing the path of polylines. Each polyline is distinguished among the points by

adding “-1” after their indexes. Thus, every two points, the value “-1” is added in the

coordIndex_changed array. After that, this array is routed to the coordIndex field. That explains

why a few incremental variables like Index or lineIndex are used. A specific code was needed to

process the first and second values (for index = 0 and index = 1).

Regarding line colors, a white color is associated with the current point; a

red color is associated with points displayed before the current point. The result of this is that

“old” lines come into view with a red color and the current line is drawn with graduated shading

color (from red to white). In that way, it is easier to visualize what is the current line.

Conceivably line colors also may be defined according to depth.

All nodes work and show the graphic result in “real time” matching data

collection times by the AUV.

 41

 mappedColorPointCreator

ColorMapInterpolator.set_fraction = - newPointPositionsArray[index][1] / 100

Is the input time value the same as the
newPointTimesArray values?

ActivePointSetColorNode.color[index] = ColorMapInterpolator.value_changed;
 ActivePointSetCoordinateNode.point[index] = newPointPositionsArray[index];
 auvTransform.translation = newPointPositionsArray[index];

Is this the first value?

Is this the second
value?

Set ActiveLineSetCoordinateNode.point, coordIndex_changed,
ActiveLineSetColorNode.color and auvTransform.translation

Set ActiveLineSetCoordinateNode.point, coordIndex_changed,
ActiveLineSetColorNode.color and auvTransform.translation

Set ActiveLineSetCoordinateNode.point, coordIndex_changed,
ActiveLineSetColorNode.color and auvTransform.translation

YES

YES

YES

NO

NO

NO

Diagram 3. Flowchart Execution for the Function mappedColorPointCreator().

 42

(5) The Script Debugger. This script is useful to validate whether or

not values that are put in different nodes like ActivePointSet, CompletePointSet or

ActiveLineSet. User can easily check whether those nodes work properly and values make sense

or not. This information is printed on the browser’s VRML console. Values are sent to the

debugger script via ROUTEs.

e. Outside the Prototype

The PROTO declaration creates a complete new PROTO node by retrieving the

PROTO declaration within the file where this declaration is located. All field declarations are

implicit (no need to specify values unless if they have to be different from default values). By

using the ExternProto Declare syntax, this prototype can be reused in external files (other VRML

worlds) as many times as needed.

A TimeSensor called DisplayTimer sends time events to the function

mappedColorPointCreator via ROUTEs.

This program uses few ROUTEs, i.e. the minimum required. The previous version

used many more ROUTEs, which implies that more variables, buffer arrays were created. It

worked but took a bit more of memory resources. It does not matter to care about saving memory

if it is a question of displaying a few points (or lines). Nevertheless when an AUV operation

requires hundreds of points, it becomes more interesting to find a better solution to optimize the

program. That is possible by defining node variables inside the script node. They are linked to

nodes declared outside the script inside the PROTO instance. Thus, it is possible to send or

receive values to/from nodes without writing ROUTEs. This method avoids use of redundant

buffer arrays.

f. Complete Diagram of the Program

The whole source code of the waypoint track generator is presented in

Appendix B. A full diagram recapitulates how the whole program works and is shown on the

next page.

 43

set_completePointSetColorArray()

Set CompletePointSetColorNode.color
CompletePointSetCoordinateNode.point
pointPositionsArray[(point coordinate)

ConditionComplete = false

Interpolated color value from
ColorMapInterpolatorForCompletePointsSet

ROUTE

completePointSetValue_changed()

New value ready for
processing?

Converted depth value sent to
ColorMapInterpolatorForCompletePoints
Set for an interpolation of a color value

YES

ConditionComplete = true stops the working
function until ConditionComplete = false

NO

CompletePointSetTimeSensor sends
Output time events

ROUTE

CompletePointSet node

ActivePointSet node ActiveLineSet node

ColorMapInterpolatorForCompletePointsSet
node

mappedColorPointCreator

ColorMapInterpolator.set_fraction

Is the input time value the
same as the

newPointTimesArray

Set ActivePointSetColorNode.color
ActivePointSetCoordinateNode.point

auvTransform.translation

Is this the first value?

Is this the second value?

Set ActiveLineSetCoordinateNode.point,
coordIndex_changed,

ActiveLineSetColorNode.color and
auvTransform.translation

Set ActiveLineSetCoordinateNode.point,
coordIndex_changed,

ActiveLineSetColorNode.color and
auvTransform.translation

Set ActiveLineSetCoordinateNode.point,
coordIndex_changed,

ActiveLineSetColorNode.color and
auvTransform.translation

YES

YES

YES

NO

NO

NO

DisplayingTimer node
ROUTE

Initialize()

Initializing values (by default or
defined by the user)

Starts the TimeSensor with ROUTEs

ColorMapInterpolator node

NO ROUTE

NO
ROUTE

Debugger()

ROUTEs

Diagram 4. Complete Flowchart Diagram Execution of the Program Waypoint Track
Generator.

D. MINE CONTACTS

1. Introduction

During operations, when the AUV locates a mine or mine-like contact, information about

contact coordinates, contact name and contact picture is stored by the ADS software.

Identification and coordinates can then be used to represent the contact object in the VRML

world.

 44

These features might be integrated in the waypoint track generator scene. Currently, there

is no integrated contact visualization but this is a good step for a future work.

More script programs are needed to integrate mine contacts but it is also necessary to

extend the contact/mine library by adding more 3D models (such as AUV models). The

following example describe the conception of a typical 3D mine model, called Manta mine.

2. The Manta Prototype

This section describes design of a Manta mine model created with VRML, using publicly

available documentation including mine pictures and dimensions.

The model is a prototype instance that can be reused in external files. Defined fields

allow authors to customize the model. In this case, for the Manta mine, it is possible to change its

color. About the conception of the model, it is the same way to create as the AUV model.

Specifically there are many Extrusion Nodes, and one IndexedFaceSet node.

The Manta model is built from the following components:

• the main mine body, which is a cross section extruded along a circle spine in such
a way that it has the same effect as a revolution.

Figure 16. Manta Model Body Extrusion.

• four rings, to handle or carry the mine are designed with Extrusion nodes. The

cross section is a circle and the spine is also a circle made to create a ring shape.
The ring columns are made by extrusion in the same way that the main body.
Using the emissiveColor field in the Material node of the shape creates the light
reflection effect that gives the feeling rings are metallic.

 45

Figure 17. Manta Model Ring Extrusion (ring + column).

• Ring supports are IndexedFaceSet nodes, with four faces.

Figure 18. Manta Model Ring Support.

• Holes in the main body are black cylinders.

Here below is a picture of the 3D mine model with all its components:

Figure 19. 3D Manta Mine Model.

The most interesting part of this model is the use of a LOD (Level Of Detail) node. This

is an interesting technique to support automatic selection between lots of detail for maximum

realism and quick drawing for maximum interactivity. By using the LOD node, shapes far away

from the viewer need not to be drawn with as much detail as those shapes that are closer. By

selecting different versions of a shape in varying levels of details, the LOD node gives a

compromise between realism and interactivity. According to range values (distance between user

and shapes), different versions of the shape are drawn.

 46

These different shapes are included in the group by listing them in the level field of the

node. The value of the range field specifies a list of distances (between viewer and shapes) at

which the browser switches from, from one level of detail to another.

For the Manta prototype, four shapes are included in the LOD node. The more detailed

shape is the mine with all its components. At 10 meters, mine rings are replaced by spherical

shapes. At 50 meters, the mine is replaced by a cylinder. At 100 meters, there is no shape

rendered anymore: there is only a Worldinfo node. This node provides comments, such as title

text that could be extracted by the browser and displayed to a viewer. In effect, it serves as a null

node at long distances.

Three viewpoints nodes are put in the scene at the distances where the LOD node

switches the shapes. These make user navigation and author testing easier.

The whole source code of the Manta mine model is presented in Appendix C.

E. SUMMARY

This chapter provides a description of the 3D VRML/X3D AUV model in detail. Each

node is described with specific explanations. Precise explanations are then provided about the

development of the Waypoint Track Generator, which create a 3D virtual world for AUV

mission simulations. Finally, it provides a description of the 3D VRML/X3D mine model in

detail. Each node is described with specific explanations.

 47

VI. EXPERIMENTAL RESULTS

A. EVALUATION OF OUTPUTS

Currently, the Waypoint Track Generator works satisfactorily. It is still missing some

features but scenes are properly generated and displayed on screen.

This work is in accordance with the schedule of conditions drawn up and has the

following features:

• From sets of point coordinates and time fractions (written inside the program
body), the AUV path is drawn using color points on a VRML scene. A colored
point allows to visualize the bathymetry. Points are displayed according to time
stamps combined with point coordinates.

• Using only sets of point coordinates, the AUV path is drawn using color points on
a VRML scene. Unlike the precedent method, colored points are displayed
together, at the beginning, without any time condition.

• The last method is experimental: lines are used for drawing the AUV path, instead
points. This last method was not required by the schedule of conditions but can be
a good way to think about improvements and future works. The 3D AUV model
can also be added for more realism.

For a maximum efficiency, the program code is written mainly with EcmaScript

(JavaScript) source code, trying to reduce the number of ROUTEs. This approach is effective.

Note that color interpolators are used to convert depth values into color values. This

innovation increases computing performances compared to a set of comparative conditional “if-

then-else if” statements to find the right colors in a previously defined range. There is more work

to do and more thoughts to have but henceforth the Waypoint Track Generator can be used for

ADS.

B. SPECIFIC EXAMPLE MISSION

This chapter deals with a test that simulates AUV operations. Coordinates and time

values do not come from a real mission but are based on representative examples.

The timestamped point values are put inside arrays in the example scene:

 48

 1 2 3 4 5 6 7 8 9

coordinates 0 0 0 10 -4 0 25 -6 0 30 -8 5 38 -15 5 45 -18 5 55 -22 5 60 -25 15 60 -27 22
Time
stamps

1 3 6 8 10 12 14 15 17

 10 11 12 13 14 15 16 17

coordinates 55 -30 35 48 -35 35 35 -35 35 25 -45 35 20 -55 35 15 -70 35 3 -70 35 -5 -72 40
Time
stamps

18 23 28 35 37 39 43 45

 18 19 20 21 22 23 24 25
coordinates -5 -75 50 0 -80 55 15 -75 55 30 -70 55 35 -60 55 40 -50 55 50 -34 55 65 -23 70
Time
stamps

47 48 53 58 60 61 65 70

Table 1. Coordinates and Time-Stamp Values [Ref.].

If the author chooses a path made with points, result appears as in Figure VI-1.

Note that color points are bigger than in reality: they have been touched up in this picture

otherwise we could not see anything. Points are not typically distinguishable with a white

background. A black background fits well with small points (good contrast) but is not well suited

as a report figure.

A possible task for future work is to use a different type of geometry, perhaps billboarded

to always face the user, as a way to overcome some of the visualization difficulties inherent in

fixed single-pixel-size points and single-pixel-width lines.

 49

Figure 20. AUV Path Made with Points using VRML. Point images have been
augmented to improve default contrast.

If a path made with lines is chosen instead, the result appears like in the picture below:

 50

Figure 21. AUV Path Made with Lines using VRML.

C. SUMMARY

This chapter discusses about evaluate outputs of the Waypoint Track Generator and

provides some advices for future work. This chapter also deals with an exemplary VRML/X3D

scene representative of AUV missions.

 51

VII. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

The main purpose of this project is to create a simple scene based on VRML. From

coordinate data and time data, generated by the ADS software, a 3D scene is built to represent

the path that followed the AUV during operations. After constructing exemplary VRML scenes,

these prototypes will be integrated into ADS in the future to produce mission archive set.

Automatically creating visual mission archives to help visualize and easily understand what the

AUV did during operations will be a new achievement.

The result is a VRML scene, principally constructed at load time with JavaScript codes,

which allows the AUV path to be displayed in a 3D world according three modes:

• AUV path is displayed with a large quantity of points that represent intermediate
coordinate points. Each point gets his own color, which symbolized the depth of
the AUV at this point. All the points are displayed at the same time, without
caring about the time reference list.

• AUV path is displayed with a quantity of points that are coordinate points, but
each point is associated with time stamps. The bathymetry is symbolized by
colors but points appear according to their respective time stamps.

• AUV path is shown with line segments with a single color: there is no color
representation of the bathymetry. The lines are drawn according to their
respective time stamps. 3D AUV models can be added to this scene.

B. RECOMMENDATIONS FOR FUTURE WORK

This work achieves the goals originally set. As with any success, new lessons are learned

and new challenges provide further opportunities.

Firstly, currently, the display mode has to be defined inside the VRML file, before

starting it. It may be better if the display mode could directly be chosen after starting the scene.

This choice could be made by creating three Text nodes with mode names. When user would

click on one of them, display mode would be defined.

Secondly, durationActivePoint and timeLatestActivePoint values (range of values

displayed on screen) cannot be modified when the scene runs. A good idea is to create sliders

(combination of cylinder and sphere shapes) that could decrease/increase durationActivePoint

and timeLatestActivePoint values in real time.

 52

When AUV operations are represented by a line path, a 3D AUV model is added and

moves following the path. Nevertheless its movement is jerky. A good improvement would be

to interpolate AUV motion to make it smoother and more realistic.

Finally, mine-like contact coordinates have to be represented within the VRML scene

using the same way as AUV coordinates. 3D mine models would be included in the scene,

located at the coordinates provided by ADS data. More AUV and mine models might also be

created to feed the 3D library.

This project is a preliminary work, which deserves to be continued. It lays the foundation

for a variety of future works that can become a useful tool contributing towards NPS AUV

research.

 53

APPENDIX A. ARIES AUV X3D MODEL

3D ARIES AUV model source code (VRML):

#VRML V2.0 utf8

X3D-to-VRML-97 XSL translation autogenerated by X3dToVrml97.xsl

http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xsl

[X3D]

[Scene]

NavigationInfo {

 type ["EXAMINE" "ANY"]

}

Viewpoint {

 description "Entry"

 position -0.05 0 2

}

DEF auv Group {

 children [

 Transform {

 translation 0.6223 0.13335 0

 children [

 DEF A_Plane Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry IndexedFaceSet {

 coordIndex [0 3 2 1 -1 4 5 6 7 -1 0 1 5 4 -1 1 2 6 5 -1 2

3 7 6 -1 0 3 7 4 -1]

 creaseAngle 3.14159

 coord Coordinate {

 point [0.0635, 0, 0.0127, 0.0381, 0.1778, -0.0127, -0.0381, 0.1778,
- 0.0127, -0.0889, 0, -0.0127, 0.0635, 0, 0.0127, 0.0381, 0.1778, 0.0127, -.0381,
0.1778, 0.0127, -0.0889, 0, 0.0127]

 }

 }

 }

 54

]

 }

 Transform {

 translation -0.7747 0.13335 0

 children [

 USE A_Plane

 Transform {

 translation 0 0.1778 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 1 0.3 0

 }

 }

 geometry IndexedFaceSet {

 coordIndex [0 9 10 -1, 0 10 1 -1, 2 1 10 -1, 3 2 10 -1, 4 3 10 -1, 5
4 10 -1, 6 5 10 -1, 7 6 10 -1, 8 7 10 -1, 9 8 10 -1, 0 1 2 3 4 5 6 7 8 9 -1,]

 creaseAngle 1.57

 coord Coordinate {

 point [-0.1 0 0, 0 0 -0.05, 0.019 0 -0.046, 0.0355 0 -0.0355,
0.046 0 -0.019, 0.05 0 0, 0.046 0 0.019, 0.0355 0 0.0355, 0.019 0 0.046, 0 0 0.05, 0
0.03 0]

 }

 }

 }

]

 }

]

 }

 Transform {

 rotation 1 0 0 3.14159267

 translation 0.6223 -0.13335 0

 children [

 USE A_Plane

]

 }

 Transform {

 rotation 1 0 0 3.14159267

 translation -0.7747 -0.13335 0

 children [

 55

 USE A_Plane

]

 }

 Transform {

 rotation 1 0 0 1.5708

 translation -0.7747 0 0.20955

 children [

 USE A_Plane

]

 }

 Transform {

 rotation 1 0 0 1.5708

 translation 0.6223 0 0.20955

 children [

 USE A_Plane

]

 }

 Transform {

 rotation 1 0 0 -1.5708

 translation 0.6223 0 -0.20955

 children [

 USE A_Plane

]

 }

 Transform {

 rotation 1 0 0 -1.5708

 translation -0.7747 0 -0.20955

 children [

 USE A_Plane

]

 }

 Transform {

 translation -0.4953 0 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0.2 0.2 0.2

 }

 }

 56

 geometry Cylinder {

 height 0.29

 radius 0.0635

 }

 }

]

 }

 Transform {

 rotation 1 0 0 1.5708

 translation 0.4699 0 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0.2 0.2 0.2

 }

 }

 geometry Cylinder {

 height 0.44

 radius 0.0635

 }

 }

]

 }

 Transform {

 rotation 1 0 0 1.5708

 translation -0.6223 0 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0.2 0.2 0.2

 }

 }

 geometry Cylinder {

 height 0.44

 radius 0.0635

 }

 }

]

 57

 }

 Group {

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0.9 0.9 0.9

 }

 }

 geometry IndexedFaceSet {

 coordIndex [0 26 34 33 32 31 25 1 –1 1 25 29 28 2 –1 2 28 35 36 37 38
27 3 –1 0 3 27 30 26 –1 0 4 1 –1 0 1 4 –1 1 5 2 –1 1 2 5 –1 2 6 3 –1 2 3 6 –1 3 7 0 –1
3 0 7 –1 7 0 8 –1 7 8 0 –1 8 0 9 –1 8 9 0 –1 9 0 4 –1 9 4 0 –1 4 1 10 –1 4 10 1 –1 10
1 –1 10 11 1 –1 11 1 5 –1 11 5 1 –1 5 2 12 –1 5 12 2 –1 12 2 13 –1 12 13 2 –1 13 2 6 -
13 6 2 –1 6 3 14 –1 6 14 3 –1 14 3 15 –1 14 15 3 –1 15 3 7 –1 15 7 3 –1 4 10 16 –1 10
1 16 –1 11 5 17 –1 5 12 18 –1 12 13 19 –1 13 6 19 –1 6 14 20 –1 14 15 20 –1 15 7 21 –1
7 8 22 –1 8 9 23 –1 9 4 23 –1 4 16 23 –1 11 17 16 –1 5 18 17 –1 12 19 18 –1 6 20 19 –1
20 15 21 -1 21 7 22 –1 22 8 23 –1 23 16 24 –1 16 17 24 –1 17 18 24 –1 18 19 24 –1 19
20 24 –1 20 21 24 –1 21 22 24 –1 22 23 24 –1 26 27 30 –1 25 26 30 29 –1 25 29 28 –1
27 28 29 30 –1 31 32 36 35 –1 32 33 37 36 –1 34 38 37 33 -1]

 creaseAngle 3.14159

 coord Coordinate {

 point [0.6985, 0.13335, -0.20955, 0.6985, 0.13335, 0.20955, 0.6985,
-0.13335, 0.20955, 0.6985, -0.13335, -0.20955, 1.05, 0.085, 0, 1.05, 0, 0.1143, 1.05,
- 0.085, 0, 1.05, 0, -0.1143, 1.05, 0.04572, -0.098985, 1.05, 0.079188, -0.05715,
1.05, .079188, 0.05715, 1.05, 0.04572, 0.098985, 1.05, -0.04572, 0.098985, 1.05, -
0.079188, .05715, 1.05, -0.079188, -0.05715, 1.05, -0.04572, -0.098985, 1.1, 0.04064,
0.02032, 1.1, 0.02032, 0.06096, 1.1, -0.02032, 0.06096, 1.1, -0.04064, 0.02032, 1.1, -
0.04064, 0.02032, 1.1, -0.02032, -0.06096, 1.1, 0.02032, -0.06096, 1.1, 0.04064, -
0.02032, 1.11, 0, 0, -0.6985, 0.13335, 0.20955, -0.6985, 0.13335, -0.20955, -0.6985,
-0.13335, -0.20955, -0.6985, -0.13335, 0.20955, -1.1303, 0, 0.20955, -1.1303, 0, -
0.20955, -0.6985, 0.13335, 0.0635, -0.8509, 0.13335, 0.0635, -0.8509, 0.13335, -
0.0635, -0.6985, .13335, -0.0635, -0.6985, -0.13335, 0.0635, -0.8509, -0.13335,
0.0635, -0.8509, -0.13335, -0.0635, -0.6985, -0.13335, -0.0635,]

 }

 }

 }

]

 }

 Transform {

 translation -1.1557 0 0.09525

 children [

 Group {

 children [

 DEF Stbd_Blade Group {

 children [

 Transform {

 58

 rotation 0 1 0 -0.39

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry IndexedFaceSet {

 coordIndex [0 1 2 3 4 5 6 7 –1 0 7 6 5 4 3 2 1 -1]

 coord Coordinate {

 point [0, 0, -0.00508, 0, 0.02540, -0.02032, 0, 0.04572, -
0.01524, 0, 0.05080, -0.00508, 0, 0.05080, 0.00508, 0, 0.04572, 0.01524, 0, 0.02540,
.02032, 0, 0, 0.00508]

 }

 }

 }

]

 }

]

 }

 Transform {

 rotation 1 0 0 1.5708

 children [

 USE Stbd_Blade

]

 }

 Transform {

 rotation 1 0 0 3.14159267

 children [

 USE Stbd_Blade

]

 }

 Transform {

 rotation 1 0 0 -1.5708

 children [

 USE Stbd_Blade

]

 }

 Transform {

 rotation 0 0 1 1.5708

 59

 translation 0.0281 0 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry Cylinder {

 height 0.0762

 radius 0.008

 }

 }

]

 }

 Transform {

 rotation 0 0 1 1.5708

 translation -0.015 0 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry Cone {

 bottomRadius 0.008

 height 0.01

 }

 }

]

 }

 Shape {

 geometry Extrusion {

 beginCap FALSE

 creaseAngle 2

 crossSection [1.00 0.00, 0.92 -0.38, 0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92, -0.71 -0.71, -0.92 -0.38, -1.00 -0.00, -0.92 0.38, -0.71
0.71, -0.38 0.92, 0.00 1.00, 0.38 0.92, 0.71 0.71, 0.92 0.38, 1.00 0.00
]

 endCap FALSE

 60

 scale [0.08 0.08, 0.07 0.07, 0.06 0.06, 0.07 0.07, 0.08 0.08]

 spine [-0.08 0 0, 0.08 0 0, 0.08 0 0, -0.08 0 0, -0.08 0 0]

 }

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 }

]

 }

]

 }

 Transform {

 translation -1.1557 0 -0.09525

 children [

 Group {

 children [

 DEF Port_blade Group {

 children [

 Transform {

 rotation 0 1 0 0.39

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry IndexedFaceSet {

 coordIndex [0 1 2 3 4 5 6 7 –1 0 7 6 5 4 3 2 1 -1]

 coord Coordinate {

 point [0, 0, -0.00508, 0, 0.02540, -0.02032, 0, 0.04572, -
0.01524, 0, 0.05080, -0.00508, 0, 0.05080, 0.00508, 0, 0.04572, 0.01524, 0, 0.02540,
0.02032, 0, 0, 0.00508]

 }

 }

 }

]

 }

]

 61

 }

 Transform {

 rotation 1 0 0 1.5708

 children [

 USE Port_blade

]

 }

 Transform {

 rotation 1 0 0 3.14159267

 children [

 USE Port_blade

]

 }

 Transform {

 rotation 1 0 0 -1.5708

 children [

 USE Port_blade

]

 }

 Transform {

 rotation 0 0 1 1.5708

 translation 0.0281 0 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry Cylinder {

 height 0.0762

 radius 0.008

 }

 }

]

 }

 Transform {

 rotation 0 0 1 1.5708

 translation -0.015 0 0

 children [

 62

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 geometry Cone {

 bottomRadius 0.008

 height 0.01

 }

 }

]

 }

 Shape {

 geometry Extrusion {

 beginCap FALSE

 creaseAngle 2

 crossSection [1.00 0.00, 0.92 -0.38, 0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92, -0.71 -0.71, -0.92 -0.38, -1.00 -0.00, -0.92 0.38, -0.71
0.71, -0.38 0.92, 0.00 1.00, 0.38 0.92, 0.71 0.71, 0.92 0.38, 1.00 0.00]

 endCap FALSE

 scale [0.08 0.08, 0.07 0.07, 0.06 0.06, 0.07 0.07, 0.08 0.08]

 spine [-0.08 0 0, 0.08 0 0, 0.08 0 0, -0.08 0 0, -0.08 0 0]

 }

 appearance Appearance {

 material Material {

 diffuseColor 0 0 1

 }

 }

 }

]

 }

]

 }

 DEF logo Group {

 children [

 Transform {

 translation -0.475 -0.05 0.21

 children [

 Shape {

 appearance Appearance {

 63

 material Material {

 diffuseColor 0 0 0.8

 }

 }

 geometry Text {

 string ["NPS"]

 fontStyle FontStyle {

 family ["SANS"]

 size 0.15

 style "BOLD"

 }

 }

 }

]

 }

 Transform {

 translation -0.175 -0.05 0.21

 children [

 DEF line Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0 0 0.8

 }

 }

 geometry IndexedFaceSet {

 coordIndex [0 1 2 3 -1]

 solid FALSE

 coord Coordinate {

 point [0 0 0, 0.5 0 0, 0.5 0.02 0, 0 0.02 0,]

 }

 }

 }

]

 }

 Transform {

 translation -0.175 -0.015 0.21

 children [

 USE line

]

 }

 64

 Transform {

 translation -0.175 0.02 0.21

 children [

 USE line

]

 }

]

 }

 Transform {

 rotation 0 1 0 3.14159267

 translation -0.15 0 0

 children [

 USE logo

]

 }

]

}

 65

APPENDIX B. WAYPOINT FRENCH GENERATOR X3D MODEL

VRML source code of the latest version of the waypoint track generator program:

#VRML V2.0 utf8

X3D-to-VRML-97 XSL translation autogenerated by X3dToVrml97.xsl

http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xsl

[X3D]

[Header]

[meta] filename: PointTrackGeneratorPrototype.xml

[meta] description: Generator of randomized colored points using script
nodes. The data arrays for coordinates and colors are generated in realtime or
everyting is displayed, depending on your choice.

[meta] author: Frederic Roussille

[meta] created: 14 May 2001

[meta] revised: 06 June 2001

[meta] url:
http://web.nps.navy.mil/~brutzman/vrml/examples/NpsMilitaryModels/Tools/Animation/Poin
tGeneratorTrack.xml

[meta] generator: X3D-Edit,
http://www.web3D.org/TaskGroups/x3d/translation/README.X3D-Edit.html

[Scene]

PROTO PointTrackGenerator [

 # Point coordinates in meters, referenced to local coordinate system origin

 # Point times in seconds for local exercise clock. (Each time is clock time
in seconds, not in interval durations.).

 # Both points and times are initially provided as a full set of values.

 field MFVec3f pointPositionsArray [0 0 0, 10 -4 0, 25 -6 0, 30 -8
5, 38 -15 5, 45 -18 5, 55 -22 5, 60 -25 15, 60 -27 22, 55 -30 35, 48 -35 35, 35 -35
35, 25 -45 35, 20 -55 35, 15 -70 35, 3 -70 35, -5 -72 40, -5 -75 50, 0 -80 55, 15 -75
55, 30 -70 55, 35 -60 55, 40 -50 55, 50 -34 55, 65 -23 70] # IS
DrawPointScript.pointPositionsArray

 field MFTime pointTimesArray [1, 3, 6, 8, 10, 12, 14, 15, 17, 18,
23, 28, 35, 37, 39, 43, 45, 47, 48, 53, 58, 60, 61, 65, 70] # IS
DrawPointScript.pointTimesArray

 # totalDuration is derived from the pointTimesArray, and used to set
cycleInterval on a controlling TimeSensor clock outside the PointTrackGenerator
ProtoInstance.

 eventOut SFTime totalDuration # IS DrawPointScript.totalDuration

 # displayPointsMode settings: -1=none, 0=some (active interval), 1=all.

 exposedField SFInt32 displayPointsMode 2 # IS
PointsGeometrySwitch.whichChoice

 # durationActivePoints is in seconds, default initialization value is
totalDuration

 66

 eventIn SFTime durationActivePoints # IS
DrawPointScript.durationActivePoints

 # timeLatestActivePoint is in seconds, default initialization value is final
point time

 eventIn SFTime timeLatestActivePoint # IS
DrawPointScript.timeLatestActivePoint

 eventOut SFTime getStartTime # IS DrawPointScript.getStartTime

 eventOut SFTime getStopTime # IS DrawPointScript.getStopTime

 eventIn SFTime mappedColorPointCreator # IS
DrawPointScript.mappedColorPointCreator

 exposedField MFString auvName [

"auv_ax_xml.wrl"

] # IS auvName.url

] {

 Group {

 children [

 DEF PointsGeometrySwitch Switch {

 whichChoice IS displayPointsMode

 choice [

 Shape {

 geometry DEF ActivePointSet PointSet {

 coord DEF ActivePointSetCoordinateNode Coordinate {

 }

 color DEF ActivePointSetColorNode Color {

 }

 }

 }

 Shape {

 geometry DEF CompletePointSet PointSet {

 coord DEF CompletePointSetCoordinateNode Coordinate {

 }

 color DEF CompletePointSetColorNode Color {

 }

 }

 }

 Group {

 children [

 Shape {

 geometry DEF ActiveLineSet IndexedLineSet {

 coord DEF ActiveLineSetCoordinateNode Coordinate {

 }

 67

 color DEF ActiveLineSetColorNode Color {

 }

 }

 }

 DEF auvTransform Transform {

 scale 4 4 4

 children [

 DEF auvName Inline {

 url IS auvName

 }

]

 }

]

 }

]

 }

 DEF ColorMapInterpolator ColorInterpolator {

 key [0, 0.12, 0.48, 0.7, 1]

 keyValue [1 1 1, 1 0 0, 0 1 0, 0 0 1, 0 0 0]

 }

 DEF ColorMapInterpolatorForCompletePointsSet ColorInterpolator {

 key [0, 0.12, 0.48, 0.7, 1]

 keyValue [1 1 1, 1 0 0, 0 1 0, 0 0 1, 0 0 0]

 }

 DEF CompletePointSetTimeSensor TimeSensor {

 cycleInterval 0.01

 loop TRUE

 }

 DEF DrawPointScript Script {

 # For proper operation, first insert newPoint and then newPointTimeStamp

 field MFVec3f pointPositionsArray IS pointPositionsArray

 field MFTime pointTimesArray IS pointTimesArray

 field MFVec3f newPointPositionsArray []

 field MFTime newPointTimesArray []

 field SFInt32 lineIndex 1

 eventIn SFTime mappedColorPointCreator IS mappedColorPointCreator

 field SFInt32 index 0

 field SFInt32 completeIndex 0

 eventOut SFBool ConditionComplete

 68

 field SFNode ActivePointSetCoordinateNode USE
ActivePointSetCoordinateNode

 field SFNode ActivePointSetColorNode USE
ActivePointSetColorNode

 field SFNode CompletePointSetCoordinateNode USE
CompletePointSetCoordinateNode

 field SFNode CompletePointSetColorNode USE
CompletePointSetColorNode

 field SFNode ColorMapInterpolator USE ColorMapInterpolator

 field SFNode ColorMapInterpolatorForCompletePointsSet USE
ColorMapInterpolatorForCompletePointsSet

 field SFNode ActiveLineSetCoordinateNode USE
ActiveLineSetCoordinateNode

 field SFNode ActiveLineSetColorNode USE ActiveLineSetColorNode

 field SFNode auvTransform USE auvTransform

 eventOut SFTime totalDuration IS totalDuration

 eventOut SFTime getStartTime IS getStartTime

 eventOut SFTime getStopTime IS getStopTime

 eventOut MFInt32 coordIndex_changed

 eventIn SFTime durationActivePoints IS durationActivePoints

 eventIn SFTime timeLatestActivePoint IS timeLatestActivePoint

 eventIn SFTime completePointSetValue_changed

 eventIn SFColor set_completePointSetColorArray

url ["javascript:

function initialize() {

 totalDuration = pointTimesArray[pointTimesArray.length-1];

 var today = new Date();

 getStartTime = Math.round(today.getTime() / 1000);

 getStopTime = getStartTime + totalDuration;

 var m = 1;

 //default values for durationActivePoint and timeLatestActivePoint

 durationActivePoint = totalDuration;

 timeLatestActivePoint = pointTimesArray[pointTimesArray.length-1];

 if(timeLatestActivePoint == durationActivePoint) {

 newPointTimesArray = pointTimesArray;

 newPointPositionsArray = pointPositionsArray;

 print('newPointTimesArray = ' + newPointTimesArray);

 }

 if(timeLatestActivePoint > durationActivePoint) {

 69

 var firstTime = latestTime = k = 0;

 while((timeLatestActivePoint - durationActivePoint) !=
pointTimesArray[firstTime]) {

 firstTime++;

 }

 while(timeLatestActivePoint != pointTimesArray[latestTime]) {

 latestTime++;

 }

 for(var j = firstTime ; j <= latestTime ; j++) {

 newPointTimesArray[k] = pointTimesArray[j] - pointTimesArray[firstTime] + 1;

 newPointPositionsArray[k] = pointPositionsArray[j];

 k++;

 }

 print('newPointTimesArray = ' + newPointTimesArray);

 }

 if(timeLatestActivePoint < durationActivePoint) {

 print('Fatal error : timeLatestActivePoint < durationActivePoint !');

 }

 ConditionComplete = false;

}

function completePointSetValue_changed() {

 if(ConditionComplete == false && completeIndex <= (pointPositionsArray.length-
1)) {

 ColorMapInterpolatorForCompletePointsSet.set_fraction = -
pointPositionsArray[completeIndex][1] / 100;

print('ColorMapInterpolatorForCompletePointsSet.set_fraction['+completeIndex+'] = ' +
ColorMapInterpolatorForCompletePointsSet.set_fraction);

 //need to initialize ColorMapInterpolator.set_fraction with the first point
color otherwise the value is shifted

 ConditionComplete = true;

 }

}

function set_completePointSetColorArray(Value) {

 CompletePointSetColorNode.color[completeIndex] = Value;

 CompletePointSetCoordinateNode.point[completeIndex] =
pointPositionsArray[completeIndex];

 completeIndex++;

 ConditionComplete = false;

}

 70

function mappedColorPointCreator(fractionValue) {

 ColorMapInterpolator.set_fraction = - newPointPositionsArray[index][1] / 100;

 //need to initialize ColorMapInterpolator.set_fraction with the first point
color otherwise the value is shifted

 if(Math.floor(fractionValue) == (newPointTimesArray[index] + getStartTime)) {

 ActivePointSetColorNode.color[index] = ColorMapInterpolator.value_changed;

 ActivePointSetCoordinateNode.point[index] = newPointPositionsArray[index];

 auvTransform.translation = newPointPositionsArray[index];

 if(index <= 1) {

 ActiveLineSetCoordinateNode.point[index] =
newPointPositionsArray[index];

 coordIndex_changed[index] = index;

 ActiveLineSetColorNode.color[index][0] = 1;

 ActiveLineSetColorNode.color[index][1] = 1;

 ActiveLineSetColorNode.color[index][2] = 1;

 auvTransform.translation = newPointPositionsArray[index];

 if(index == 1) {

 ActiveLineSetCoordinateNode.point[index] =
newPointPositionsArray[index];

 coordIndex_changed[index] = index;

 coordIndex_changed[index+1] = -1;

 ActiveLineSetColorNode.color[index-1][0] = 1;

 ActiveLineSetColorNode.color[index-1][1] = 0;

 ActiveLineSetColorNode.color[index-1][2] = 0;

 ActiveLineSetColorNode.color[index][0] = 1;

 ActiveLineSetColorNode.color[index][1] = 1;

 ActiveLineSetColorNode.color[index][2] = 1;

 }

 }

 else {

 ActiveLineSetCoordinateNode.point[index] =
newPointPositionsArray[index];

 coordIndex_changed[index+lineIndex] =
coordIndex_changed[index+lineIndex-2];

 coordIndex_changed[index+lineIndex+1] = index;

 coordIndex_changed[index+lineIndex+2] = -1;

 ActiveLineSetColorNode.color[index-1][0] = 1;

 ActiveLineSetColorNode.color[index-1][1] = 0;

 ActiveLineSetColorNode.color[index-1][2] = 0;

 ActiveLineSetColorNode.color[index][0] = 1;

 ActiveLineSetColorNode.color[index][1] = 1;

 71

 ActiveLineSetColorNode.color[index][2] = 1;

 lineIndex += 2;

 }

 //print('ActivePointSetCoordinateNode.point[' +index +'][0]=' +
ActivePointSetCoordinateNode.point[index][0]);

 //print('ActivePointSetCoordinateNode.point[' +index +'][1]=' +
ActivePointSetCoordinateNode.point[index][1]);

 //print('ActivePointSetCoordinateNode.point[' +index +'][2]=' +
ActivePointSetCoordinateNode.point[index][2]);

 index ++;

 }

}

"]

 }

 DEF Debugger Script {

 eventIn MFVec3f set_debugcoordinate

 eventIn MFColor set_debugcolor

 eventIn MFVec3f set_debugcoordinateC

 eventIn MFColor set_debugcolorC

 eventIn MFVec3f set_debugcoord

 eventIn MFInt32 set_debugcoordIndex_changed

url ["javascript:

function set_debugcoordinate(Value) {

 print('ActivePointSet : CoordinatePointArrray = ' + Value);

}

function set_debugcolor(Valeur) {

 print('ActivePointSet : ColorPointArray = ' + Valeur);

}

function set_debugcoordinateC(Value) {

 print('CompletePointSet : CoordinatePointArrray = ' + Value);

 print(' ');

}

function set_debugcolorC(Valeur) {

 print('CompletePointSet : ColorPointArray = ' + Valeur);

}

function set_debugcoord(Valeur) {

 print('ActiveLineSet : Coordinate.point = ' + Valeur);

 72

 print(' ');

}

function set_debugcoordIndex_changed(Valeur) {

 print('DrawPointScript : coordIndex_changed = ' + Valeur);

}

"]

 }

]

 }

 ROUTE CompletePointSetTimeSensor.cycleTime TO
DrawPointScript.completePointSetValue_changed

 ROUTE ColorMapInterpolatorForCompletePointsSet.value_changed TO
DrawPointScript.set_completePointSetColorArray

 ROUTE DrawPointScript.coordIndex_changed TO ActiveLineSet.set_coordIndex

 ROUTE ActivePointSetCoordinateNode.point_changed TO
Debugger.set_debugcoordinate

 ROUTE ActivePointSetColorNode.color_changed TO Debugger.set_debugcolor

 ROUTE ActiveLineSetCoordinateNode.point TO Debugger.set_debugcoord

 ROUTE DrawPointScript.coordIndex_changed TO
Debugger.set_debugcoordIndex_changed

 ROUTE CompletePointSetCoordinateNode.point_changed TO
Debugger.set_debugcoordinateC

 ROUTE CompletePointSetColorNode.color_changed TO Debugger.set_debugcolorC

}

Example scene goes here

NavigationInfo {

 type ["EXAMINE" "ANY"]

}

Viewpoint {

 description "MainView"

 position 0 -50 200

}

DEF TrackGeneratorInstance PointTrackGenerator {

}

DEF DisplayingTimer TimeSensor {

}

ROUTE TrackGeneratorInstance.getStartTime TO DisplayingTimer.set_startTime

ROUTE TrackGeneratorInstance.getStopTime TO DisplayingTimer.set_stopTime

ROUTE TrackGeneratorInstance.totalDuration TO DisplayingTimer.set_cycleInterval

ROUTE DisplayingTimer.time_changed TO
TrackGeneratorInstance.mappedColorPointCreator

 73

APPENDIX C. MANTA UNDERWATER MINE X3D MODEL

3D Manta mine model source code (VRML):

#VRML V2.0 utf8

X3D-to-VRML-97 XSL translation autogenerated by X3dToVrml97.xsl

http://www.web3D.org/TaskGroups/x3d/translation/X3dToVrml97.xsl

[X3D]

[Header]

[meta] filename: MantaPrototype.xml

[meta] description: Italian Manta bottom mine, with truncated cone and
handling padeyes.

[meta] author: Frederic Roussille

[meta] created: 8 May 2001

[meta] revised: 16 May 2001

[meta] url:
http://www.web3D.org/TaskGroups/x3d/translation/examples/NpsMilitaryModels/Weapons/Und
erwaterMines/MantaPrototype.xml

[meta] photo: http://www.cisatlantic.com/trimix/strike/minelocator.jpg

[meta] photo: http://www.cisatlantic.com/trimix/strike/Mine1.jpg

[meta] photo: http://www.cisatlantic.com/trimix/strike/Mine2.jpg

[meta] photo: http://www.fas.org/man/dod-101/navy/docs/swos/cmd/miw/Sp6-4-
1/sld055.htm

[meta] generator: X3D-Edit,
http://www.web3D.org/TaskGroups/x3d/translation/README.X3D-Edit.html

[Scene]

PROTO MantaMine [

 exposedField SFColor MineColor 0.6 0.3 0 # IS MineColor.diffuseColor

 field SFString viewpointDescription "Manta mine" # IS
EntryViewpoint.description

] {

 # Bad CosmoPlayer bug: only first node is used in Prototype. Thus we wrap
everything inside a Group. Beurk (bleah)!!

 Group {

 children [

 DEF EntryViewpoint Viewpoint {

 description IS viewpointDescription

 orientation 1 0 0 -0.4

 position 0 1 3

 }

 74

 LOD {

 range [10 50 100]

 level [

 Group {

 children [

 Viewpoint {

 description "Manta top view"

 orientation 1 0 0 -1.57

 position 0 2 0

 }

 Viewpoint {

 description "Manta side view"

 orientation 0 1 0 -1.57

 position -2 0 0

 }

 Transform {

 rotation 1 0 0 1.57

 scale 1.5 1.5 1

 children [

 Shape {

 appearance Appearance {

 material DEF MineColor Material {

 diffuseColor IS MineColor

 }

 }

 geometry Extrusion {

 beginCap FALSE

 creaseAngle 157

 crossSection [0.1 0, 0.22 -0.01, 0.2275 -0.05 0.2675 -0.05, 0.49
0.4, 0.49 0.47, 0.53 0.47, 0.53 0.48, 0 0.48, 0 0.22, 0.0675 0.22, 0.1 0,]

 endCap FALSE

 spine [0.001 0 0, 0.00092 -0.00038 0, 0.00071 -0.00071 0,
0.00038 -0.00092 0, 0 -0.001 0, -0.00038 -0.00092 0, -0.00071 -0.00071 0, -0.00092 -
0.00038 0, -0.001 0 0, -0.00092 0.00038 0, -0.00071 0.00071 0, -0.00038 0.00092 0, 0
0.001 0, 0.00038 0.00092 0, 0.00071 0.00071 0, 0.00092 0.00038 0, 0.001 0 0]

 }

 }

]

 }

 Transform {

 rotation 0 1 0 0.785

 75

 translation 0.36 -0.4 0.36

 children [

 DEF triangle Shape {

 appearance Appearance {

 material USE MineColor

 }

 geometry IndexedFaceSet {

 coordIndex [0 1 3 -1, 0 1 2 -1, 0 2 3 -1, 1 3 2 -1]

 solid FALSE

 coord Coordinate {

 point [0 0 0.0925, 0 0.2775 0.122, -0.0925 0.2775 0, 0.0925
0.2775 0]

 }

 }

 }

]

 }

 Transform {

 rotation 0 1 0 -0.785

 translation -0.36 -0.4 0.36

 children [

 USE triangle

]

 }

 Transform {

 rotation 0 1 0 2.355

 translation 0.36 -0.4 -0.36

 children [

 USE triangle

]

 }

 Transform {

 rotation 0 1 0 -2.355

 translation -0.36 -0.4 -0.36

 children [

 USE triangle

]

 }

 Transform {

 translation 0.4 -0.08 0.4

 76

 children [

 DEF ring Group {

 children [

 Transform {

 rotation 1 0 0 1.57

 children [

 Shape {

 appearance Appearance {

 material DEF grey Material {

 diffuseColor 0.5 0.5 0.5

 specularColor 1 1 1

 }

 }

 geometry Extrusion {

 beginCap FALSE

 convex FALSE

 creaseAngle 1.57

 crossSection [0 0, 0.007 0, 0.018 0.025, 0.032 0.035, 0.04
0.036, 0.04 0.04, 0 0.04, 0 0]

 endCap FALSE

 spine [0.001 0 0, 0.00092 -0.00038 0, 0.00071 -0.00071 0,
0.00038 -0.00092 0, 0 -0.001 0, -0.00038 -0.00092 0, -0.00071 -0.00071 0, -0.00092 -
0.00038 0, -0.001 0 0, -0.00092 0.00038 0, -0.00071 0.00071 0, -0.00038 0.00092 0, 0
0.001 0, 0.00038 0.00092 0, 0.00071 0.00071 0, 0.00092 0.00038 0, 0.001 0 0]

 }

 }

]

 }

 Transform {

 rotation 0 1 0 0.7535

 translation 0 0.035 0

 children [

 Shape {

 appearance Appearance {

 material USE grey

 }

 geometry Extrusion {

 beginCap FALSE

 creaseAngle 1.57

 crossSection [0.01 0, 0.0092 -0.0038, 0.0071 -0.0071, 0.0038
-0.0092, 0 -0.01, -0.0038 -0.0092, -0.0071 -0.0071, -0.0092 -0.0038, -0.01 0, -0.0092

 77

0.0038, -0.0071 0.0071, -0.0038 0.0092, 0 0.01, 0.0038 0.0092, 0.0071 0.0071, 0.0092
0.0038, 0.01 0]

 endCap FALSE

 spine [0.03 0 0, 0.0276 -0.0114 0, 0.0213 -0.0213 0, 0.0114
-0.0276 0, 0 -0.03 0, -0.0114 -0.0276 0, -0.0213 -0.0213 0, -0.0276 -0.0114 0, -0.03 0
0, -0.0276 0.0114 0, -0.0213 0.0213 0, -0.0114 0.0276 0, 0 0.03 0, 0.0114 0.0276 0,
0.0213 0.0213 0, 0.0276 0.0114 0, 0.03 0 0]

 }

 }

]

 }

]

 }

]

 }

 Transform {

 rotation 0 1 0 1.57

 translation -0.4 -0.08 0.4

 children [

 USE ring

]

 }

 Transform {

 rotation 0 1 0 1.57

 translation 0.4 -0.08 -0.4

 children [

 USE ring

]

 }

 Transform {

 translation -0.4 -0.08 -0.4

 children [

 USE ring

]

 }

 Transform {

 translation 0 -0.11 0

 children [

 Shape {

 appearance Appearance {

 material Material {

 78

 diffuseColor 0.5 0.5 0.5

 specularColor 0.2 0.2 0.2

 }

 }

 geometry Cylinder {

 height 0.22

 radius 0.15

 }

 }

]

 }

 Transform {

 rotation 0 0 1 0.935

 translation -0.461 -0.04 0

 children [

 DEF hole Shape {

 geometry Cylinder {

 height 0.01

 radius 0.04

 }

 appearance Appearance {

 material Material {

 diffuseColor 0 0 0

 }

 }

 }

]

 }

 Transform {

 rotation 0 0 1 -0.935

 translation 0.461 -0.04 0

 children [

 USE hole

]

 }

 Transform {

 rotation 1 0 0 -0.935

 translation 0 -0.04 -0.461

 children [

 USE hole

 79

]

 }

 Transform {

 rotation 1 0 0 0.935

 translation 0 -0.04 0.461

 children [

 USE hole

]

 }

 Transform {

 translation 0 -0.48 0

 children [

 Shape {

 appearance Appearance {

 material USE MineColor

 }

 geometry Cylinder {

 height 0.01

 radius 0.787

 }

 }

]

 }

]

 }

 Group {

 children [

 Transform {

 rotation 1 0 0 1.57

 scale 1.5 1.5 1

 children [

 Shape {

 appearance Appearance {

 material USE MineColor

 }

 geometry Extrusion {

 beginCap FALSE

 creaseAngle 157

 crossSection [0.1 0, 0.22 -0.01, 0.2275 -0.05 0.2675 -0.05, 0.49
0.4, 0.49 0.47, 0.53 0.47, 0.53 0.48, 0 0.48, 0 0.22, 0.0675 0.22, 0.1 0,]

 80

 endCap FALSE

 spine [0.001 0 0, 0.00092 -0.00038 0, 0.00071 -0.00071 0,
0.00038 -0.00092 0, 0 -0.001 0, -0.00038 -0.00092 0, -0.00071 -0.00071 0, -0.00092 -
0.00038 0, -0.001 0 0, -0.00092 0.00038 0, -0.00071 0.00071 0, -0.00038 0.00092 0, 0
0.001 0, 0.00038 0.00092 0, 0.00071 0.00071 0, 0.00092 0.00038 0, 0.001 0 0]

 }

 }

]

 }

 Transform {

 rotation 0 1 0 0.785

 translation 0.36 -0.4 0.36

 children [

 USE triangle

]

 }

 Transform {

 rotation 0 1 0 -0.785

 translation -0.36 -0.4 0.36

 children [

 USE triangle

]

 }

 Transform {

 rotation 0 1 0 2.355

 translation 0.36 -0.4 -0.36

 children [

 USE triangle

]

 }

 Transform {

 rotation 0 1 0 -2.355

 translation -0.36 -0.4 -0.36

 children [

 USE triangle

]

 }

 Transform {

 translation 0.4 -0.08 0.4

 children [

 DEF sphere Group {

 81

 children [

 Transform {

 rotation 1 0 0 1.57

 children [

 Shape {

 appearance Appearance {

 material USE grey

 }

 geometry Sphere {

 radius 0.05

 }

 }

]

 }

]

 }

]

 }

 Transform {

 rotation 0 1 0 1.57

 translation -0.4 -0.08 0.4

 children [

 USE sphere

]

 }

 Transform {

 rotation 0 1 0 1.57

 translation 0.4 -0.08 -0.4

 children [

 USE sphere

]

 }

 Transform {

 translation -0.4 -0.08 -0.4

 children [

 USE sphere

]

 }

 Transform {

 translation 0 -0.11 0

 82

 children [

 Shape {

 appearance Appearance {

 material Material {

 diffuseColor 0.5 0.5 0.5

 specularColor 0.2 0.2 0.2

 }

 }

 geometry Cylinder {

 height 0.22

 radius 0.15

 }

 }

]

 }

]

 }

 Transform {

 translation 0 -0.24 0

 children [

 Shape {

 appearance Appearance {

 material USE MineColor

 }

 geometry Cylinder {

 height 0.48

 radius 0.49

 }

 }

]

 }

 WorldInfo {

 title "Null node"

 }

]

 }

]

 }

}

Example scene starts here, in case this prototype is examined.

 83

NavigationInfo {

 type ["EXAMINE" "ANY"]

}

Background {

 groundColor [1 1 1]

 skyColor [1 1 1]

}

MantaMine {

 viewpointDescription "Manta mine 10m"

}

Viewpoint {

 description "Manta mine 50m (LOD breakpoint)"

 position 0 0 50

}

Viewpoint {

 description "Manta mine 99m (LOD breakpoint 100m)"

 position 0 0 99

}

 84

LIST OF REFERENCES

Refracted VRML Resource Center, “What is VRML” and “History of VRML,” 2001. Available
at http://www.refraction.com/vrml

Smith, James, “Floppy’s VRML Guide,” Vapour Technology Ltd., 2001. Available at
http://www.vapourtech.com/vrmlguide

Web3D Consortium, “Extensible 3D (X3D™) Graphics Task Group,” 1999-2001. Available at
http://www.web3d.org/x3d.html

Ames, Andrea L., Nadeau, David R. and Moreland, John L., “The VRML 2.0 Sourcebook”,
Wiley Computer Publishing, New York, 1997. Available at
http://www.wiley.com/legacy/compbooks/vrml2sbk/cover/cover.htm

Brutzman, Don, 2001, “Virtual Reality Modeling Language (VRML)”, course home page. Naval
Postgraduate School, Monterey California. Available at http://web.nps.navy.mil/~brutzman/vrml

Web3D Consortium, The Virtual Reality Modeling Language, Annex C (normative),
ECMAScript scripting reference, 1997. Available at
http://www.web3d.org/Specifications/VRML97/part1/javascript.html#Language

Brutzman, Don, “X3D-Edit for Extensible 3D (X3D) Graphics,” 2001. Available at
http://www.web3d.org/TaskGroups/x3d/translation/README.X3D-Edit.html

Marco, David B. and Healey, Anthony J., “Current Developments in Underwater Vehicle
Control and Navigation: The NPS ARIES AUV,” Naval Postgraduate School, Monterey
California, 2001.

Brutzman, Donald P., “A Virtual World for an Autonomous Underwater Vehicle,” Dissertation,
Naval Postgraduate School, Monterey California, 1994.

Healey, A. J., Wu, J. and Brutzman, D. P., “Tactical Decision Aids Using Modeling and
Simulation”, Grant # N0001400WR20003, Naval Postgraduate School, Monterey California,
2001.

