NPE-ME-01-008

NAVAL POSTGRADUATE SCHOOL
Monterey California

EXTENSIBLE 3D (X3D) GRAPHICS: SCENE DESIGN FOR
AUTONOMOUS UNDERWATER VEHICLE (AUV)
MISSION VISUALIZATION

by
Frederic Roussille

September 2001

Approved for public release; distribution is unlimited

Prepared for: Center for Autonomous Underwater Vehicle (AUV) Research
Naval Postgraduate School, Department of the Navy

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden
estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2001 Project report

4. TITLE AND SUBTITLE: Extensible 3D (X3D) Graphics: Scene Design for | 5 FUNDING NUMBERS
Autonomous Underwater Vehicle (AUV) Mission Visualization

6. AUTHOR Frederic Roussille

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B R e e CANIZATION

Center for Autonomous Underwater Vehicle (AUV) Research
Mechanical Engineering Department

Naval Postgraduate School

Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the officia policy
or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT
The NPS Center for AUV Research is a leader in this field and has been working for 14 years on several AUV prototypes. Its latest
AUV isdesignated the Acoustic Radio Interactive Exploratory Server (ARIES) and is fully operational.

Because it is sometimes difficult to observe and understand AUV behavior during mission operations, an underwater virtual world can
comprehensively model all AUV missions and environment. This report contributes towards real and virtual AUV software development. Indeed,
thoughts about a virtual world for AUV's are among the next stepsin general AUV devel opment.

This research report is a study and an experiment to transform AUV mission data into visible scenes. These scenes will build up a set of
3D mission archives that could be used later. The chosen programming language is the Virtua Reality Modeling Language (VRML). The
programming editor tool is called X3D-Edit, based on XD3 graphics technology and recently upgraded with a French version (French tooltips).

This report also provides 3D VRML/X3D models for the AUV and underwater mine models to improve AUV virtua world realism.

16. SUBJECT TERMS VRML, X3D, Virtua world, AUV éiG'\IIEléM BER OF
99
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison, USN Richard Elster
Superintendent Provost
This report was prepared for Ecole Nationale des Ingenieurs de Tarbes (ENIT), France.

This report was prepared by:

Frederick Roussille
Ecole Nationale de Ingenieurs de Tarbes

Reviewed by: Released by:
Professor Anthony J. Healey D. W. Netzer
Department of Mechanical Engineering Associate Provost and

Dean of Research

Associate Professor Don Brutzman
Undersea Warfare Academic Group

ABSTRACT

The NPS Center for AUV Research is a leader in underwater robotics and has been
working for 14 years on several AUV prototypes. Its latest AUV designated the Acoustic
Radio Interactive Exploratory Server (ARIES) and isfully operational.

Because it is sometimes difficult to observe and understand AUV behavior during
mission operations, an underwater virtual world can comprehensively model all AUV
missions and environment. This report contributes towards real and virtual AUV software
development. Indeed, thoughts about a virtual world for AUV's are among the next steps in
general AUV development.

This research report is a study and an experiment to transform AUV mission data
into visible scenes. These scenes will build up a set of 3D mission archives that can provide
post-mission visuadization. The chosen programming language is the Virtual Redlity
Modeling Language (VRML) encoded in Extensible 3D (x3d) Graphics format. The
programming editor tool is called X3D-Edit, based on XD3 graphics technology and
recently upgraded with a French version (French tooltips).

This report aso provides 3D VRML/X3D models for the AUV and underwater

mine models to improve AUV virtual world realism.

ACKNOWLEDGEMENTS

| have to thank many people for helping me for this final project.

First of al, I would like to thank Dr. Donald Brutzman, Professor Anthony Healey,
Dr. David Marco from the Naval Postgraduate School, M. Thierry Vida from the Ecole
Nationale d' Ingenieurs de Tarbes (France) and the ENIT’ s international relations for giving
the opportunity to come to Monterey (California) for my fina project working within the

Mechanical Engineering Department of the Naval Postgraduate School.

Secondly, | would like to thank so much again Dr. Donald Brutzman for being my
supervisor and for the unconditional support he gave me throughout this project. He
answered every question | asked with a constant patience and kindness and always stayed
listening to my requests.

| thank M. Thierry Vidal a lot for being my supervisor in France and for the help

and advices he gave me during this internship period.

THIS PAGE LEFT INTENTIONALLY BLANK

TABLE OF CONTENTS

INTRODUGCTION.ottt ettt s e et e b e ens 1
A. BACKGROUND ..ottt sttt st enas 1
B. MOTIVATION Lttt b e sreens 1
C. ORGANIZATION OF THE REPORToooiiivesece e 2
RELATED WORK ..ottt sttt 3
A. INTRODUCTION.....coiiiiiise sttt aesse e ssessesnesnens 3
B. VEHICLE PRESENTATION.oiiiiiiireieie e 3
1 ARIES HarAWar€......cooiiiieieieeie ettt e 3

2. Computer Hardware ArchiteCture.........ccooveceveeevecceeseece e 6

3. Computer Software ArchiteCture.........ccooveceveenenieneeeee e 6

C. AUV DATA SERVER (ADS) ..ottt 8
D. SUMMARY ettt sttt e tessesbenneane e 9
VRML GRAPHICS ...ttt sttt nne s 11
A. INTRODUCTION.....coiiiiiise sttt sttt sre s 11
B. PRESENTATION OF VRML ..oviitiiiiiicieeeee e 11
1. VRML HiSOIY ooveiieiieieiesese et 11

2. PreSentalioNcceiieieee e 11

3. Browsersand VRML ..o 12

4, Creating a Simple Object with VRMLccovevvvieiece e 12

C. SUMMARY ettt st sttt aenaeseesbesbesreens 16
X3BD GRAPHICS......c e bbbttt b e 17
A. INTRODUCTION.....coiiiiiese sttt sttt sre s 17
B. XML ENCODING ..ottt sttt s 17
C. DT I T OSSP 18
1. Presentalionccecireieere e 18

2. X3D-Edit INtErfaCe.......coiiieieereeeeeee e 19

D. SUMMARY ettt bbbttt bbb 21
MODELING PHYSICAL OBJECTSIN A VIRTUAL OCEAN......cccocvvvrerienens 23
A. INTRODUCTION.....coiiiiiite sttt s 23
B. THE ARIES PROTOTYPE ..ottt 23
1. AUV HUIL Lo e 23

2. PrOPEIErS ... s 25

3. TheFin and the DGPS..........o e 26

4, THENPS LOGO... ottt 26

5. The Complete VRML ARIESModé........ccooveieeicieece e 27

6. Another ARIES Prototypecoeeveeieiienieeneeseee e 28

C. THE WAYPOINT TRACK GENERATOR.....ccccoiitrirereree e 28
1 Problem Statement ... 28

2. Designing the Waypoint Track Generator Prototype. 29

a. Proto Instance Declaration...........ccocveverereeienenenese e 29

b. Prototype Body: The Switch Node..........ccccevvriiienienienene, 31

Vi

C. Proto Type Body: Interpolators and Sensor Nodes............... 31

d. Proto Type Body: Script NOGES.........cccvevuveeerveiereese e 31

e Outside the ProtOtype.cccoeeereeieriie e 42

f. Complete Diagram of the Program..........cccocvevveceneeciennnnne, 42

D. MINE CONTACTS ..ottt s nae s 43

1 a1 A o0 [N ex f Lo o PSPPSR 43

2. TheManta ProtOtyPe.......ccccveieeieiieeseeie e 44

E. SUMMARY ettt st st aenae st sresnesreens 46

VI. EXPERIMENTAL RESULTSottt 47
A. EVALUATION OF OUTPUTS ..ot 47

B. SPECIFIC EXAMPLE MISSION.....coiiiiiierienie st 47

C. SUMMARY ettt st aenaesaesbesnenreens 50

VII. CONCLUSIONSAND FUTURE WORKccoiiiiiiniine e 51
A. CONCLUSIONSottt st sresneens 51

B. RECOMMENDATIONS FOR FUTURE WORK......cccceiriiininesenieins 51
APPENDIX A. ARIESAUYV X3D MODEL ...ccoveitiieieieierie e 53
APPENDIX B. WAYPOINT FRENCH GENERATOR X3D MODELccccceevvvnineene 65
APPENDIX C. MANTA UNDERWATER MINE X3D MODELcccccoceveriiiiieneniennns 73
LIST OF REFERENCES. ...ttt 84

vii

THISPAGE INTENTIONALLY LEFT BLANK

viii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure5.
Figure 6.
Figure7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.

LIST OF FIGURES

The NPS ARIES AUV “On the Hook,” Being Lowered into the Water. 3
Hardware Components of the NPS ARIES...........ccooooiniinniene e 5
Dua Computer System UNIL.ccecceiierieiesie e ee e 6
Relational Behavior Model [Holden 1995].........ccoceviiienienieneeee e 7
Dual Computer Software Architecture [REF].cccccevvecenieeiece e, 8
Block Diagram of the ADS and its Connection to MEDAL........ccccccovovecevnienen. 9
Sphere with Changing Colors Animated Using VRML, Shown in Two

DIffEreNt BrOWSEIS......coieiiieeieeiestee ettt st nae e 16
X3D-Edit Interface with Multi-Language ToOoItipS.cceeveveeceeveereciesieene, 21
The ARIES Hull with creaseAngle Value = 3.14.ccooiiiienieneeneeeen 24
The ARIES Hull with creaseAngle Value = 0.ccceevvceveevecceceese e 24
A 3D VRML Propeller inside aShroud.ccooeriiiiiiniiiieceeee 26
The VRML ARIES Model (Top and Aft Quarter Views).cccceeeevveveereenne 27
The VRML ARIES Model (SIde VIiew).ccevvevereneiececeeeeeee e 28
The ADS Software Analyzes AUV Mission Data and Produces 3D Scenes

using the 3D Models Presented in this Chapter. ... 29
Manta Model Body EXIIUSION.cccvreeieerieeieseesie e seesse e seesee e sseesseennens 44
Manta Model Ring Extrusion (ring + COlUMN).coccoverienienennesee e 45
Manta Model RiNG SUPPOIT.........ocieieieceerie e re e e e 45
3D MantaMinNe MOGEL..........ooeiiie e 45
AUV Path Made with Pointsusing VRML.ccccoveiiiieiece e 49
AUV Path Made with Linesusing VRML. ... 50

THIS PAGE INTENTIONALLY LEFT BLANK

Diagram 1.
Diagram 2.
Diagram 3.
Diagram 4.

LIST OF DIAGRAMS

Diagram of the Function CompletePointSetVaue changed().........cccoceveenne 37
Diagram of the Function set_completePointSetColorArray().ccoeeevvereennnne 38
Diagram of the Function mappedColorPointCreator().cccuveererieereerennnns 41
Complete Diagram of the Program Waypoint Track Generator. 43

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

Table 1.

LIST OF TABLES

Coordinates and Time-Stamps Values.

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

INTRODUCTION

A. BACKGROUND

Autonomous Underwater Vehicles (AUVS) are designed to independently accomplish
complex tasks either in deep oceans or shallow water. A meticulous design must be followed
during conception of the AUV, since little or no communication with distant human supervisors
is possible. Thus, the underwater domain imposes many limitations and restrictions about

hardware and software components selection, as well as hardware and software architecture.

The Center for AUV Research at the Naval Postgraduate School has been working for 14
years on several AUV prototypes, with each improvement showing further success. The latest
NPD AUV is caled Acoustic Radio Interactive Exploratory Server (ARIES) and is fully
operational. Currently ARIES operates for short missions in Monterey Bay.

During operations, data sets, gathered from the ARIES include track positions,
bathymetry (for each sample point), sonar and video data, contact coordinates, imege, etc. All of
this data helps to reconstruct what happened during a mission. Nevertheless those information
streams are merely data and it is very difficult to observe AUV operations. That is why an
underwater virtual world is needed to comprehensively model al AUV missions and all
characteristics of the real world where it moves around.

B. MOTIVATION

A virtua world using 3D graphics for the ARIES, provides an excellent design

aternative to observe and understand its operations. Because of its high level of realism, avirtual

world has the potential to completely change how people observe and analyze post-mission data.

The Virtual Reality Modeling Language (VRML), specialy created to design virtua
worlds, is a good choice for such tasks. Not only suited to 3D virtual worlds, VRML is aso a
good way to share information and make these experiments available via the World Wide Web.
Extensible 3D (X3D) improvements to VRML provide further benefits.

The main purpose of this project is to demonstrate how transform data into visible
information such as the AUV path, AUV models, submerged contact models, etc. Additional

functionality isto provide user interactivity during playback: missions displayed “in real time” or

not, choosing display parameters, etc. Together These scenes can build up a set of 3D mission
archivesfor long-term use.

C. ORGANIZATION OF THE REPORT
Thisreport is organized into seven chapters:
Chapter | is the present introduction.

Chapter 1l is a presentation of related works pertinent to the ARIES AUV
(hardware and software components), and AUV Data Server (ADS) software that
collects and transforms mission data from the AUV.

Chapter 111 isan overview of VRML and an introductory tutorial to VRML syntax
and VRML worlds.

Chapter 1V is a presentation of Extensible 3D (X3D) graphics technology and a
X3D based tool, X3D-Edit, used to create VRML/X3D worlds.

Chapter V describes the VRML/X3D scene, which generates AUV paths
according to AUV mission data in a 3D virtual world. This chapter also contains
3D models for individual objects such as the ARIES, underwater mines, etc.

Chapter VI shows VRML/X3D experimental results derived from AUV operation
data.

Chapter VII provides conclusions and recommendations for future work.
Appendices and associated research products are the final part of this report.

II. RELATED WORK

A. INTRODUCTION

Research on Autonomous Underwater Vehicles (AUVS) has been an ongoing project at
the Naval Postgraduate School (NPS) in Monterey, California USA since 1987. Several AUV's
followed one another, increasing operational capabilities and becoming more robust as they
become more sophisticated in terms of hardware and computer software. The latest NPS vehicle
is named Acoustic Radio Interactive Exploratory Server (ARIES). This vehicle is a student-
research test bed for shallow-water minefield-mapping missions, operating in the littoral ocean.
The hull has recently become fully operational, and at the present time, only software

enhancements are required. Currently the vehicle operates regularly in Monterey Bay.

The following section is a general overview of the NPS AUV. It provides a genera
description of the hardware and the software architecture of this vehicle. These descriptions of
the ARIES AUV are derived from personal observation and the paper “ Current Developmentsin
Underwater Vehicle Control and Navigation: The NPS ARIES AUV” [Marco and Healey, 2001].

Figurel. The NPSARIES AUV “Onthe Hook,” Being Lowered into the Water.

B. VEHICLE PRESENTATION

1. ARIES Hardware

Dimensions and Endurance. The vehicle weighs 225 Kg and measures approximately 3 m
long, 0.4 m wide and 0.25 m high. The hull is constructed of 6.35 mm (¥2") thick type 6061

aluminum and forms the main pressure vessel that houses all electronics, computers and

batteries. A flooded fiberglass nose is used to house the externa sensors, key-controlled power

“on/off” switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is
powered by six 12 volt rechargeable lead-acid batteries. Vehicle endurance is approximately 4
hours at top speed, with 20 hours endurance under hotel load only. The ARIES is primarily
designed for shallow water operations and can operate safely down to depths of 30 meters.

Propulsion and Motion Control Systems. Main propulsion is achieved using twin % Hp
electric drive thrusters located at the stern. During normal submerged flight, heading and depth

are controlled using upper bow and stern rudders plus a set of bow planes and stern planes. Since
the control fins are ineffective during very slow (or zero) forward-speed maneuvers, vertical and
lateral cross-body thrusters are used to control surge, sway, heave, pitch, and yaw, motions
[Marco and Healey, 2001].

Navigation Sensors. The sensor suite used for navigation includes a 1200 kHz RD

Instruments Navigator Doppler Vedocimeter Log (DVL) that also contains a TCM2 magnetic
compass. This instrument measures the vehicle ground speed, atitude, and magnetic heading.
Angular rates and accelerations are measured using a Systron Donner 3-axis Motion Pak IMU.
While surfaced, Geographic Positioning System (GPS) inputs is provided by a carrier-phase
differential GPS (DGPS CP) system available during surfaced operation to correct any
navigational errors accumulated during the submerged phases of a mission [Marco and Hedley,
2001].

Sonar and Video Sensors. A Tritech ST725 scanning sonar and an ST1000 profiling

sonar is used for obstacle avoidance and target acquisition/reacquisition. [Tritech 2001] The

sonar heads can scan continuously through 360° of rotation or swept through a predefined
angular sector. A fixed-focus wide-angle video camera is located in the nose and connected to a
DV C recorder. The computer is interfaced to the recorder which controls on/off and start/stop
record functions. While recording images, data for date, time, vehicle position, depth and altitude

is superimposed on the video image.

8T725 SCANNING

SONAR VIDEO CAMERA
MAGNETIC SWITCH — ACOUSTIC MODEM
PANEL

RDI DOPPLER
DEPTH CELL SONAR
TRANSDUCER

SonTek ADVY
BOW SECTION LEAK
DETECTOR FIN SERVO (6)

BOW VERTICAL
BOW LATERAL THRUSTER
THRUSTER
(TECHNADYNE ——— SYSTRON-DONNER
MODEL 2580) —M MOTION PAK
FORE BALLAST ADY PROCESSOR

TANK ——— |

DUAL QNX PENTIUM
COMPUTERS + CONTROL
BOARDS + HARD DRIVES -

12 VOLT BATTERY (6)
SENSOR POWER RELAYS

DC/DC POWER SUPPLIES

— DIGITAL VIDEO CASSETTE
RECORDER {DVC)
MID SECTION LEAK
DETECTOR

AFT BALLAST LANC VIDEO CONTROLLER

TAbIS —““*H»-%_— 0O AshTec GPS RECEIVER
-
STERN VERTICAL FREEWAVE RADIO

VEHICLE TO SHORE
S
THRUSTER —M | -33:: COMM. LINK

STERN LATERAL : FREEWAYE RADIQ
—.—'—'_'_'—‘_'_F
THRUSTER i DGPS LINK

STERN SECTION LEAK
DETECTOR

GPS ANTENNA

Drawn by D. Marco 2000

STERN PROPULSION

T
2 TECHNADYNE /4 Pad
MODEL 520 THRUSTERS)
Figure2. Hardware Components of the NPS ARIES.

Vehicle/Operator Communications. Radio modems are used for high-bandwidth

command, control, and system monitoring while the vehicle is deployed and surfaced. While
submerged, an acoustic modem is used for low-bandwidth communications. In the laboratory
environment, a high-speed thinwire Ethernet connection is used for software development and
mission data upload/download [Marco and Healey 2001].

2. Computer Hardware Architecture

The dual-computer system unit measures approximately 28 x 20 x 20 cm. It consists of
two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM, four serial ports, a
network adapter, and a 2.5 GB hard drive each. Two DC/DC voltage converters for powering
both computer systems and peripherals are integrated into the computer package. The entire
computer system draws a nominal 48 Watts [Marco and Healey 2001].

Both systems use TCP/IP sockets over thinwire Ethernet for inter-processor
communications as well as connections to an external LAN. The sensor data-collection computer
isdesignated QNXT. The second is named QNXE and executes the various auto-pilots for servo-
level control.

Figure3. Dua Computer System Unit.

3. Computer Software Architecture.

The ARIES AUV has used a tri-level software architecture called the Rational Behavior
Model (RBM). RBM divides responsibilities into areas of openended strategic planning, soft-
real-time tactical analysis, and hard-real-time execution-level control. The RBM architecture has
been created as a model of a manned submarine operational structure. The correspondence

between the three levels and a submarine crew is shown in the figure below [Lalague 1999].

Figure 4 represents the tri-level architecture hierarchy with level emphasis and submarine

equivalent listed. A functional summary of each level follows.

RBM Level Emphasis Manned
/\ Submar i ne
Strategic Mission Commanding
Logic Officer
. Offi f th
Tactical Vehicle Do e
Behaviors
. Watch-
Execution Hardware standers
Control

Figure4. Relational Behavior Model [Holden 1995].

The Execution L evel assures the interface between hardware and software. Its tasks are
to maintain the physical and operational stability of the vehicle, to control the individual devices,
and to provide data to the tactical level. These tasks are currently performed by on-board host
QNXS [Lalaque 1999].

The Tactical Level provides a software level that interfaces with both the Execution
level and the Strategic level. Its chores are to give to the Strategic level indications of vehicle
state, completed tasks and execution level commands. The Tactical level selects the tasks needed
to reach the goal imposed by the Strategic level. It operates in terms of discrete events [Lalague
1999].

The Strategic Level controls the completion of the misson goals. The mission
specifications are inside this level [Lalague 1999].

A diagram outlining the modular, multi-rate, multi-process software architecture is shown
in the figure below. The architecture is designed to operate using a single computer processor or
two independent, cooperating processors linked through a network interface. Splitting the
processing between two computers can significantly improve computational load balancing and
software segregation. In the ARIES, each processor assumes different tasks for mission operation
[Marco and Healey 2001].

Both computers run the QN X real time operating system (QNX 2001) using synchronous
socket sender and receiver network processes for data sharing between the two. Inter-process

communication is achieved using semaphore-controlled shared memory structures .

All vehicle sensors are interrogated by separate, independently controlled processes, and
there is no restriction on whether concurrent processes operate synchronously or asynchronously.
Since various sensors gather data at different rates, each process may be tailored to operate at the

acquisition speed of the respective sensor. All processes are written in the C programming

QNXT ST725 SM ST725
r ~8 Hz
Sender
Control ST725
SM RDI SM - Control SM

16 Hz
=] RDI Control
SM

m =
Receiver EI Motion Pak
100 Hz

DGPS SM Mot Pak
eeeeeee

language [Marco and Healey 2001].

Mission

QNXE
Script File

Receiver

Receiver

T E:
Il \

Z2
']
<
4]

Sender
16 Hz

g‘ Control SM

SM

—’—l DGPS
Control SM

Sender
SM SM

Data Log
To Disk

Indicates Direction
of Data Flow

4
/
T

®a
2
 pnalllid]
]
3
2
= Q
Q
(2]
f =
%”

Navigation
8 Hz

4

Analog
LanC + Bobll Control SM

Video Control Acoustic
, Asynch. ™ [N Modem

LanC SM E'" Asynch.

LanC
Control SM Acou Mod.

\

=
P e o e o e ome e oamdes e e e

Figure5. Dual Computer Software Architecture [REF].

To allow synchronous sensor fusion, each process contains a unique shared memory data
structure that is updated at the specific rate of each sensor. All sensor data are accessible to a
synchronous navigation process through shared memory and is a main feature of the software
architecture proposed [Marco and Healey 2001].

C. AUV DATA SERVER (ADS)

ADS is the acronym for AUV Data Server (ADS) system It is a software system
developed at NPS and is used to gather and translate AUV data into a format, suitable for input
into the Mine Warfare Environmental Decision Aids Library (MEDAL) system. This format is
used by the U.S. Navy to evaluate asset positions, mine-like contacts, snippet images of those
contacts identified as mines, and bathymetry maps. Thus, data gathrered by ADS from the AUV
are track positions, bathymetry at each point, sonar and data video processing, image files for
contact as well as their locations. Data are converted into Message Transfer Format (MTF)
message formats and imported into MEDAL [Healey, Wu, Brutzman 2000].

Figure 6 below shows the connectivity for the use of the NPS TDA (the ADS) and its
linkage to a stand alone MEDAL station.

TDA Development - Hotel
Exercise - June 2000
No Radio Comms Links
TACH TACY
Workstation Workstation

LAN

To INCHON-
(MEDAL)

Dual Level Secure Link

Track Planning, Vehicle Positons, Target
Locations/lmage Files, Bathy Maps, Bottom Clurter /
Typing, Actual Tracks and Clearance mam fSnealeer net’

Figure6. Block Diagram of the ADS and its Connection to MEDAL.

D. SUMMARY
ARIES AUV hardware and software architectures are described in this chapter. The AUV
Data Server (ADS) program used for data gathering is also described.

THIS PAGE INTENTIONALLY LEFT BLANK

10

1. VRML GRAPHICS

A. INTRODUCTION
This chapter includes two sections. The first is a presentation of the Virtual Redlity
Modeling Language (VRML). The second section shows and explains how to make a ssimple
VRML scene, constructed with essential VRML nodes.
B. PRESENTATION OF VRML
1. VRML History
The Virtual Reality Modeling Language (VRML) was an idea by Mark Perce and Tony
Parisi initially presented at the First International Conference of the World Wide Web in 1994.
VRML was intended to be a platform independent language for web-based 3D graphics, and
implemented on the Internet. The language needed to be able to place objects in 3D space, as
well as include attributes such as shape, color, and size. Since VRML was to be used in the
Internet, al platforms needed to be able to support it: UNIX workstations, personal computers,
etc. The Silicon Graphics Open Inventor format was the initial basis for the VRML file formats,
and after numerous improvements VRML was widely accepted. VRML 1.0 was introduced in
1995. In 1996 VRML 2.0 become the new VRML specification. In 1997, the revised language
was certified by the International Organization for Standardization (1SO) as ISO/IEC and was
commonly referred to as VRML 97 [Refraction 2001].
2. Presentation
Using VRML, an author can create 3D virtual worlds for display on the web. While
VRML 1.0 had static worlds, which isto say that it allowed for no arbitrary behaviors for objects
in the VRML world, VRML 97 provides for dynamic behaviors by adding Java and Ecmascript
(Javascript) support, as well as sound and animation. The main feature of VRML 97 is that it
enables to create dynamic worlds and an interactive environment on the Internet, including the
ability to:
animate objects in the VRML world
play sounds and movies
allow usersto interact with VRML worlds

control and enhance worlds with scripts

11

Since authors are able to create effective 3D virtual worlds, VRML is an appropriate
language for moderately complex global scene renderings. Nevertheless VRML is not a
Computer Aided Design (CAD) tool. Creating complex shapes with a high level of detail implies
using a professional CAD tool like a mechanical engineering program or professional 3D-design
software. Nevertheless VRML is a good way for scientists, engineers, hobbyist and application
developers to produce composable 3D models for use over the World Wide Web.

3. Browsersand VRML

To present sophisticated multimedia, such as 3D VRML worlds, web browsers (like
Microsoft Internet Explorer or Netscape Navigator) need help from compatible applications,
called plug-ins, that specifically understand content of different filetype formats. They enable

usersto view non-HTML information within the Web browser window.

Many VRML plugins are avalable as 3D browers, including Silicon
Graphics /Cosmosoftware’'s Cosmoplayer, Parallel Graphics Cortona and Blaxxun’'s Contact
browser. VRML remains the preferred language to build non-proprietary virtual worlds and to
proesent such work across the Internet.

4, Creating a Smple Object with VRML

Creating a simple scene is a good way to understand the basic principles of VRML
syntax. The following example shows different basic nodes and fields for appearance, geometry,

sensor and interpolator, ROUTE and viewpoint.

VRML scenes can be created using a ssimple text editor. More developed VRML editors
like X3D-Edit or Parale Graphics VrmlPad are highly recommended (especialy for the

novice).
A VRML 97 file always starts with the line:
#VRML V2.0 utf8

This is the VRML header, which is required in any VRML file. It must be the first line of the
file and it must contain the exact text shown above. The UTF-8 character set (Universal
Character Set Transform Format) is a standard way of typing characters in many languages. An

example excerpt follow.s

12

Vi ewpoi nt {
description "First viewpoint"
position 0 0 20

}

Vi ewpoi nt {
description "Second vi ewpoi nt"
position O 0 10

}

In a virtual world, the location of a user’s viewpoint can be represented by an avatar,
which is a symbolic virtual-world representation of a rea world person. With viewing and
navigation represented avatar, the user moves through the virtual world, seeing what the avatar
sees and interacting by telling the avatar what to do. The virtual camera representing a user’s
perspective can see the scene from the position and orientation described by the current
Viewpoint. The Viewpoint node defines a specific location in the local coordinate system from
which the user may view the scene. Authors can create as many viewpoints as desired. Users can
navigate through the virtual world by moving from one viewpoint to another, often via the
navigation control panel. Viewpoints are important to display object movements or specia
relationships and it is important to add pertinent Viewpoint nodes when creating complex 3D
shapes.

Each Viewpoint collects a variety of related information, described as follows. The
description field value specifies a text string used to describe the viewpoint. This text string is
displayed by the browser control panel. The position field specifies a 3D coordinate for the
viewpoint location in the current coordinate system. The Orientation field describes direction.

The Shape node contains the appearance and geometry characteristics of a renderable
shape. A typical shape/appearance/geometry example follows.

Shape {
appear ance Appearance {
mat eri al DEF SphereCol or Material {
di ffuseColor 0 1 0 #G een

}
}
geonetry Sphere {
radi us 2 #Meters

13

The Appearance node specifies appearance atributes, including the Material node. This
node includes material attributes as diffuseColor, which defines a Red Green Blue (RGB) color
for the material. “0 1 0" means that the shape color is full-intensity green with no red or blue

color components.

The Sohere node is one of the primitive geometry nodes provided by VRML. This node
creates a sphere-shaped geometry. In the above exanmple, radius value is 2 meters.

The DEF keyword is used to define alabel for anode. For example:

DEF dickOnlt TouchSensor {}

This TouchSensor node creates a sensor to detect viewer actions and convert them to
outputs suitable for triggering actions. The events produced by this particular node (with a DEF
name defined as ClickOnlt) are connected to another node viaa ROUTE.

The ROUTE written above sends an event from the TouchSensor node (called ClickOnlt
by the DEF syntax) to the TimeSensor node (called Clock). IsOver means the value “TRUE” is
sent to the TimeSensor when the cursor is over the sphere. The value “TRUE” makes the
TimeSensor turn on by sending the value “TRUE” to the Clock node’ s field named set_enabled.

ROUTE CickOnlt.isOver TO d ock. set _enabl ed

The ColorInterpolator node describes a list of key colors available for use in an
animation. The value of the key field specifies a list of keys (ranging between 0 and 1) that are
used to define relative times matching the functional outputs defined by the keyValue field. By
retrieving the corresponding pair of key colors to an input key value, the interpolator computes
an intermediate interpolating color between the key colors. In this example, corresponding colors
to theinput keys*“0, 0.5, 1" are green, blue, green (*010,001,0107).

DEF Col or Pat h Col orl nterpol ator {

key [0, 0.5, 1]

keyvalue [01 0, 001, 010] #Geen, Blue, Geen
}

14

The TimeSensor node creates a clock that generates time events to control animations.
The cyclelnterval field specifies the time length in seconds that the TimeSensor takes to vary its
fractional time output from fractional time O to 1. The enabled field specifies whether the
TimeSensor is turned on or off. The loop field specifies whether the TimeSensor loops (i.e.
repeats) or not. The TimeSensor node allows time intervals of arbitrary length, modifying the
default time intervals of Interpolators nodes, which are unit length.

DEF C ock Ti meSensor ({
cyclelnterval 3
enabl ed FALSE
| oop TRUE

}

Behaviors are defined as changing a value in a scene graph. Animation is accomplished
by careful design of behaviors, thereby changing parameters of interest. Behaviors are
accomplished by event passing: a source value is routed to change another value somewherein
the scene graph. Thus the ROUTES used in this example animate the sphere. ROUTES make a
one-way circuit to send and receive events between nodes. Each ROUTE remains dormant until

an eventissent. A further ROUTE example follows.

ROUTE C ock. fracti on_changed TO Col orPat h. set _fraction

Once the TimeSensor is enabled, a time fraction between O and 1 is sent from the
TimeSensor to the Colorinterpolator node (called ColorPath). The value is put in the fraction
field and compared to key values. An interpolated color value is their output and sent along the

ROUTE. TimeFraction corresponds to the end of the cycle time, in this case 3 seconds.
ROUTE Col or Pat h. val ue_changed TO SphereCol or. set _diffuseCol or

The interpolated color value is sent to the Materia node (called SphereColor). Sphere
color is changed, getting this new color value. Finally, it results that when the cursor is over the
sphere shape, its color fades from green to blue, and after that, from blue to green and so on until

the cursor is no longer over the shape. See Figures 7 and 8.

15

Parallel Graphic’s Cortona 3D Browser

CosmoPlayer 3D Browser

Figure7. Sphere with Changing Colors Animated Using VRML, Shown in Two
Different Browsers. The Color Animates when the Mouse is Over the Object.

C. SUMMARY
The Virtual Redlity Modeling Language is presented in this chapter. A smple 3D

example-scene shows the capabilities of this language.

16

V. EXTENSIBLE 3D (X3D) GRAPHICS

A. INTRODUCTION

This chapter introduces the E-3D (X3D) graphics technology. It includes a presentation
of Ext-M-L (XML), the markup language used by X3D graphics tools as well as a presentation
of X3D-Edit, an X3D graphics file editor. This section explains briefly how X3D-Edit was made,
its main features, and how internationalization support was created.

B. EXTENSIBLE MARKUP LANGUAGE (XML)

Development of the Extensible Markup Language (XML) started in 1996, but in fact the
technology isn't completely new. Before XML there was the Standard Generalized Markup
Language (SGML), developed in the early '80s. SGML has been an 1SO standard since 1986 and
is widely used for large documentation projects. The Hypertext Markup Language (HTML),
whose development started in 1990 is also originally based on SGML. The designers of XML
simply took the best parts of SGML, guided by the experience with HTML, and produced
something that is no less powerful than SGML, but vastly more regular and simpler to use
[Bosak and Bray 2001].

XML is a markup language for documents containing structured information. Structured
information contains different types of content (words, pictures, etc.) and some indication of
what role this content plays. As a markup language, it is a mechanism to identify structuresin a
document. The XML specification defines a standard way to add markup to documents,

XML looks a bhit like HTML but is not HTML. Like HTML, XML uses tags and
attributes, but XML uses the tags only to delimit pieces of data, and |eaves the interpretation of
the data completely to the application that reads it. Thanks to tags and attributes, authors can
easily debug applications using a simple text editor to fix abroken XML file. XML isn't meant to

be authored by most users but often an XML document can be by deciphered anyone.

Why and when to choose XML? XML was created for richly structured documents that
can be used over the web. The only other alternatives, HTML and SGML, are not practical for
this purpose.

HTML is linked with a set of page-presentation layout semantics and does not
provide arbitrary structure.

17

SGML provides arbitrary structure, but is too complex and difficult to implement
for aweb browser.

Thus XML is a good choice as a basis for X3D. XML is achieving wide acceptance,
which in turn makes more tools available for X3D.
C. X3D-EDIT

1 Overview

X3D-Edit is an Extensible 3D (X3D) graphics file editor that uses the X3D Document
Type Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor building
application, and an editor profile configuration file. X3D-Edit enables simple error-free editing,
authoring and validation of X3D or VRML scene-graph files. The author of this useful XML
editor is Don Brutzman from the Naval Postgraduate School (NPS) [Brutzman 2001].

X3D-Edit is constructed using Xeena, IBM’s tool-building application, and uses Xeena
interface [Brutzman 2001]. Xeena is a visual XML editor and a generic Java application for
editing valid XML documents derived from any valid DTD. The editor takes as input a given
DTD and automatically builds a palette containing the elements defined in the DTD. Users can
thus create/edit/expand any document derived from that DTD, by using a visual tree-directed
paradigm. Xeena features include:

Intuitive viewing and editing of X3D documentsin a tree control view.
Editing of multiple X3D documents.

XML source viewer.

Direct trandation from X3D to VRML 97 syntax using X3D VRML 97.xd.
Direct trandation from X3D to documentation-quality color-coded HTML.

Restrictions about adding and editing of features according to the DTD, and
validity checking of produced documents.

Easy customization of display.
Element-position and attribute-value checking.
Therefore, al those features are automatically included in X3D-Edit. Since X3D-Edit is
based on Xeena, users also need to install a Java Development kit (JDK) or Java Runtime

Environment (JRE), as Xeenais built on top of Javatechnology.

18

2. X3D-Edit Interface

X3D-Edit has a user-friendly interface which is intuitive to use. An action toolbar allows
editing/saving/validating XML files. A toolbar palette exposes various node profiles required to
build aVRML scene. Major palette sidebar choices include:

Allowed nodes. context-sensitive display of valid X3D, nodes, fields are available
in order to build avalid VRML scene. Nodes appear inside the side bar.

DIS JavaVRML nodes. the IEE Distributed Interactive Simulation (DIS)
protocol is a behavior protocol tuned for physics-based interactions. Java is the
programming language used to inplement the DIS protocol, to perform
calculations, to communicate with the network as well as the VRML scene.
VRML 3D graphics are used to model and render both local and remote entitiesin
shared virtual world.

Geo VRML.: tool created to built complex models of geographic grounds and
relief.

H-Anim: Humanoid Animation Nodes.

Every time an object (node, field, comment, etc) is selected and inserted by the author, it
is inserted as directed using a visual tree-directed paradigm into the active document inside the
work area. A corresponding attribute array appears in the edit area for the selected node. Thisis
the place where field values are inserted. A message area points out whether there are syntax

errors when validating the constructed scene.

It is very easy to build a scene with X3D-Edit because it is possible to copy/paste/nove a
node or a group of nodes inside the view tree. When you insert a node, only children nodes and
fields are available in the sidebar palette so as to avoid fatal syntax errors. Working with a tree

paradigm even allows users who do not know the VRML syntax to build complex scenes.

Once the X3D file is created, it can be converted into a VRML file VRML-only
browsers. X3D-Edit can make this conversion and launch the VRML browser. It can also convert
XML filesinto pretty-printed HTML files that are easily readable and can be put on the Internet

as scene documentation.

X3D-Edit aso includes tooltips that helps you to remind the fundamental bases of VRML
syntax as well as node/field definition, type, etc.

One ongoing objective for X3D-Edit is to further internationalize context-sensitive node

and field tooltips by trandating them in many languages (in the profile configuration file).

19

Currently, English, Spanish and French language tooltips are available and other languages are
planned.

To make tooltips in another language different than English, several steps have to be
followed. Firstly, a duplication of the file called x3d-compact.profile is necessary (renamed
“x3d-compact.profileLanguageName”). Within the file, for each “attribute tooltip” tag, (<>) a
tooltip sentence is written. This sentence needs to be replaced by a new one with the desired
language. Secondly, once the new x3d-compact-profile file created a corresponding. BAT file
launching X3D-Edit with the new language version. The code of this BAT fileis presented in
Figure 8 below:

@CHO OFF > NUL

REM Batch file: X3D Edit-LanguageNane. bat

REM

http://ww. web3D. or g/ TaskG oups/ x3d/ transl ati on/ X3D- Edi t -
LanguageNane. bat

REM Aut hor: Aut hor nane
REM Revi sed: revi si on date
REM Description: Launch X3D-Edit profile for x3d-

conpact . profil eLanguageNane

SET X3dLanguagePr ef er ence=LanguageNane
x3d-edit % ® 9B %!

Figure8. Generic X3D Edit .BAT Template for Different Tooltip Languages.

These two files are put into the X3D-Edit directory. The new BAT file must be run to
launch X3D-Edit with the right language version. Figure 9 gives an illustration of X3D-Edit use
with French tooktips.

20

VRML & HTML
converters

Action toolbar

aim] x|
Taoks - Help -~

f— i e

O] =R T x| []®] 8] @8 &)] ofde]d] v|e]=]| =|S|w] BiE] 2]
D85 v TR Exprm sl
TR 1.0 H-annd A
Bresl e peorie | Corepioie o
ABawmd Emesting il i =
| l = palet [0 cwich: DEF: PoiftatanmemySssich
- o IF chaoe
1 anchee = = i PuniSet DEF: ActheFoiniSet
. Brkormnd 11T Countnele DEF: AdtteFoiniSeCoominaletide
5P Bthnam ’ B Coketdade: CEF:ArfvePoiniSsiCoinions
i Coliion Sdeba]; B =hans
»w Coknkmolan; &= pal ette | = T Pom3e DEF: CompkeiaPoiniSat
Bl commant £1% conndnaka DEF: & FainiSalt midinan Hida
Et‘onunmlmmnmm Wl Coksrdode: DEF: Cornglk PolintS e olrade

= CAINr 3T 0 RinE e ane o vin e B culE UEROE
: DreciomaLigh| Color sl seul Uik ourles ElvabonGnid, IntesmE ace Set, IndesndLineael el Figaiet
e onesil Ims couleurs sont soareerd UHis fes par Majerial O

EI Omup v Coordinata: DEF. Acthailivs Bl porchnakiMo e .
b inking = W Cokiade DEF: AchelineSuialorboda rench tooltip,
- B ol Transtamm: DEF: aurTrarmionm, scala: 44 4+

“gge nina: DEF: audkama

Arittn Mahe T work o calor mappng Taler
¥ Colriapiniemol. 3 :

EE ARIAE g LIk ; i pd Isinr, by 0,012, 0.4 7,1, evalye 11 1 i1,

o 0,092,048 07,1 e Cointrimpoiaior CEF ColomapinsmalstniForC orpdmePoints et by 0,00 2, 0450007, 1, keddalue 111,
r:?:;‘:"lu '.r'h';;i'*" oot 7] TimaBaneor: DEF. CompleaPalrbssTiratenaon, crtlelmiemvat 001, kop e
babsa TR e =1 [£] Aenpt DEF: CrawP em3enp

“ EF&- praparopanaian, it : _'Ill

Fdit Area

Messane Area

Figure9. X3D-Edit Interface with Multi-Language Tooltips.

D. SUMMARY

XD3 graphics technology is summarized in this chapter, as well as XML, JAVA and the
Xeena software used by X3D-Edit. The X3D authoring tool X3D-Edit is described along with an
explanation of how to personalize X 3D-Edit tooltips for languages other than English.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

V. MODELING PHYSICAL OBJECTSIN A VIRTUAL OCEAN

A. INTRODUCTION

This chapter describes a virtua environment for the ARIES Autonomous Underwater
Vehicle (AUV) of which the main objective is to design a virtua world using the Virtual
Modeling Language (VRML). The first section explains the construction of a 3D object
modeling the ARIES. The second section presents how the ARIES waypoint tracks and
bathymetry can be integrated in the VRML world. Finally, the third section shows authoring of
underwater mine contacts, illustrated by a 3D underwater mine example.
B. THE ARIES PROTOTYPE

One of the first VRML models of the Phoenix AUV was built by Don Brutzman and
thesis student Martin Whitfield. The ARIES prototype, recently created, is quite similar to the

Phoenix modd.

The ARIES prototype for this report was designed with X3D-Edit, using VRML/X3D
technology. The following paragraphs explain the structure of the 3D AUV object. The body of
the AUV isformed by assembling multiple components:

hull

propellers

8fins

Differential Global Positioning System (DGPS)
NPS logo

1. AUV Hull

The hull is the hardest part of the conception of the AUV model. Because of its complex
shape, it has been designed by using an IndexedFaceSet node. The IndexedFaceSet node is
declared inside a Shape node. Each 3D point coordinate, constituting the actual shape, is written
inside the Coordinate node. In total, 38 points are necessary to define the hull. The coordindex
field specifies a connectivity list of coordinate indexes, relative to the points, describing the

perimeter of the faces and thus creating the faces. A simple example follows.

23

Shape {
appear ance Appearance {
material Material {
di ffuseColor 0.9 0.9 0.9
}
}
geonetry | ndexedFaceSet {
coordl ndex [Index values here]
creaseAngle 3.14
coord Coordinate {
poi nt [Point coordinates here]
}
}
}

Note that the creaseAngle value gives a smoothly shaded appearance to the hull. When
the angle between adjacent polygons exceeds this value, angles formed by adjacent faces appear
sharp.

Figure 10. The ARIES Hull with creaseAngle Value = 3.14.

Figure1l. The ARIES Hull with creaseAngle Value= 0.

24

2. Propéllers

As might be assumed, a propeller shape is not so difficult to design. Actualy, only one
blade is defined and others are replications of the first one. Relative orientations merely change
for other blades.

The first blade is built with an IndexedFaceSet node. The procedure is strictly the same as
the hull. Seven points are defined for this shape. The propeller shaft isacylinder placed adjacent
to an end-cap cone.

The shading cylinder is made with an Extrusion node. This requires severa steps. First,
the crossSection field specifies a list of 2D coordinate (on the XZ plane) values that define a
section, and is extruded along a spine. Both scale and spine fields define the path of the extrusion
applying a scale factor on the section and that, along each part of the spine. beginCap and
endCap fields indicate whether the beginning and ending faces are drawn or not. In this case, a
circular cross-section is extruded along the outer and then inner surfaces of the shroud. Example

VRML sourcefollows. A picture of the assembled propeller shroud appearsin Figure 12.

Shape {
geonmetry Extrusion {
begi nCap FALSE
creaseAngle 2
crossSection [1.00 0.00, 0.92 -0. 38,

0.71 -0.71, 0.38 -0.92,
0.00 -1.00, -0.38 -0.92,
-0.71 -0.71, -0.92 -0.38,
-1.00 -0.00, -0.92 O0.38,
-0.71 0.71, -0.38 0.92,
0.00 1.00, 0.38 0.92,
0.71 0.71, 0.92 0. 38,
1

.00 0.00]

endCap FALSE
scale [0.08 0.08, 0.07 0.07, 0.06 0.06, 0.07 0.07, 0.08 0.08]
spine [-0.08 0 0, 0.08 00, 0.08 00, -0.08 00, -0.08 0 0]

}

appear ance Appearance {
material Material {

di ffuseColor 0 0 1

}
}
}

25

Figure12. A 3D VRML Propeller inside a Shroud.

3. TheFin and the DGPS

Like the propeller blades and the hull, the fin and DGPS are drawn using the
IndexedFaceSet nodes. One specified fin shape is defined and replicated seven times. With the
syntax USE preceding the node name, it is possible to efficiently use a node again and again.

Transform
translation -0.7747 0.13335 0
children [
USE A FPlane
Transform |
translation 0 0.1778 0
children [
chape |
Referred fo a previowsly defined node. appearance Appearance |
material Material |
diffuseColor 1 0.3 0
1
1

4, The NPS Logo
The NPS logo includes several stripes adjacent to text for the acronym “NPS.” Stripes are

I ndexedFaceSet nodes whereas the text uses a Text node.

26

Bhape | geometry Text |

appearance Appearance | string ["HES"™]
material Material | fontityle Fontdtyle |
diffusefoclor 0 0 0.8 family ["SaN3"™]
} size 0.15

! style "EOLD"
1
1

Different fields allow the creation of text geometry: the string field specifies lines of text
to build, the FontStyle node defines the style of the text, etc.

5. The Complete VRML ARIES Model

The figure below shows the VRML model of the ARIES that includes al the different
nodes described in previous chapters. Some of them are replicated as USE nodes when needed.
A DGPS antenna was added atop the aft upper fin.

This model can be reused in other VRML X3D worlds as desired for example scenes
simulating AUV operations.

Figure13. TheVRML ARIES Model (Top and Aft Quarter Views).

27

The complete source code of this model is presented in Appendix A.
6. Another ARIES Prototype

Figure14. TheVRML ARIES Model (Side View).

Jane Wu and Don Brutzman created this improved prototype. The two prototypes are
similar because they are based on the same ARIES dimensions. Also included are sonar steering
and beam-cone visualizations of thruster flow.

C. THE WAYPOINT TRACK GENERATOR

1 Problem Statement

The purpose of this project is to create a simple scene based on the Virtual Redlity
Modeling Language (VRML). From inputs that include coordinate data (location + bathymetry)
plus time data, the path that followed the AUV during operations needs to be recreated in a 3D
virtual world. A simple browser like Netscape Navigator or Internet Explorer might then display

thisworld easily and quickly.

Severa dternatives have to be considered. Firstly, the path of the AUV is displayed with
alarge quantity of points that are coordinate points. Each point is colored, to indicate the depth
of the AUV at this point. All the points are displayed at the same time, without caring about the

time references in the point list.

Secondly, the path of the AUV is similarly displayed with a quantity of points that are
coordinate points, but each point is associated to atime reference (also called “time fractions” or

“time stamps’). The bathymetry is still symbolized by colors but points appear sequentially

28

according to their respective time fractions, matching the “real time” of the origina data

collection.

Thirdly, the path is shown with line segments with a single color. There is no color
representation of the bathymetry. Lines are drawn according to their respective time fractions as

the second solution.

Coordinate points come from a data file generated by the ADS software (described in
Chapter 11). ADS further constructs complete VRML X3D scenes for each mission using these

3D models, producing a set of mission archive 3D scenes.

Mission data :> ADS :> 3D Scenes

from AUVs

Figure15. The ADS Software Analyzes AUV Mission Data and Produces 3D Scenes
using the 3D Models Presented in this Chapter.

2. Designing the Waypoint Track Generator Prototype
a. Prototype Declaration and I nstantiation

A ProtoDeclare declaration defines a new Prototype node. Like any other
VRML/X3D node, a ProtoDeclare can contain fields, eventln, eventOut, Shapes, Groups,
interpolators and more. A Prototype node can be reused by external VRML scenes as often as
wished, through instantiation using Protol nstance nodes. By specifying field values, it is easy for
authors to change Protolnstance properties and thus to configure these new nodes at run time.

For these reasons, Prototypes are used to define the customizable waypoint track generator.

A Protolnstance statement instantiates a prototype node in the scene. It is
comprised of two major parts: the node interface and the body that contains other nodes. The
node interface includes four types of fields:

field defines variables that have no interaction with the outside (ROUTES or script
code).

29

eventlns are receiver variables, which wait for events from the outside and take
them in to be handled.

eventOut are transmitter variables, which send events from the node to the

outside.
exposedFields are essentially a combination of field eventin and eventOut
functionality.

field M~Vec 3f poi nt PositionsArray [0 0 0, 10 -4 0, 25 -

6 0, 30 -85, 38 -155, 45 -18 5, 55 -22 5, 60 -25 15, 60 -27 22, 55 -
30 35, 48 -35 35, 35 -35 35, 25 -45 35, 20 -55 35, 15 -70 35, 3 -70
35, -5 -72 40, -5 -75 50, 0 -80 55, 15 -75 55, 30 -70 55, 35 -60 55,
40 -50 55, 50 -34 55, 65 -23 70]

pointPositionsArray provides point coordinates in neters, referenced
to local coordinate systemorigin

field MFTi e pointTinmesArray [1, 3, 6, 8, 10, 12, 14,
15, 17, 18, 23, 28, 35, 37, 39, 43, 45, 47, 48, 53, 58, 60, 61, 65, 70

]

point TimesArray provides point tines in seconds for |ocal exercise
clock (each tinme is clock time in seconds, not in interval durations).
Both point coordinates and times are initially provided as a full
set of val ues.

event Qut SFTi me total Duration

totalDuration is derived fromthe pointTi mesArray, and used to set
cyclelnterval on a controlling TinmeSensor clock outside the

Poi nt TrackCGener at or Prot ol nst ance.

exposedFi el d SFI nt 32 di spl ayPoi ntsvbde 0
di spl ayPoi nt sMbde settings: -1 = none, 0 = sone points (active
interval, default value), 1= all the points, 2 = sone lines (active
interval).

eventln SFTi me durati onActivePoints

durationActivePoints is in seconds, default initialization val ue

is total Duration

eventln SFTi ne ti melLat est Acti vePoi nt
tineLatest ActivePoint is in seconds, default initialization val ue

is the final point tine

event Qut SFTi me getStartTi ne

getStartTine is the time when the TimeSensor nust start
event Qut SFTi me get St opTi ne

getStopTinme is the tinme when the Ti meSensor must stop
eventln SFTi me mappedCol or Poi nt Cr eat or

mappedCol or Poi nt Creator is a function receiving the tinme fractions

of the Ti neSensor

]

exposedFi el d MFStri ng auvNarme ["auv_ax_xm .wril"]

auvName refers to an external VRWML file nane that has 3D AUV nodel s

30

b. Prototype Body: The Switch Node

The Switch node gives a choice to select one of several different groups of nodes,
each contained as distinct children within the Switch node. The VRML browser displays only
one shape (or group of shapes) selected. By providing different visualization possibilities as
distinct children of a Switch node, the Waypoint Track Generator can render waypoints in

different ways.

Using this node is important for the scene to have the choice in the way to display
the AUV path (points, lines, linked to time fractions or not). whichChoice starts with O for the
first child. If no childe is desired, whichChoice can be set to —1. Note that al children of the
Switch node continue to receive and send events regardiess of the choice specified by

whichChoice.

Inside the Switch node body are three nodes that can independently display points
or line for the visua reproduction: two PointSet nodes and one IndexedLineSet node. The
PointSet node creates point geometry while the IndexedLineSet node creates polyline geometry.
In this scene, the Switch node is followed by an Inline node, which opens a VRML file specified
by the URL and renders its contents. On that account, it is easily feasible to include whatever is
wanted into the scene (e.g. any types of AUV or even other types of vehicles) which might

follow the lines.
C. Prototype Body: I nterpolators and Sensor Nodes

Two ColorInterpolator nodes are required for assigning colors to points. From a
set of referenced colors (compared to a set of depth values), these nodes interpolate the input
depth value and compute an RGB color, which can be sent to other nodes or variables. Thisisa

concise and efficient way to map arbitrary values (such as depth) to a color value.

The scene use two ColorInterpolator nodes to avoid confusion when the different

script functions send values to the interpolators at the same time.

A TimeSensor node generates time events to control a script function: actualy,
this sensor is really useful or else the script function (completePointSetValue changed) cannot
start itself. Thus the TimeSensor drives the simulation clock and has a cycle time corresponding

to the time duration of a complete traversal.
d. Prototype Body: Script Nodes

31

Script nodes are essentia to perform complex actions. They receive input, process
computations and avoid output values to Interpolators, Sensor and Shape nodes in the scene.
Thereis only one essential script node in this prototype. It contains many different functions that

are the scene core. This script node is named DrawPointScript.

A bit like a Proto Instance, a Script node has a field declaration for variable
initialization and declaration, and the URL field that encloses EcmaScript (Javascript) source-
coded functions. In a Script node, declaration types are field, eventin and eventOut. Note that
exposeField is not allowed in Script nodes, which is a significant inconvenience and will

hopefully be changed in future version of the X3D spec.

field M-Vec3f pointPositionsArray |I'S pointPositionsArray

This variable is linked to pointPositionsArray fromthe Proto
Instance field declaration

field MFTime pointTinmesArray |'S pointTi mesArray

This variable is linked to pointTinesArray fromthe Proto |Instance
field declaration

field MFVec3f newPoi nt PositionsArray []

1t is a new point coordinate array when the |last point coordinate
chosen is different fromthe | atest pointPositionsArray coordinate.

O herw se, newPoi nt PositionsArray = pointPositionsArray by default
field MFTime newPointTi nesArray []

1t is a newtinme fraction array when the last tine fraction chosen
is different fromthe |atest newPointTi mesArray fraction. O herw se
newPoi nt Ti nesArray = poi ntTi nesArray by default

field SFInt32 linelndex 1

Integer that is incremented to add new val ues in coordl ndex _changed
array

eventln SFTime nmappedCol or Poi nt Creator |I'S mappedCol or Poi nt Cr eat or

This variable is linked to nappedCol orPointCreator from the Proto
Instance field declaration

field SFInt32 index O
Integer that is incremented to add new values in several arrays
(coordinate, tine, color arrays)

field SFI nt32 conpletel ndex O

Integer that is increnmented to indicate how nuch coordi nate and
col ors val ues have to be added

event Qut SFBool Condi ti onConpl et e

Bool ean that stops function working during Col orlnterpol at or
processi ng

field SFNode Acti vePoi nt Set Coor di nat eNode USE

Act i vePoi nt Set Coor di nat eNode

this variable is linked to ActivePoi nt Set Coordi nat eNode and al | ows
to acquire and put values in it

32

field SFNode Act i vePoi nt Set Col or Node USE

Act i vePoi nt Set Col or Node

this variable is linked to ActivePoi nt Set Col or Node and allows to
acquire and put values in it

FI ELD SFNODE COVPLETEPO NTSETCOORDI NATENCDE USE

COVPLETEPO NTSETCOORDI NATENCDE

this variable is linked to ActivePoi nt Set Col or Node and allows to
acquire and put values in it

field SFNode Compl et ePoi nt Set Col or Node USE

Compl et ePoi nt Set Col or Node

this variable is linked to Conpl et ePoi nt Set Coor di nat eNode and al | ows
to acquire and put values in it

field SFNode Col or Mapl nt er pol at or USE Col or Mapl nt er pol at or
this variable is linked to Col orMaplnterpolator and allows to
acquire and put values in it

FI ELD SFNODE COLORMAPI NTERPOLATORFORCOVPLETEPO NTSSET USE
COLORMAPI NTERPOLATORFORCOVPLETEPOI NTSSET

this variable is linked to Col or Mapl nt er pol at or For Conpl et ePoi nt sSet
and allows to acquire and put values in it

field SFNode Acti velLi neSet Coor di nat eNode USE

Act i velLi neSet Coor di nat eNode

this variable is linked to ActivelLi neSet Coordi nateNode and allows to
acquire and put values in it

field SFNode Acti veLi neSet Col or Node USE Acti velLi neSet Col or Node
this variable is linked to ActivelLi neSet Col or Node and allows to
acquire and put values in it

field SFNode auvTransform USE auvTransform

this variable is linked to auvTransformand allows to acquire and
put values in it

event Qut SFTi me total Duration IS total Duration

This variable is linked to total Duration fromthe Proto |Instance
field declaration

event Qut SFTi me getStartTime |S getStartTi ne

This variable is linked to getStartTine fromthe Proto |nstance
field declaration

event Qut SFTi me get StopTinme | S get StopTi ne

This variable is linked to getStopTime fromthe Proto Instance field
decl arati on

event Qut MFI nt 32 coor dl ndex_changed

This is a coordinate array used for the ActivelLi neSet Coordi nat eNode
node

eventln SFTi me durationActivePoints IS durationActivePoints

This variable is linked to durationActivePoints fromthe Proto

I nstance field declaration

eventln SFTi me ti meLatest ActivePoint IS tinmelLatestActivePoint

This variable is linked to tinmeLatestActivePoint fromthe Proto

I nstance field declaration

eventln SFTi me conpl et ePoi nt Set Val ue_changed

This function conputes depth values from coordi nate val ues

eventln SFCol or set_conpl et ePoi nt Set Col or Arr ay

33

Function that puts coordinate and color values in arrays for the
Compl et ePoi nSet Node

D Thefunctioni nitialize(). After thefield declaration follows
the JavaScript code written inside the URL field (or acontaining CDATA block in X3D form).
The code consists of four functions. The function i niti al i ze() isthe first function of the
code to be read by the browser and the only one to start without receiving an output value. All

initializations and setup choices for the scene rendering are made inside this function.

javascri pt:

function initialize() {

total Durati on = pointTi mesArray[poi nt Ti nesArray. | ength-1];
var today = new Date();

getStartTinme = Math.round(today.getTine() / 1000);

get StopTine = getStartTine + total Durati on;

var m= 1;

totalDuration is the AUV operation total duration. Its value is equal to the
last time fraction of the pointTimesArray. Thusinitial value of pointTimesArray should be zero.

getSartTime takes the current time value when the code line is read. As
getTime() returns a value in milliseconds, Math.round(today.getTime() / 1000) is used to convert
the value in seconds. The getStartTime value served as time reference for the TimeSensor called
DisplayingTimer, located outside the Proto Instance. This sensor sends time values to the eventin
function mappedCol or PointCreator.

getStopTime is equa to the getSartTime plus the total duration. It is the
time when the TimeSensor must stop.

//default values for durati onActivePoint and ti nelLatestActi vePoi nt
dur ati onActi vePoint = total Durati on;
ti meLat est Acti vePoint = pointTi nesArray[poi nt Ti nesArray. | ength-1];

durationActivePoint and timelLatestActivePoint alow to the user to choose
what range of values to display on screen. durationActivePoint gets the totalDuration value by

default (it means all the points are considered). It is possible to reduce the interval of values as

wished. timelL atestActivePoint is the latest time fraction (and thus also latest point coordinate)
that has to be displayed on the scene. The default value is the last time fraction of
pointTimesArray.

i f(tinmeLatestActivePoint == durationActivePoint) {
newPoi nt Ti nesArray = poi nt Ti nesArray;
newPoi nt Posi ti onsArray = poi nt PositionsArray;
print('newPointTinmesArray = ' + newPoi nt Ti nesArray);

}

newPointTimesArray and newPointPositionsArray are clones of
pointTimesArray and pointPositionsArray when values are chosen by default. Those two new
variables will be used to feed the coordinate and color fields of ActivePointnode and
ActiveLineSetNode.

i f(tinmeLatestActivePoint > durationActivePoint) {

var firstTine = latestTine = k = O;

whil e((tinmeLatestActivePoint - durationActivePoint) !=
poi nt Ti mesArray[firstTine]) {

firstTi me++;

}

whi l e(ti meLat est ActivePoint !'= pointTimesArray[latestTine]) {
| at est Ti me++;

}

for(var j = firstTime ; j <= latestTine ; j++) {
newPoi nt Ti mesArray[k] = pointTinmesArray[j] -
poi nt Ti mesArray[firstTine] + 1;
newPoi nt Posi ti onsArray[k] = pointPositionsArray[j];
k++;

}

print('newPointTinmesArray = ' + newPoi nt Ti nesArray);

}

If timelLatestActivePoint and durationActivePoint get new values,
newPointTimesArray and newPointPositionsArray must change and receive new values. This
condition searches for the first time fraction (last specified time fraction minus specified
duration) and puts selected values in the new newPointTimesArray and newPointPositionsArray
arrays.

“newPointTimesArray[K] = pointTimesArray[j] - pointTimesArray[firstTime] + 1”.

35

Means the first point chosen by the user is not displayed according to its corresponding time but
starts at the beginning (users don’'t have to wait until the right time). All new time values are
shifted. Note the value “1” is added; it is atrick and otherwise the program is in trouble since it

has no prior time to compute properly the first values.

i f(tinmeLatestActivePoint < durationActivePoint) {
print(' Fatal error : tinelLatestActivePoint < durationActivePoint
',
}
Condi ti onConpl ete = fal se;

}

The last condition helps the user if he makes a mistake by reminding him
that timelLatestActivePoint < durationActivePoint is a nonsense condition. Error messages
appear in the 3D browsers VRML console.

(2 The function completePointSetVaue changed()

function conpl et ePoi nt Set Val ue_changed() {

i f(ConditionConplete == fal se & conpl et el ndex <=
(poi ntPositionsArray.length-1)) {

Col or Mapl nt er pol at or For Conpl et ePoi nt sSet. set _fraction = -
poi nt Posi ti onsArray[conpl etel ndex][1] / 100;

print (' Col or Mapl nt er pol at or For Conpl et ePoi nt sSet. set _fracti on[' +conpl et

el ndex+'] ="' +

Col or Mapl nt er pol at or For Conpl et ePoi nt sSet. set _fracti on);
Condi ti onConpl ete = true;

}
}

This function is written to put a modified value, which symbolizes the
depth value of a specified point, in the ColorInterpolator caled
ColorMaplnter polator For CompletePointsSet. This one uses a list a key values and key colorsin
its key and keyValue fields. When it receives a value, it uses linear interpolation to compute
intermediate colors. The input fraction value is usually within a range of [0...1], which is why
depth values are converted.

The function completePointSetValue changed() cannot be self-executed

and cannot work several times without an external input event. Its field is SFTime. A

36

TimeSensor (CompletePointSetTimeSensor) controls the execution of this function by sending
time signals all the time.

All depth values are computed one after the other, waiting until the color
interpolator finishes to compute color value, thanks to the Boolean ConditionComplete (loop if
inactive until ConditionComplete = false).

l Output time events

completePointSetValue changed()

r

ConditionComplete == false &
completelndex <= (pointPositionsArray.length-1

Converted depth value sent to
ColorM apl nterpol atorForCompl etePointsSet
for an interpolation of a color value

l

ConditionComplete = true stops the working
function until ConditionComplete = false

Diagram 1. Flowchart Function for the Function CompletePointSetValue _changed().

(©)) The function set_completePointSetColorArray(). After computing,
the color interpolator sends a color value, which travels through a ROUTE to the eventin
set_completePointSetColorArray() function. The color vaue is stored in the
CompletePointSetColorNode color array. Point coordinates are also stored in the

37

CompletePointSetCoordinateNode point array. Thus, thanks to coordinate and color values, a
colored point is displayed on screen.

The ConditionComplete value changes to reactivate the if() condition
inside the completePointSetValue_changed().

function set_conpl et ePoi nt Set Col or Array(Val ue) {
Conpl et ePoi nt Set Col or Node. col or[conpl et el ndex] = Val ue;
Compl et ePoi nt Set Coor di nat eNode. poi nt[conpl et el ndex] =
poi nt Posi ti onsArray[conpl et el ndex] ;
conpl et el ndex++;
Condi ti onConpl ete = fal se;

}

ROUTE Interpolated color value from
ColorMapl nterpolatorForCompl et

set_completePointSetColorArray()

I

Compl etePointSetCol orNode.col or[compl etel ndex] = color Vaue
Compl etePointSetCoordinateN ode.point[compl etel ndex] =
pointPositionsArray[completel ndex] (point coordinate)
ConditionComplete = false

Diagram 2. Diagram of the Function set_completePointSetColorArray().

4 The function mappedColorPointCreator(). This function provides
coordinate and color values for ActivePointSet and ActivelLineSet nodes. This is the biggest
function of the DrawPointScript script.

MappedColorPointCreator receives continuously time fractions sent by a
TimeSensor (Displaying Timer) thanks to a ROUTE. The received value is compared to the time
fractions of the newPointTimesArray array. If one of them is equivalent, it means the point
corresponding to the time fraction has to be displayed on screen. Then the condition if() is
executed. Note that the input time value is rounded because it cannot match exactly with atime
fraction (in newPointTimesArray) if not.

38

function nappedCol or Poi nt Creat or (fracti onVal ue) {

Col or Mapl nterpol ator.set_fraction = -
newPoi nt Posi ti onsArray[index][1] / 100;

/need to initialize Col orMaplnterpolator.set _fraction with the first
poi nt col or ot herw se the value is shifted
if(Math.floor(fractionValue) == (newPoi nt Ti nesArray[i ndex] +
getStartTinme)) {

Act i vePoi nt Set Col or Node. col or[i ndex] =
Col or Mapl nt er pol at or. val ue_changed;

Act i vePoi nt Set Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];

auvTransformtransl ati on = newPoi nt Posi tionsArray[index];

A converted depth value is put in the color interpolator node for color
interpolation. When the output color is interpolated, it is stored in the color field of the
ActivePointSetColor Node node. At the same time point coordinate is put in the point fields of the
ActivePointSetCoordinateNode node and of the ActivelLineSetCoordinateNode node. This
coordinate value also feeds the position field of the AUV transform node. In this way, the AUV
will move each time a new point is added. Nevertheless, the motion of the AUV will appeaer

jerky because there is no interpolation for it (this choice could be conceivable in future versions).

if(index <= 1) {
Acti velLi neSet Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];
coordl ndex_changed[i ndex] = i ndex;
Acti velLi neSet Col or Node. col or[i ndex][0] =
Acti velLi neSet Col or Node. col or[i ndex][1] =
Acti velLi neSet Col or Node. col or[i ndex][2] =
auvTransform transl ati on = newPoi nt Posi ti
if(index == 1) {
Act i velLi neSet Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];

=l sl e

hsArray[index];

coordl ndex_changed[i ndex] = i ndex;
coordl ndex_changed[i ndex+1] = -1;
Act i velLi neSet Col or Node. col or[i ndex-1][0] 1;
Act i velLi neSet Col or Node. col or[i ndex-1][1] 0;
Acti velLi neSet Col or Node. col or[i ndex-1][2] 0;

non
el e LI L

Act i veLi neSet Col or Node. col or[i ndex] [0] ;
Act i velLi neSet Col or Node. col or[i ndex] [1]
Act i velLi neSet Col or Node. col or [i ndex] [2] ;
}
}
el se {

39

Act i velLi neSet Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];
coordl ndex_changed[i ndex+l i nel ndex] =
coor dl ndex_changed[i ndex+l i nel ndex- 2] ;
coordl ndex_changed[i ndex+l i nel ndex+1]
coor dl ndex_changed[i ndex+l i nel ndex+2]
Act i velLi neSet Col or Node. col or[i ndex-1][0]
Acti velLi neSet Col or Node. col or[i ndex-1][1]
Act i velLi neSet Col or Node. col or[i ndex-1][2]
Act i velLi neSet Col or Node. col or [i ndex] [0]
Act i veLi neSet Col or Node. col or[i ndex] [1]
Act i veLi neSet Col or Node. col or[i ndex] [2]
|'i nel ndex += 2;

i ndex;
_1'

eer

nono
PERERI

}

i ndex ++;
}
}

The data processing is a little bit more complex regarding the
ActiveLineSet coordindex field, due to the fact that the syntax is special: this field specifies
indices describing the path of polylines. Each polyline is distinguished among the points by
adding “-1" after their indexes. Thus, every two points, the value “-1” is added in the
coordindex_changed array. After that, this array is routed to the coordindex field. That explains
why a few incremental variables like Index or linelndex are used. A specific code was needed to
process the first and second values (for index = 0 and index = 1).

Regarding line colors, a white color is associated with the current point; a
red color is associated with points displayed before the current point. The result of this is that
“old” lines come into view with ared color and the current line is drawn with graduated shading
color (from red to white). In that way, it is easier to visualize what is the current line.
Conceivably line colors also may be defined according to depth.

All nodes work and show the graphic result in “real time” matching data
collection times by the AUV.

40

mappedCol orPointCreator

| P

ColorMapl nterpolator.set_fraction = - newPointPositionsArray[index][1] / 100

Is the input time value the same as the
newPointTimesArray values?

L YES

ActivePointSetColorNode.color[index] = ColorMapl nterpolator.value_changed;
ActivePointSetCoordinateNode.point[index] = newPointPositionsArray[index];
auvTransform.translation = newPointPositionsArray[index];

NO

Isthisthefirst value?

YES

Set ActivelineSetCoordinateNode.point, coordindex_changed,
ActivelineSetColorNode.color and auvTransform.translation

)4

I's this the second NO

value?

l YES

Set Activel ineSetCoordinateNode.point, coordindex_changed,
ActivelLineSetColorNode.color and auvTransform.translation

\ 2
Set Activel ineSetCoordinateNode.point, coordindex_changed,
ActivelineSetColorNode.color and auvTransform.trand ation

Diagram 3. Flowchart Execution for the Function mappedColorPointCreator ().

41

(5) The Script Debugger. This script is useful to validate whether or
not values that are put in different nodes like ActivePointSet, CompletePointSet or
ActiveLineSet. User can easily check whether those nodes work properly and values make sense
or not. This information is printed on the browser's VRML console. Values are sent to the
debugger script viaROUTES.

e Outside the Prototype

The PROTO declaration creates a complete new PROTO node by retrieving the
PROTO declaration within the file where this declaration is located. All field declarations are
implicit (no need to specify values unless if they have to be different from default values). By
using the ExternProto Declare syntax, this prototype can be reused in external files (other VRML

worlds) as many times as needed.

A TimeSensor called DisplayTimer sends time events to the function
mappedColorPointCreator via ROUTEs.

This program uses few ROUTES, i.e. the minimum required. The previous version
used many more ROUTES, which implies that more variables, buffer arrays were created. It
worked but took a bit more of memory resources. It does not matter to care about saving memory
if it is a question of displaying a few points (or lines). Nevertheless when an AUV operation
requires hundreds of points, it becomes more interesting to find a better solution to optimize the
program. That is possible by defining node variables inside the script node. They are linked to
nodes declared outside the script inside the PROTO instance. Thus, it is possible to send or
receive values to/from nodes without writing ROUTESs. This method avoids use of redundant

buffer arrays.
f. Complete Diagram of the Program

The whole source code of the waypoint track gererator is presented in
AppendixB. A full diagram recapitulates how the whole program works and is shown a the
next page.

42

. isolavingTi —_ orPointCregtor
Gt [epmtiofuom |
A ROUTE N

i i NOROUTE ColorMapinterolator.set fracti
Initializing values (by defauitor | SaSthe TimeSensor with ROUTES - | orMapinterpolator.set fraction |
defined by the use) ColorMgplnterpolator node
NO
ROUTE
CompletePointSaTimeSensor sends l
Output time events
LROUTE ColorMapl nterpalatorForCompletePointsSd St AdiivePointSeCalorNadecolor
ActivePointSetCoordinateNode point
| completePointSetVaue chanoed() | l anTrandormirandation
Interpolated cdlor valuefrom
. thisthefirst value?
New valueready for NC ColorMgpl nterpolatorForCompletePointsSet s
processing? J, ROUTE
St AdtivelineSetCoordinateNodepaint,
st completePointSeColorArray() coordindex_changed,
YES Activel_ineSetColorNodecolor and
y] awTrandorm.trandation
Converted depth velue sent to \ 4
| ColorMapinterpolatorForCompleteRoints Set CompletePointSetColorNode.color y
Set for aninterpolation of acolor value CompletePointSetCoordinateNode point
pointPositionsArray[(point coordinate) <Isthisthe seoond valug?>
YES
ConditionComplete = true stopstheworking .) .
fundtion until CondiionComplete = false St AdtivelineSetCoordinateNodepaint,
A < coordindex_changed,
ActivelineSetColorNode.color and
B anTransformirandation
ROUTEs \ 4
St AdtivelineSetCoordinateNodepoairt,
D J
ebugger) coordindex_chenged,
AdiveLineSe node AdiveRoinsgt node €«—Y ActivelineSstColorNodecolor and
awTrandorm.trandation

Diagram 4. Complete Flowchart Diagram Execution of the Program Waypoint Track
Generator.

D. MINE CONTACTS
1. Introduction
During operations, when the AUV locates a mine or mine-like contact, information about

contact coordinates, contact name and contact picture is stored by the ADS software.
Identification and coordinates can then be used to represent the contact object in the VRML

world.

43

These features might be integrated in the waypoint track generator scene. Currently, there
is no integrated contact visualization but thisis a good step for a future work.

More script programs are needed to integrate mine contacts but it is also necessary to
extend the contact/mine library by adding more 3D models (such as AUV models). The
following example describe the conception of atypical 3D mine model, called Manta mine.

2. The Manta Prototype

This section describes design of a Manta mine model created with VRML, using publicly

available documentation including mine pictures and dimensions.

The model is a prototype instance that can be reused in external files. Defined fields
allow authors to customize the model. In this case, for the Mantamine, it is possible to change its
color. About the conception of the model, it is the same way to create as the AUV modd.

Specifically there are many Extrusion Nodes, and one | ndexedFaceSet node.

The Manta model is built from the following components:

the main mine body, which is a cross section extruded along a circle spine in such
away that it has the same effect as arevolution.

A

o

Figure16. MantaModel Body Extrusion.

four rings, to handle or carry the mine are designed with Extrusion nodes. The
cross section is a circle and the spine is al'so a circle made to create a ring shape.
The ring columns are made by extrusion in the same way that the main body.
Using the emissiveColor field in the Material node of the shape creates the light
reflection effect that gives the feeling rings are metallic.

A

(LD

Figure1l7. MantaModel Ring Extrusion (ring + column).

Ring supports are IndexedFaceSet nodes, with four faces.

Figure 18. Manta Modd Ring Support.

Holes in the main body are black cylinders.

Here below is a picture of the 3D mine model with all its components:

Figure19. 3D MantaMine Model.

The most interesting part of this model is the use of a LOD (Level Of Detail) node. This
is an interesting technique to support automatic selection between lots of detail for maximum
realism and quick drawing for maximum interactivity. By using the LOD node, shapes far away
from the viewer need not to be drawn with as much detail as those shapes that are closer. By
selecting different versions of a shape in varying levels of details, the LOD node gives a
compromise between realism and interactivity. According to range values (distance between user

and shapes), different versions of the shape are drawn.

45

These different shapes are included in the group by listing them in the level field of the
node. The value of the range field specifies a list of distances (between viewer and shapes) at

which the browser switches from, from one level of detail to another.

For the Manta prototype, four shapes are included in the LOD node. The more detailed
shape is the mine with all its components. At 10 meters, mine rings are replaced by spherical
shapes. At 50 meters, the mine is replaced by a cylinder. At 100 meters, there is no shape
rendered anymore: there is only a Worldinfo node. This node provides comments, such as title
text that could be extracted by the browser and displayed to aviewer. In effect, it serves as anull

node at long distances.

Three viewpoints nodes are put in the scene a the distances where the LOD node

switches the shapes. These make user navigation and author testing easier.

The whole source code of the Manta mine model is presented in Appendix C.
E. SUMMARY

This chapter provides a description of the 3D VRML/X3D AUV modéd in detail. Each
node is described with specific explanations. Precise explanations are then provided about the
development of the Waypoint Track Generator, which create a 3D virtua world for AUV
mission simulations. Finally, it provides a description of the 3D VRML/X3D mine model in

detail. Each node is described with specific explanations.

46

VI. EXPERIMENTAL RESULTS

A. EVALUATION OFOUTPUTS
Currently, the Waypoint Track Generator works satisfactorily. It is still missing some
features but scenes are properly generated and displayed on screen.

This work is in accordance with the schedule of conditions drawn up and has the
following features:

From sets of point coordinates and time fractions (written inside the program
body), the AUV path is drawn using color points on a VRML scene. A colored
point allows to visualize the bathymetry. Points are displayed according to time
stamps combined with point coordinates.

Using only sets of point coordinates, the AUV path is drawn using color points on
a VRML scene. Unlike the precedent method, colored points are displayed
together, at the beginning, without any time condition.

The last method is experimental: lines are used for drawing the AUV path, instead
points. Thislast method was not required by the schedule of conditions but can be
a good way to think about improvements and future works. The 3D AUV model
can also be added for more realism.

For a maximum efficiency, the program code is written mainly with EcmaScript

(JavaScript) source code, trying to reduce the number of ROUTES. This approach is effective.

Note that color interpolators are used to convert depth values into color values. This
innovation increases computing performances compared to a set of comparative conditional “if-
then-elseif” statements to find the right colorsin a previously defined range. There is more work
to do and more thoughts to have but henceforth the Waypoint Track Generator can be used for
ADS.

B. SPECIFIC EXAMPLE MISSION

This chapter deals with a test that ssimulates AUV operations. Coordinates and time

values do not come from areal mission but are based on representative examples.

The timestamped point values are put inside arrays in the example scene:

a7

1 2 4 5 6 7 8 9

coordinates | 000 |10-40 | 25-60 | 30-85 |38-155]| 45-185 | 55-225 | 60-2515 | 60-27 22
Time 1 3 6 8 10 12 14 15 17
stamps

10 11 12 13 14 15 16 17
coordinates | 55-3035 | 48-3535 | 35-3535 | 25-4535 | 20-5535 | 15-7035 | 3-7035 | -5-7240
Time 18 23 28 35 37 39 43 45
stamps

18 19 20 21 22 23 24 25
coordinates | -5-7550 | 0-8055 | 15-7555 | 30-7055 | 35-6055 | 40-5055 | 50-3455 | 65-2370
Time 47 48 53 58 60 61 65 70
stamps

Tablel. Coordinates and Time-Stamp Values [Ref.].

If the author chooses a path made with points, result appears asin Figure VI-1.

Note that color points are bigger than in reality: they have been touched up in this picture

otherwise we could not see anything. Points are not typicaly distinguishable with a white

background. A black background fits well with small points (good contrast) but is not well suited

asareport figure.

A possible task for future work is to use a different type of geometry, perhaps billboarded

to always face the user, as a way to overcome some of the visualization difficulties inherent in

fixed single-pixel-size points and single-pixel-width lines.

48

Figure20. AUV Path Made with Points using VRML. Point images have been
augmented to improve default contrast.

If apath made with lines is chosen instead, the result appears like in the picture below:

49

Figure21. AUV Path Made with Lines using VRML.

C. SUMMARY
This chapter discusses about evaluate outputs of the Waypoint Track Generator and
provides some advices for future work. This chapter also deals with an exemplary VRML/X3D

scene representative of AUV missions.

50

VII. CONCLUSIONSAND FUTURE WORK

A. CONCLUSIONS

The main purpose of this project is to create a simple scene based on VRML. From
coordinate data and time data, generated by the ADS software, a 3D scene is built to represent
the path that followed the AUV during operations. After constructing exemplary VRML scenes,
these prototypes will be integrated into ADS in the future to produce mission archive set.
Automatically creating visual mission archives to help visualize and easily understand what the
AUV did during operations will be a new achievement.

The result isa VRML scene, principally constructed at load time with JavaScript codes,
which allows the AUV path to be displayed in a 3D world according three modes:

AUV path is displayed with a large quantity of points that represent intermediate
coordinate points. Each point gets his own color, which symbolized the depth of
the AUV a this point. All the points are displayed at the same time, without
caring about the time reference list.

AUV path is dsplayed with a quantity of points that are coordinate points, but
each point is associated with time stamps. The bathymetry is symbolized by
colors but points appear according to their respective time stamps.

AUV path is shown with line segments with a single color: there is no color
representation of the bathymetry. The lines are drawn according to their
respective time stamps. 3D AUV models can be added to this scene.

B. RECOMMENDATIONS FOR FUTURE WORK
Thiswork achieves the goals originally set. Aswith any success, new lessons are learned

and new challenges provide further opportunities.

Firstly, currently, the display mode has to be defined inside the VRML file, before
starting it. It may be better if the display mode could directly be chosen after starting the scene.
This choice could be made by creating three Text nodes with mode names. When user would

click on one of them, display mode would be defined.

Secondly, durationActivePoint and timelatestActivePoint values (range of values
displayed on screen) cannot be modified when the scene runs. A good idea is to create diders
(combination of cylinder and sphere shapes) that could decrease/increase durationActivePoint
and timel atestActivePoint valuesin real time.

51

When AUV operations are represented by a line path, a 3D AUV model is added and
moves following the path. Nevertheless its movement is jerky. A good improvement would be

to interpolate AUV motion to make it smoother and more realistic.

Finally, mine-like contact coordinates have to be represented within the VRML scene
using the same way as AUV coordinates. 3D mine models would be included in the scene,
located at the coordinates provided by ADS data. More AUV and mine models might also be
created to feed the 3D library.

This project is a preliminary work, which deserves to be continued. It lays the foundation
for a variety of future works that can become a useful tool contributing towards NPS AUV
research.

52

APPENDIX A. ARIES AUV X3D MODEL

3D ARIES AUV mode source code (VRML):

#VRML V2.0 utf8

X3D-to-VRM.-97 XSL transl ation autogenerated by X3dToVrm 97. xsl
http://ww. web3D. or g/ TaskG oups/ x3d/ transl ati on/ X3dToVrm 97. xsl
[X3D]

[Scene]

Navi gationl nfo {
type ["EXAM NE" "ANY"]
}
Vi ewpoi nt {
description "Entry"
position -0.05 0 2
}
DEF auv Group {
children [
Transform {
translation 0.6223 0.13335 0
children [
DEF A Pl ane Shape {
appear ance Appearance {
material Material {
diffuseColor 0 0 1

}

geonetry | ndexedFaceSet {
coordindex [0321-14567-10154-121265=-12
376-10374-1]
creaseAngl e 3.14159
coord Coordinate {

point [0.0635, 0, 0.0127, 0.0381, 0.1778, -0.0127, -0.0381, 0.1778
- 0.0127, -o0.0889, 0O, -0.0127, 0.0635 O, 0.0127, 0.0381, 0.1778, 0.0127, -.0381
0.1778, 0.0127, -0.0889, 0, 0.0127]

}

53

}

Transform {
translation -0.7747 0.13335 0
children [
USE A Pl ane
Transform {
translation 0 0.1778 0O
children [
Shape {
appear ance Appearance {
material Material {
diffuseColor 1 0.3 0

}
geonetry | ndexedFaceSet {

coordindex [09 10 -1, 0101 -1, 21 10 -1, 3 2 10 -1, 4 3 10 -1, 5
410 -1, 6 510 -1, 7 6 10 -1, 8 7 10 -1, 98 10 -1, 0123456789 -1,]

creaseAngle 1.57
coord Coordinate {

point [-0.1 0 0, 0 0 -0.05, 0.019 0 -0.046, 0.0355 O -0.0355,
0.046 0 -0.019, 0.05 0 O, 0.046 0 0.019, 0.0355 0 0.0355, 0.019 0 0.046, 0 0 0.05, 0
0.03 0]

}

Transform {
rotation 1 0 0 3.14159267
transl ation 0.6223 -0.13335 0
children [
USE A_Pl ane
]

}

Transform {
rotation 1 0 0 3.14159267
translation -0.7747 -0.13335 0

children [

USE A Pl ane

]

}

Transform {
rotation 1 0 0 1.5708
translation -0.7747 0 0.20955
children [
USE A Pl ane
]

}

Transform {
rotation 1 0 0 1.5708
transl ation 0.6223 0 0.20955
children [
USE A Pl ane
]
}
Transform {
rotation 1 0 0 -1.5708
translation 0.6223 0 -0.20955
children [
USE A Pl ane
]
}

Transform {
rotation 1 0 0 -1.5708
translation -0.7747 0 -0.20955
children [
USE A_Pl ane
]
}
Transform {
transl ation -0.4953 0 O
children [
Shape {
appear ance Appearance {
material Material ({
di ffuseColor 0.2 0.2 0.2

55

geonetry Cylinder {
hei ght 0. 29
radi us 0. 0635

}
Transform {
rotation 1 0 0 1.5708
translation 0.4699 0 O
children [
Shape {
appear ance Appearance {
material Material {
di ffuseColor 0.2 0.2 0.2

}
geonetry Cylinder {

hei ght 0. 44
radi us 0.0635

}

Transform {
rotation 1 0 0 1.5708
transl ation -0.6223 0 O
children [
Shape {
appear ance Appearance {
material Material ({
di ffuseColor 0.2 0.2 0.2

}
geonetry Cylinder {

hei ght 0. 44
radi us 0. 0635

56

}
Group {

children [
Shape {
appear ance Appear ance {
material Material {
di ffuseColor 0.9 0.9 0.9

}

geonetry | ndexedFaceSet {

coordindex [0 26 34 33 32 31 251 -1 1 2529 28 2 -1 2 28 35 36 37 38
273 -103273026-1041-1014-1152-1125-1263-1236-1370-1
307-1708-1780-1809-1890-1904-1940-14110-14101-110
1-110111-11115-11151-15212-15122-1122 13 -112 132 -113 2 6 -

1362-16314-16 143 -114 3 15-114 153 -1153 7 -1157 3 -1 4 10 16
116 -1 11517 -15 12 18 -1 12 13 19 -1 13 6 19 -1 6 14 20 -1 14 15 20 -1 15 7
7822-18923-19423-1416 23 -1 11 17 16 -1 5 18 17 -1 12 19 18 -1 6 20
20 15 21 -1 217 22 -1 22 8 23 -1 23 16 24 -1 16 17 24 -1 17 18 24 -1 18 19 24
20 24 -1 20 21 24 -1 21 22 24 -1 22 23 24 -1 26 27 30 -1 25 26 30 29 -1 25 29
27 28 29 30 -1 31 32 36 35 -1 32 33 37 36 -1 34 38 37 33 -1]

creaseAngl e 3.14159

coord Coordinate {

-1
21
19
-1
28

10
-1
-1
19
-1

point [0.6985, 0.13335, -0.20955, 0.6985, 0.13335, 0.20955, 0.6985
1. 05,
- 0.085 0, 1.05, 0O, -0.1143, 1.05, 0.04572, -0.098985, 1.05, 0.079188, -0.05715,
1.05, .079188, 0.05715, 1.05, 0.04572, 0.098985, 1.05, -0.04572, 0.098985, 1.05
0.079188, .05715, 1.05, -0.079188, -0.05715, 1.05, -0.04572, -0.098985, 1.1, 0.04064

-0. 13335, 0.20955, 0.6985, -0.13335, -0.20955, 1.05, 0.085, 0, 1.05, 0, 0.1143,

0.02032, 1.1, 0.02032, 0.06096, 1.1, -0.02032, 0.06096, 1.1, -0.04064, 0.02032

1.1,

0. 04064, 0.02032, 1.1, -0.02032, -0.06096, 1.1, 0.02032, -0.06096, 1.1, 0.04064
0.02032, 1.11, O, O, -0.6985, 0.13335, 0.20955, -0.6985, 0.13335, -0.20955, -0.6985

- 0. 13335, -0. 20955, -0.6985, -0.13335, 0.20955, -1.1303, 0, 0.20955, -1.1303

0

0.20955, -0.6985, 0.13335, 0.0635, ~-0.8509, 0.13335 0.0635, -0.8509, 0.13335,
0.0635, -0.6985, .13335, -0.0635, -0.6985, -0.13335, 0.0635, -0.8509, -0.13335

0. 0635, -0.8509, -0.13335, -0.0635, -0.6985, -0.13335, -0.0635,]
}

}

Transform {
transl ation -1.1557 0 0.09525
children [
G oup {
children [
DEF Stbd_Bl ade G oup {
children [

Transform {

57

rotation 0 1 0 -0.39
children [
Shape {
appear ance Appearance {
material Material ({
di ffuseColor 0 0 1

}

geonetry | ndexedFaceSet {
coordindex [01234567 -107654321-1]
coord Coordinate {

point [0, 0, -0.00508, O, 0.02540, -0.02032, 0, 0.04572, -
0. 01524, 0, 0.05080, -0.00508, 0O, 0.05080, 0.00508, 0, 0.04572, 0.01524, 0, 0.02540
. 02032, 0, 0, 0.00508]

}

}
Transform {
rotation 1 0 0 1.5708
children [
USE St bd_BIl ade
]
}
Transform {
rotation 1 0 0 3.14159267
children [
USE St bd_Bl ade
]
}
Transform {
rotation 1 0 0 -1.5708
children [
USE St bd_Bl ade
]
}

Transform {
rotation 0 0 1 1.5708

58

translation 0.0281 0 O
children [
Shape {
appear ance Appearance {
material Material ({
di ffuseColor 0 0 1

}

geonetry Cylinder {
hei ght 0.0762
radi us 0.008

}
Transform {
rotation 0 0 1 1.5708

translation -0.015 0 O
children [
Shape {
appear ance Appearance {
material Material {
diffuseColor 0 0 1

}
geonetry Cone {
bot t omRadi us 0. 008

hei ght 0.01

}
Shape {
geonmetry Extrusion {
begi nCap FALSE
creaseAngle 2

crossSection [1.00 0.00
0.00 -1.00, -0.38 -0.92, -0.71 -0.71, ~-0.92 -0.38
0.71, -0.38 0.92, 0.00 1.00, 0.38 0.92, 0.71

]

0.92 -0.38, 0.71 -0.71, 0.38 -0.92,
-1.00 -0.00, -0.92 0.38 -0.71
0.71, 0.92 0.38, 1.00 0.00

endCap FALSE

59

scale [0.08 0.08, 0.07 0.07, 0.06 0.06, 0.07 0.07, 0.08 0.08]
spine [-0.08 0 0, 0.08 00, 0.08 00, -0.08 00, -0.0800]]
}
appear ance Appearance {
material Material ({
di ffuseColor 0 0 1

}
Transform {
translation -1.1557 0 -0.09525
children [
G oup {
children [
DEF Port _bl ade G oup {
children [
Transform {
rotation 0 1 0 0.39
children [
Shape {
appear ance Appearance {
material Material {
diffuseColor 0 0 1

}

geonetry | ndexedFaceSet {
coordindex [01234567 -107654321-1]
coord Coordinate {

point [O, O, -0.00508, 0O, 0.02540, -0.02032, O, O0.04572, -
0.01524, 0, 0.05080, -0.00508, O, 0.05080, 0.00508, 0O, 0.04572, 0.01524, 0, 0.02540
0. 02032, 0, 0, 0.00508]

}

60

}

Transform {
rotation 1 0 0 1.5708
children [
USE Port _bl ade
]
}

Transform {
rotation 1 0 0 3.14159267
children [
USE Port _bl ade
]
}

Transform {
rotation 1 0 0 -1.5708
children [
USE Port _bl ade
]
}

Transform {
rotation 0 0 1 1.5708
translation 0.0281 0 O
children [
Shape {
appear ance Appearance {
material Material ({
diffuseColor 0 0 1

}

geonetry Cylinder {
hei ght 0.0762
radi us 0.008

}

Transform {
rotation 0 0 1 1.5708
translation -0.015 0 0

children [

61

Shape {
appear ance Appearance {
material Material ({
di ffuseColor 0 0 1

}
geonetry Cone {

bot t omRadi us 0. 008
hei ght 0.01

}
Shape {
geonetry Extrusion {
begi nCap FALSE
creaseAngle 2

crossSection [1.00 0.00, 0.92 -0. 38, 0.71 -0.71, 0.38 -0.92
0.00 -1.00, -0.38 -0.92, -0.71 -0.71, -0.92 -0.38, -1.00 -0.00, -0.92 0.38, -0.71
0.71, -0.38 0.92, 0.00 1.00, 0.38 0.92, 0.71 0.71, 0.92 0.38, 1.00 0.00]

endCap FALSE
scale [0.08 0.08, 0.07 0.07, 0.06 0.06, 0.07 0.07, 0.08 0.08]
spine [-0.08 0 0, 0.08 00O, 0.08 00, -0.0800, -0.0800]
}
appear ance Appearance {
material Mterial {
diffuseColor 0 0 1

}
DEF | ogo G oup {

children [

Transform {
translation -0.475 -0.05 0.21
children [
Shape {

appear ance Appear ance {

62

material Material ({
di ffuseColor 0 0 0.8

}

geonetry Text {
string ["NPS"]
fontStyle FontStyle {
famly ["SANS']
size 0.15
style "BOLD"

}
Transform {

translation -0.175 -0.05 0.21

children [

DEF |ine Shape {

appear ance Appearance {
material Material ({
di ffuseColor 0 0 0.8

}

geonetry | ndexedFaceSet {
coordindex [012 3 -1
solid FALSE
coord Coordinate {
point [000, 0500, 0.50.020, 00.020,]

}

Transform {
translation -0.175 -0.015 0. 21
children [
USE i ne

]

63

Transform {
translation -0.175 0.02 0.21
children [
USE i ne

]

}

Transform {
rotation 0 1 0 3.14159267
translation -0.15 0 O
children [

USE | ogo
]

APPENDIX B. WAYPOINT FRENCH GENERATOR X3D MODEL

VRML source code of thelatest version of the waypoint track generator program:

#VRML V2.0 utf8

X3D-to-VRML-97 XSL transl ation autogenerated by X3dToVrm 97. xsl
http://ww. web3D. or g/ TaskG oups/ x3d/ transl ati on/ X3dToVrm 97. xsl
[X3D]

[Header]

[meta] filenanme: Point TrackGener at or Pr ot ot ype. xmi

[meta] description: Generator of random zed col ored points using script
nodes. The data arrays for coordinates and colors are generated in realtime or
everyting is displayed, depending on your choice.

[meta] author: Frederic Roussille
[meta] created: 14 May 2001
[meta] revised: 06 June 2001

[nmeta] url:
http://web. nps. navy. m |/ ~brut zman/ vr m / exanpl es/ NosM | i t ar yMbdel s/ Tool s/ Ani mat i on/ Poi n
t Gener at or Tr ack. xmi

[meta] generator: X3D Edit,
http://ww. web3D. or g/ TaskG oups/ x3d/ t ransl ati on/ READMVE. X3D- Edi t. ht m

[Scene]
PROTO Poi nt TrackGenerator [
Point coordinates in meters, referenced to |ocal coordinate systemorigin

Point times in seconds for local exercise clock. (Each tinme is clock tine
in seconds, not in interval durations.).

Both points and tines are initially provided as a full set of val ues.

field MFVec 3f poi nt Posi ti onsArray [0 O O, 10 -4 0, 25 -6 0, 30 -8
5 38 -15 5, 45 -18 5, 55 -22 5, 60 -25 15, 60 -27 22, 55 -30 35, 48 -35 35, 35 -35
35, 25 -45 35, 20 -55 35, 15 -70 35, 3 -70 35, -5 -72 40, -5 -75 50, 0 -80 55, 15 -75
55, 30 -70 55, 35 -60 55, 40 -50 55, 50 -34 55, 65 -23 70] # IS
Dr awPoi nt Scri pt . poi nt Posi ti onsArray

field MFTi me pointTi mesArray [1, 3, 6, 8, 10, 12, 14, 15, 17, 18,
23, 28, 35, 37, 39, 43, 45, 47, 48, 53, 58, 60, 61, 65, 70] # 1S
Dr awPoi nt Scri pt. poi nt Ti mesArray

total Duration is derived fromthe pointTi nesArray, and used to set
cyclelnterval on a controlling TinmeSensor clock outside the PointTrackGenerat or
Pr ot ol nst ance.

event Qut SFTi ne total Duration # |I'S DrawPoi nt Scri pt.total Duration
di spl ayPoi nt sMbde settings: -1=none, O=sone (active interval), 1=all.

exposedFi el d SFI nt 32 di spl ayPoi ntsvbde 2 # | S
Poi nt sGeonet rySwi t ch. whi chChoi ce

durationActivePoints is in seconds, default initialization value is
total Duration

65

eventln SFTi ne durationActivePoints # IS
Dr awPoi nt Scri pt. durati onActi vePoints

tineLatest ActivePoint is in seconds, default initialization value is final
point tinme

eventln SFTi me ti meLat est ActivePoint # IS

Dr awPoi nt Scri pt. ti neLat est Acti vePoi nt
event Qut SFTi me getStartTime # | S DrawPoi nt Scri pt.getStartTi me
event Qut SFTi ne get StopTine # |'S DrawPoi nt Scri pt. get St opTi ne
eventln SFTi me mappedCol or Poi nt Creator # IS

Dr awPoi nt Scri pt . mappedCol or Poi nt Cr eat or
exposedFi el d MFString auvNanme [
"auv_ax_xm .w "
] # 1S auvNane. url
1 {
G oup {
children [
DEF Poi nt sGeometrySwi tch Switch {
whi chChoi ce | S di spl ayPoi nt shbde
choi ce [
Shape {
geonetry DEF ActivePoi nt Set Point Set {
coord DEF ActivePoi nt Set Coor di nat eNode Coordi nate {

}
col or DEF Acti vePoi nt Set Col or Node Col or {
}
}
}
Shape {
geonetry DEF Conpl et ePoi nt Set Poi nt Set {
coord DEF Conpl et ePoi nt Set Coor di nat eNode Coordi nate {
}
col or DEF Conpl et ePoi nt Set Col or Node Col or {
}
}
}
Group {
children [
Shape {

geonetry DEF Activeli neSet |ndexedLi neSet {
coord DEF ActiveLi neSet Coordi nat eNode Coordi nate {

}

66

col or DEF Acti veLi neSet Col or Node Col or ({
}

}

DEF auvTransform Transform {
scale 4 4 4
children [
DEF auvNare Inline {

url |'S auvNane

}
DEF Col or Mapl nt er pol at or Col or | nt er pol at or {
key [0, 0.12, 0.48, 0.7, 1]
keyValue [111, 100, 010, 001, 00 O]
}
DEF Col or Mapl nt er pol at or For Conpl et ePoi nt sSet Col or | nt er pol ator {
key [0, 0.12, 0.48, 0.7, 1]
keyValue [111, 100, 010, 001, 00 O]
}
DEF Conpl et ePoi nt Set Ti mreSensor Ti neSensor {
cyclelnterval 0.01
| oop TRUE
}
DEF Dr awPoi nt Scri pt Script {

For proper operation, first insert newPoint and then newPoi nt Ti neSt anp

field MFVec3f poi ntPositionsArray |'S pointPositionsArray

field MFTi e point TinesArray | S poi nt Ti mesArray

field MFVec3f newPoi nt PositionsArray []

field MFTi ne newPoi nt TinesArray []

field SFInt32 linelndex 1

eventln SFTi me mappedCol or Poi nt Creator |'S mappedCol or Poi nt Cr eat or
field SFInt32 index O

field SFI nt 32 conpl et el ndex 0O

event Qut SFBool Conditi onConpl ete

67

field SFNode Act i vePoi nt Set Coor di nat eNode USE

Act i vePoi nt Set Coor di nat eNode

field SFNode Act i vePoi nt Set Col or Node USE
Act i vePoi nt Set Col or Node
field SFNode Conpl et ePoi nt Set Coor di nat eNode USE
Conpl et ePoi nt Set Coor di nat eNode
field SFNode Conpl et ePoi nt Set Col or Node USE
Conpl et ePoi nt Set Col or Node
field SFNode Col or Mapl nt er pol at or USE Col or Mapl nt er pol at or
field SFNode Col or Mapl nt er pol at or For Conpl et ePoi nt sSet USE
Col or Mapl nt er pol at or For Conpl et ePoi nt sSet
field SFNode Act i veLi neSet Coor di nat eNode USE
Act i veLi neSet Coor di nat eNode
field SFNode Acti veLi neSet Col or Node USE Acti veLi neSet Col or Node
field SFNode auvTransform USE auvTransform
event Qut SFTime totalDuration IS total Duration
event Qut SFTime getStartTinme |S getStartTi ne
event Qut SFTime getStopTine IS getStopTinme
event Qut MFI nt 32 coor dl ndex_changed
eventIn SFTime durationActivePoints |S durationActivePoints
eventln SFTine timelLatestActivePoint IS tineLatestActivePoint
eventln SFTi me conpl et ePoi nt Set Val ue_changed
eventln SFCol or set _conpl et ePoi nt Set Col or Arr ay

url ["javascript:

function initialize() {

total Duration = pointTi mesArray[poi nt Ti mesArray. | ength-1];
var today = new Date();

getStartTime = Mat h. round(today.getTinme() / 1000);
getStopTine = getStartTime + total Durati on;

var m= 1;

//default values for durationActivePoint and tinmeLatestActivePoi nt
dur ationActivePoint = total Duration;

ti meLat est ActivePoi nt = pointTi mesArray[poi nt Ti nesArray. | engt h-1];

i f(timeLatestActivePoint == durationActivePoint) {
newPoi nt Ti nesArray = poi nt Ti nesArray;
newPoi nt Posi ti onsArray = poi ntPositionsArray;
print(' newPoi nt TimesArray = ' + newPoi nt Ti nesArray);

}

i f(timeLatestActivePoint > durationActivePoint) {

68

var firstTime = latestTine = k = 0;

whil e((tinmeLatestActivePoint - durationActivePoint) !=
point Ti mesArray[firstTine]) {

firstTi met++;
}
whil e(ti meLat est ActivePoint !'= pointTinesArray[latestTinme]) {
| at est Ti me++;
}
for(var j = firstTime ; j <= latestTine ; j++) {
newPoi nt Ti nesArray[k] = pointTinesArray[j] - pointTimesArray[firstTine] + 1;
newPoi nt Posi ti onsArray[k] = pointPositionsArray[j];
k++;
}
print(' newPoi nt TimesArray = ' + newPoi nt Ti nesArray);
}
i f(tineLatestActivePoint < durationActivePoint) {
print(' Fatal error : timelLatestActivePoint < durationActivePoint !');

}
Condi ti onConpl ete = fal se;

}

function conpl et ePoi nt Set Val ue_changed() {

i f(ConditionConplete == fal se & conpl et el ndex <= (poi ntPositionsArray.|ength-
1) {

Col or Mapl nt er pol at or For Conpl et ePoi nt sSet. set_fraction = -
poi nt Posi ti onsArray[conpl etel ndex][1] / 100;

print (' Col or Mapl nt er pol at or For Conpl et ePoi nt sSet. set_fracti on[' +conpl et el ndex+'] = +
Col or Mapl nt er pol at or For Conpl et ePoi nt sSet . set _fraction);

//need to initialize Col orMaplnterpolator.set_fraction with the first point
col or otherwi se the value is shifted

Condi ti onConpl ete = true;

}
}

function set_conpl et ePoi nt Set Col or Array(Val ue) {
Conpl et ePoi nt Set Col or Node. col or [conpl et el ndex] = Val ue;

Conpl et ePoi nt Set Coor di nat eNode. poi nt[conpl et el ndex] =
poi nt Posi ti onsArray[conpl et el ndex] ;

conpl et el ndex++;

Condi ti onConpl ete = fal se;

69

functi on mappedCol or Poi nt Creat or (fracti onVal ue) {
Col or Mapl nt er pol ator.set _fraction = - newPoi nt Positi onsArray[index][1] / 100;

//need to initialize Col orMaplnterpolator.set_fraction with the first point
color otherwise the value is shifted

if(Math.floor(fractionValue) == (newPointTi nesArray[index] + getStartTinme)) {
Act i vePoi nt Set Col or Node. col or[i ndex] = Col or Mapl nt er pol at or. val ue_changed,;
Act i vePoi nt Set Coor di nat eNode. poi nt[i ndex] = newPoi nt Positi onsArray[i ndex];
auvTransformtransl ati on = newPoi nt Posi ti onsArray[i ndex];
i f(index <= 1) {

Acti velLi neSet Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];

coor dl ndex_changed[i ndex] = index;
Acti velLi neSet Col or Node. col or[index][0] = 1;
Acti veli neSet Col or Node. col or[index][1] = 1;
Acti velLi neSet Col or Node. col or[index][2] = 1;
auvTransformtransl ati on = newPoi nt Posi ti onsArray[i ndex];
i f(index == 1) {

Acti velLi neSet Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];

coor dl ndex_changed[i ndex] = index;
coor dl ndex_changed[i ndex+1] = -1;
Acti velLi neSet Col or Node. col or [i ndex-1][0] 1;

Acti velLi neSet Col or Node. col or[i ndex-1][1] = O;
Acti velLi neSet Col or Node. col or[i ndex-1][2] = O;
Acti velLi neSet Col or Node. col or[index][0] = 1;
Acti velLi neSet Col or Node. col or[index][1] = 1;
Acti velLi neSet Col or Node. col or[index][2] = 1;
}
}
el se {

Acti velLi neSet Coor di nat eNode. poi nt[i ndex] =
newPoi nt Posi ti onsArray[i ndex];

coor dl ndex_changed[i ndex+l i nel ndex] =
coor dl ndex_changed[i ndex+l i nel ndex- 2] ;

coor dl ndex_changed[i ndex+l i nel ndex+1] = i ndex;
coor dl ndex_changed[i ndex+l i nel ndex+2] = -1,
Acti velLi neSet Col or Node. col or[i ndex-1][0] =
Acti velLi neSet Col or Node. col or [i ndex- 1] [1]
Acti velLi neSet Col or Node. col or[i ndex-1][2]
Acti velLi neSet Col or Node. col or[i ndex] [O]
Acti velLi neSet Col or Node. col or[i ndex] [1]

1
0;
0

[T
I

70

Acti veli neSet Col or Node. col or[index][2] = 1;
l'i nel ndex += 2;

}

[l print('ActivePoi nt Set Coordi nat eNode. point[' +index +][0]=

Act i vePoi nt Set Coor di nat eNode. poi nt[i ndex][0]);

[l print('ActivePoi nt Set Coordi nat eNode. point[' +index +'][1]=

Act i vePoi nt Set Coor di nat eNode. poi nt[index][1]);

[l print('ActivePoi nt Set Coordi nat eNode. point[' +index +'][2]=

Act i vePoi nt Set Coor di nat eNode. poi nt[index][2]);

i ndex ++;
}
}
!
}
DEF Debugger Script {
eventln MVec3f set _debugcoordi nate
eventln MFCol or set _debugcol or
eventln MVec3f set _debugcoordi nateC
eventln MFCol or set _debugcol orC
eventln MVec3f set _debugcoord
eventln MFI nt 32 set _debugcoor dl ndex_changed

url ["javascript:

function set_debugcoordi nat e(Val ue) {

print('ActivePointSet : CoordinatePointArrray ="' + Val ue);

}

function set_debugcol or (Val eur) {
print('ActivePointSet : ColorPointArray ="' + Valeur);
}

function set_debugcoordi nat eC(Val ue) {

print (' Conpl etePointSet : CoordinatePointArrray = ' + Val ue);

print(’ ");
}

function set_debugcol or C(Val eur) {
print (' Conpl etePointSet : ColorPointArray ="' + Valeur);
}

function set_debugcoord(Val eur) {

print('ActiveLineSet : Coordinate.point ="' + Valeur);

71

+

+

+

print(’ ");

function set_debugcoordl ndex_changed(Val eur) {

print (' DrawPoi nt Script : coordl ndex_changed ="' + Val eur);
}
"]

}

ROUTE Conpl et ePoi nt Set Ti neSensor . cycl eTime TO
Dr awPoi nt Scri pt . conpl et ePoi nt Set Val ue_changed

ROUTE Col or Mapl nt er pol at or For Conpl et ePoi nt sSet . val ue_changed TO
Dr awPoi nt Scri pt. set _conpl et ePoi nt Set Col or Arr ay

ROUTE Dr awPoi nt Scri pt. coor dl ndex_changed TO Acti veLi neSet . set _coor dl ndex

ROUTE Acti vePoi nt Set Coor di nat eNode. poi nt _changed TO
Debugger . set _debugcoordi nat e

ROUTE Acti vePoi nt Set Col or Node. col or _changed TO Debugger. set _debugcol or
ROUTE Acti veli neSet Coor di nat eNode. poi nt TO Debugger . set _debugcoord

ROUTE Dr awPoi nt Scri pt. coordl ndex_changed TO
Debugger . set _debugcoor dl ndex_changed

ROUTE Conpl et ePoi nt Set Coor di nat eNode. poi nt _changed TO
Debugger . set _debugcoor di nat eC

ROUTE Conpl et ePoi nt Set Col or Node. col or _changed TO Debugger. set _debugcol orC
}
Exanpl e scene goes here
Navi gati onl nfo {
type ["EXAM NE' "ANY"]
}
Vi ewpoi nt {
description "MinVi ew
position 0 -50 200
}
DEF TrackGeneratorl nstance Poi nt TrackGenerator {
}
DEF Di spl ayi ngTi mer Ti meSensor {
}
ROUTE TrackGeneratorlnstance.getStartTi ne TO Di spl ayi ngTi ner. set_startTi me
ROUTE TrackGener at or |l nst ance. get St opTi me TO Di spl ayi ngTi mer. set _st opTi e
ROUTE TrackGeneratorlnstance.total Duration TO Di spl ayi ngTi ner. set _cycl el nterval

ROUTE Di spl ayi ngTi ner.ti ne_changed TO
TrackGener at or | nst ance. nappedCol or Poi nt Cr eat or

72

APPENDIX C. MANTA UNDERWATER MINE X3D M ODEL

3D Manta mine model source code (VRML):

#VRML V2.0 utf8

X3D-to-VRM.-97 XSL transl ation autogenerated by X3dToVrm 97. xsl
http://ww. web3D. or g/ TaskG oups/ x3d/ transl ati on/ X3dToVrm 97. xsl
[X3D]

[Header]

[meta] filenanme: MantaPrototype. xmi

[meta] description: Italian Manta bottom mne, with truncated cone and
handl i ng padeyes.

[meta] author: Frederic Roussille
[meta] created: 8 May 2001
[nmeta] revised: 16 May 2001

[meta] url:
http://ww. web3D. or g/ TaskG oups/ x3d/ t ransl at i on/ exanpl es/ NpsM | i t ar yModel s/ Weapons/ Und
erwat er M nes/ Mant aPr ot ot ype. xm

[meta] photo: http://ww.cisatlantic.conmtrimx/strike/mnelocator.jpg
[meta] photo: http://ww. cisatlantic.comtrimx/strike/Mnel.jpg
[nmeta] photo: http://ww.cisatlantic.conmtrimx/strike/Mne2.jpg

[meta] photo: http://ww.fas. org/ man/ dod- 101/ navy/ docs/ swos/ crd/ m w/ Sp6- 4-
1/ sl dO55. ht m

[meta] generator: X3D Edit,
http://ww. web3D. or g/ TaskG oups/ x3d/ t ransl ati on/ READVE. X3D- Edi t. ht mi

[Scene]

PROTO Mant aM ne [

exposedFi el d SFCol or M neColor 0.6 0.3 0 # IS M neCol or. di ffuseCol or
field SFString vi ewpoi nt Description "Manta mne" # IS
Ent r yVi ewpoi nt. descri ption
1 {

Bad CosnoPl ayer bug: only first node is used in Prototype. Thus we wrap
everything inside a Goup. Beurk (bleah)!!

Group {

children [

DEF EntryVi ewpoi nt Vi ewpoi nt {
description IS viewpoi nt Description
orientation 1 0 0 -0.4
position 0 1 3

73

LOD {
range [10 50 100]
level [
Group {
children [
Vi ewpoi nt {
description "Manta top view'
orientation 1 0 0 -1.57
position 0 2 O
}
Vi ewpoi nt {
description "Manta side view'
orientation 0 1 0 -1.57
position -2 0 O
}
Transform {
rotation 1 0 0 1.57
scale 1.5 1.5 1
children [
Shape {
appear ance Appearance {
materi al DEF M neCol or Material ({
di ffuseCol or 1S M neCol or

}

geonmetry Extrusion {
begi nCap FALSE
creaseAngl e 157

crossSection [0.1 0, 0.22 -0.01, 0.2275 -0.05 0.2675 -0.05, 0.49
0.4, 0.49 0.47, 0.53 0.47, 0.53 0.48, 0 0.48, 0 0.22, 0.0675 0.22, 0.1 0,]

endCap FALSE

spine [0.001 0 O, 0.00092 -0.00038 0O, 0.00071 -0.00071 O,
0.00038 -0.00092 0, 0 -0.001 O, -0.00038 -0.00092 O, -0.00071 -0.00071 O, -0.00092 -
0.00038 0, -0.001 0 O, -0.00092 0.00038 0, -0.00071 0.00071 O, -0.00038 0.00092 0, O
0.001 0, 0.00038 0.00092 0, 0.00071 0.00071 O, 0.00092 0.00038 0, 0.001 0 O]

}

}
Transform {
rotation 0 1 0 0.785

74

translation 0.36 -0.4 0.36
children [
DEF triangl e Shape {
appear ance Appearance {
materi al USE M neCol or
}
geonetry | ndexedFaceSet {
coordindex [013 -1, 012-1, 023-1, 132-1]
solid FALSE
coord Coordinate {

point [0 0 0.0925, 0 0.2775 0.122, -0.0925 0.2775 0, 0.0925
0.2775 0]

}

Transform {
rotation 0 1 0 -0.785
translation -0.36 -0.4 0.36
children [
USE triangle
]

}

Transform {
rotation 0 1 0 2.355
translation 0.36 -0.4 -0.36
children [
USE triangle
]

}

Transform {
rotation 0 1 0 -2.355
translation -0.36 -0.4 -0.36
children [
USE triangle
]

}

Transform {

translation 0.4 -0.08 0.4

75

children [
DEF ring Goup {
children [
Transform {
rotation 1 0 0 1.57
children [
Shape {
appear ance Appearance {
material DEF grey Material {
di ffuseColor 0.5 0.5 0.5
specularColor 1 1 1

}

geonmetry Extrusion {
begi nCap FALSE
convex FALSE
creaseAngle 1.57

crossSection [0 0, 0.007 O, 0.018 0.025, 0.032 0.035, 0.04
0.036, 0.04 0.04, 0 0.04, 0 0]

endCap FALSE

spine [0.001 0 O, 0.00092 -0.00038 0, 0.00071 -0.00071 O,
0. 00038 -0.00092 0, 0 -0.001 O, -0.00038 -0.00092 0, -0.00071 -0.00071 0O, -0.00092 -
0.00038 0, -0.001 0 O, -0.00092 0.00038 0, -0.00071 0.00071 O, -0.00038 0.00092 0, O
0.001 0, 0.00038 0.00092 0, 0.00071 0.00071 O, 0.00092 0.00038 0, 0.001 O O]

}

}

Transform {
rotation 0 1 0 0.7535
translation 0 0.035 0
children [
Shape {
appear ance Appearance {
material USE grey
}
geonetry Extrusion {
begi nCap FALSE
creaseAngle 1.57

crossSection [0.01 0, 0.0092 -0.0038, 0.0071 -0.0071, 0.0038
-0.0092, 0 -0.01, -0.0038 -0.0092, -0.0071 -0.0071, -0.0092 -0.0038, -0.01 O, -0.0092

76

0.0038, -0.0071 0.0071, -0.0038 0.0092, 0 0.01, 0.0038 0.0092, 0.0071 0.0071, 0.0092
0.0038, 0.01 0]

endCap FALSE

spine [0.03 0 O, 0.0276 -0.0114 0, 0.0213 -0.0213 0, 0.0114
-0.0276 0, 0 -0.03 0, -0.0114 -0.0276 0, -0.0213 -0.0213 0, -0.0276 -0.0114 0, -0.03 O
0, -0.0276 0.0114 0, -0.0213 0.0213 0, -0.0114 0.0276 0, 0 0.03 0, 0.0114 0.0276 O,
0.0213 0.0213 0, 0.0276 0.0114 0, 0.03 0 0]

}

}

Transform {
rotation 0 1 0 1.57
translation -0.4 -0.08 0.4
children [
USE ring
]

}

Transform {
rotation 0 1 0 1.57
translation 0.4 -0.08 -0.4
children [
USE ring
]

}

Transform {
translation -0.4 -0.08 -0.4
children [
USE ring
]
}

Transform {
translation 0 -0.11 O
children [
Shape {
appear ance Appearance {

material Material ({

77

di ffuseColor 0.5 0.5 0.5
specularColor 0.2 0.2 0.2

}
geonetry Cylinder {

hei ght 0. 22
radius 0.15

}
Transform {
rotation 0 0 1 0.935
translation -0.461 -0.04 O
children [
DEF hol e Shape {
geonetry Cylinder {
hei ght 0.01
radi us 0.04
}
appear ance Appearance {
material Material {
di ffuseColor 0 0 O

}

Transform {
rotation 0 0 1 -0.935
translation 0.461 -0.04 0
children [
USE hol e
]

}

Transform {
rotation 1 0 0 -0.935
translation 0 -0.04 -0.461
children [
USE hol e

78

}

Transform {
rotation 1 0 0 0.935
translation 0 -0.04 0.461
children [
USE hol e
]
}
Transform {
translation 0 -0.48 0
children [
Shape {
appear ance Appearance {
materi al USE M neCol or
}
georetry Cylinder {
hei ght 0.01
radi us 0.787

}
Group {

children [
Transform {
rotation 1 0 0 1.57
scale 1.5 1.5 1
children [
Shape {
appear ance Appearance {
materi al USE M neCol or
}
geonetry Extrusion {
begi nCap FALSE
creaseAngl e 157

crossSection [0.1 0, 0.22 -0.01, 0.2275 -0.05 0.2675 -0.05, 0.49
0.4, 0.49 0.47, 0.53 0.47, 0.53 0.48, 0 0.48, 0 0.22, 0.0675 0.22, 0.1 0,]

79

endCap FALSE
spine [0.001 0 O, 0.00092 -0.00038 0, 0.00071 -0.00071 O,

0.00038 -0.00092 0, 0 -0.001 O,
0.00038 0, -0.001 0 O,

-0. 00092 0.00038 O,

-0. 00038 -0.00092 O,

-0.00071 0.00071 O,

-0.00071 -0.00071 O, -0.00092 -
-0. 00038 0.00092 0, O

0.001 0, 0.00038 0.00092 0, 0.00071 0.00071 O, 0.00092 0.00038 0, 0.001 0 O]

}

}

Transform {

rotation 0 1 0 0.785
translation 0.36 -0.4 0.36

children [
USE triangle
]

}

Transform {

rotation 0 1 0 -0.785
translation -0.36 -0.4 0.36

children [
USE triangle
]

}

Transform {

rotation 0 1 0 2.355
translation 0.36 -0.4 -0.36

children [
USE triangle
]

}

Transform {

rotation 0 1 0 -2.355
translation -0.36 -0.4 -0.36

children [
USE triangle
]

}

Transform {

translation 0.4 -0.08 0.4

children [

DEF sphere G oup {

80

children [
Transform {
rotation 1 0 0 1.57
children [
Shape {
appear ance Appearance {
material USE grey
}
geomnetry Sphere {
radi us 0.05

}

Transform {
rotation 0 1 0 1.57
translation -0.4 -0.08 0.4
children [
USE sphere
]

}

Transform {
rotation 0 1 0 1.57
translation 0.4 -0.08 -0.4
children [
USE sphere
]

}

Transform {
translation -0.4 -0.08 -0.4
children [
USE sphere
]
}

Transform {

translation 0 -0.11 O

81

children [
Shape {
appear ance Appear ance {
material Material {
di ffuseColor 0.5 0.5 0.5
specularColor 0.2 0.2 0.2

}
geonetry Cylinder {

hei ght 0. 22
radius 0.15

}

Transform {
translation 0 -0.24 0
children [
Shape {
appear ance Appearance {
materi al USE M neCol or
}
geonetry Cylinder {
hei ght 0. 48
radi us 0.49

}
Worl dlnfo {
title "Null node"

}

Exanpl e scene starts here, in case this prototype is exan ned

82

Navi gati onl nfo {
type ["EXAM NE' "ANY"]
}
Background {
groundColor [1 1 1]
skyColor [1 1 1]
}
Mant aM ne {
Vi ewpoi nt Description "Manta m ne 10nt
}
Vi ewpoi nt {
description "Manta m ne 50m (LOD breakpoint)"
position 0 0 50
}
Vi ewpoi nt {
description "Manta mne 99m (LOD breakpoi nt 100m) "
position 0 0 99

83

LIST OF REFERENCES

Refracted VRML Resource Center, “What is VRML” and “History of VRML,” 2001. Available
at http://www.refraction.com/vrml

Smith, James, “Floppy’s VRML Guide,” Vapour Technology Ltd., 2001. Available at
http://www.vapourtech.com/vrmlquide

Web3D Consortium, “Extensible 3D (X3D™) Graphics Task Group,” 1999-2001. Available at
http://www.web3d.org/x3d.html

Ames, Andrea L., Nadeau, David R. and Moreland, John L., “The VRML 2.0 Sourcebook”,
Wiley Computer Publishing, New York, 1997. Available at
http://www.wiley.com/legacy/compbooks/vrml 2sbk/cover/cover.htm

Brutzman, Don, 2001, “Virtual Reality Modeling Language (VRML)”, course home page. Naval
Postgraduate School, Monterey California. Available at http://web.nps.navy.mil/~brutzman/vrmi

Web3D Consortium, The Virtual Reality Modeling Language, Annex C (normative),
ECMAScript scripting reference, 1997. Available at
http://www.web3d.org/ Specifications’VRM L 97/part1/javascript.html#L anguage

Brutzman, Don, “X3D-Edit for Extensible 3D (X3D) Graphics,” 2001. Available at
http://www.web3d.org/TaskGroups/x3d/trans ation/REA DM E. X 3D-Edit.html

Marco, David B. and Hedey, Anthony J., “Current Developments in Underwater Vehicle
Control and Navigation: The NPS ARIES AUV,” Naval Postgraduate School, Monterey
California, 2001.

Brutzman, Donad P., “A Virtual World for an Autonomous Underwater Vehicle,” Dissertation,
Naval Postgraduate School, Monterey California, 1994.

Healey, A. J, Wu, J. and Brutzman, D. P., “Tactica Decision Aids Using Modeling and
Simulation”, Grant # N0001400WR20003, Naval Postgraduate School, Monterey Gilifornia,
2001.

