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The Art of Doing Science and EngineeringThe Art of Doing Science and Engineering

Session 9:  nSession 9:  n––Dimensional SpaceDimensional Space

OverviewOverviewOverview
• Definition of n-dimensional space.
• Two dimensions:  Pythagoras theorem

• Three dimensions:  the length of the diagonal of a 
rectangular block

• Extrapolate geometric concepts to higher dimensions

• Volume of n-dimensional sphere
• The diagonal of n-dimensional cube
• High-dimensional spaces 

•• Definition of nDefinition of n--dimensional space.dimensional space.
•• Two dimensions:  Pythagoras theoremTwo dimensions:  Pythagoras theorem

•• Three dimensions:  the length of the diagonal of a Three dimensions:  the length of the diagonal of a 
rectangular blockrectangular block

•• Extrapolate geometric concepts to higher dimensionsExtrapolate geometric concepts to higher dimensions

•• Volume of nVolume of n--dimensional spheredimensional sphere

•• The diagonal of nThe diagonal of n--dimensional cubedimensional cube

•• HighHigh--dimensional spaces dimensional spaces 

n – Dimensional Spacen n –– Dimensional SpaceDimensional Space
n – Dimensional Space is a mathematical 
construct which we must investigate if we 
are to understand what happens to us when 
we wander there during a design problem.

We can usefully extrapolate geometric 
concepts from
• 2 dimensions (2D)
• 3 dimensions (3D)

n n –– Dimensional Space is a mathematical Dimensional Space is a mathematical 
construct which we must investigate if we construct which we must investigate if we 
are to understand what happens to us when are to understand what happens to us when 
we wander there during a design problem.we wander there during a design problem.

We can usefully extrapolate geometric We can usefully extrapolate geometric 
concepts fromconcepts from
•• 2 dimensions (2D)2 dimensions (2D)

•• 3 dimensions (3D)3 dimensions (3D)

Two DimensionsTwo DimensionsTwo Dimensions
Pythagoras theorem – for a right triangle
• The square of the hypotenuse equals the sum of the 

squares of the other two sides.

Pythagoras theorem Pythagoras theorem –– for a right trianglefor a right triangle
•• The square of the hypotenuse equals the sum of the The square of the hypotenuse equals the sum of the 

squares of the other two sides.squares of the other two sides.

Three DimensionsThree DimensionsThree Dimensions
Deriving the length of the 
diagonal of a rectangular block
• First, draw a diagonal on one face.

• Apply Pythagoras theorem.

• Take it as one side with the other 
side the third dimension, which is 
at right angles.

• From Pythagoras, get the square 
of the diagonal is the sum of the 
squares of the three perpendicular 
sides. 

Deriving the length of the Deriving the length of the 
diagonal of a rectangular blockdiagonal of a rectangular block

•• First, draw a diagonal on one face.First, draw a diagonal on one face.

•• Apply Pythagoras theorem.Apply Pythagoras theorem.

•• Take it as one side with the other Take it as one side with the other 
side the third dimension, which is side the third dimension, which is 
at right angles.at right angles.

•• From Pythagoras, get the square From Pythagoras, get the square 
of the diagonal is the sum of the of the diagonal is the sum of the 
squares of the three perpendicular squares of the three perpendicular 
sides. sides. 

Three - DimensionsThree Three -- DimensionsDimensions
As you go higher in dimensions, you still have the 
square of the diagonal as the sum of the squares 
of the individual mutually perpendicular sides:

where Xi = the length of the sides of the 
rectangular block in each of n dimensions

As you go higher in dimensions, you still have the As you go higher in dimensions, you still have the 
square of the diagonal as the sum of the squares square of the diagonal as the sum of the squares 
of the individual mutually perpendicular sides:of the individual mutually perpendicular sides:

where Xwhere Xii = the length of the sides of the = the length of the sides of the 
rectangular block in each of n dimensionsrectangular block in each of n dimensions
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Three DimensionsThree DimensionsThree Dimensions
Planes in space will be simply linear 
combinations of Xi

A sphere about a point will be all points 
which are at the fixed distance (the radius) 
from the given central point. 

Planes in space will be simply linear Planes in space will be simply linear 
combinations of Xcombinations of Xii

A sphere about a point will be all points A sphere about a point will be all points 
which are at the fixed distance (the radius) which are at the fixed distance (the radius) 
from the given central point. from the given central point. 

Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

We need the Stirling approximation 
for n! to get an idea of the size of a 
piece of restricted space.

We need the Stirling approximation We need the Stirling approximation 
for n! to get an idea of the size of a for n! to get an idea of the size of a 
piece of restricted space.piece of restricted space.

Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere
Derivation
• Take the log of n! 

• The sums relate to integral 

• apply integration by parts

DerivationDerivation
•• Take the log of n! Take the log of n! 

•• The sums relate to integral The sums relate to integral 

•• apply integration by partsapply integration by parts
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Volume of n-dimensional sphere Volume of nVolume of n--dimensional sphere dimensional sphere 

• Now apply Trapezoidal rule to 
the integral of ln x

• Since  ln 1=0, adding (1/2) ln n 
to both terms, we get

• Undo the logs by taking the 
exponential of both sides

•• Now apply Trapezoidal rule to Now apply Trapezoidal rule to 
the integral of the integral of lnln xx

•• Since  Since  lnln 1=0, adding (1/2) 1=0, adding (1/2) lnln n n 
to both terms, we getto both terms, we get

•• Undo the logs by taking the Undo the logs by taking the 
exponential of both sidesexponential of both sides
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Volume of n-dimensional sphere Volume of nVolume of n--dimensional sphere dimensional sphere 

• By approximating the integral by trapezoidal rule, 
the error in the trapezoid approximation increases 
more and more slowly as n grows larger

• C is the limiting value.

• At the limit, value of the constant C is

•• By approximating the integral by trapezoidal rule, By approximating the integral by trapezoidal rule, 
the error in the trapezoid approximation increases the error in the trapezoid approximation increases 
more and more slowly as n grows largermore and more slowly as n grows larger

•• C is the limiting value.C is the limiting value.

•• At the limit, value of the constant C isAt the limit, value of the constant C is

)71828.2(5066.22 === ec π

Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere
• Finally, the Stirling’s formula for the factorial•• Finally, the StirlingFinally, the Stirling’’s formula for the factorials formula for the factorial

The table shows the quality of the Stirling approximation n!

nenn nn π2! −≈
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere
As the numbers gets larger and larger the ratio 
approaches 1 but the differences get greater and 
greater !
Consider two functions

Then, the ratio f(n)/g(n), as n approaches infinity, is 1

…. but as in the table, the difference

grows larger and larger as n increases.

As the numbers gets larger and larger the ratio As the numbers gets larger and larger the ratio 
approaches 1 but the differences get greater and approaches 1 but the differences get greater and 
greater !greater !
Consider two functionsConsider two functions

Then, the ratio Then, the ratio f(n)/g(nf(n)/g(n), as n approaches infinity, is 1), as n approaches infinity, is 1

……. but as in the table, the difference. but as in the table, the difference

grows larger and larger as n increases.grows larger and larger as n increases.
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

Need to extend the factorial function to all positive 
real numbers, by introducing the gamma function
in the form of an integral

which converges for all n > 0

Need to extend the factorial function to all positive Need to extend the factorial function to all positive 
real numbers, by introducing the real numbers, by introducing the gamma functiongamma function
in the form of an integralin the form of an integral

which converges for all n > 0which converges for all n > 0
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• For n >1 , again integrate by parts using

• we have the reduction formula

• The gamma function takes on the values (n-1)! at 
the positive integers n, and it provides a natural 
way of extending the factorial to all positive real 
numbers since the integral exists whenever n>0.

•• For n >1 , again integrate by parts usingFor n >1 , again integrate by parts using

•• we have the reduction formulawe have the reduction formula

•• The gamma function takes on the values (nThe gamma function takes on the values (n--1)! at 1)! at 
the positive integers n, and it provides a natural the positive integers n, and it provides a natural 
way of extending the factorial to all positive real way of extending the factorial to all positive real 
numbers since the integral exists whenever n>0.numbers since the integral exists whenever n>0.

Volume of nVolume of n--dimensional spheredimensional sphere
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

• we will need

• set x=t2, hence dx=2tdt

• then take the product of two of the integrals

•• we will needwe will need

•• set x=tset x=t22, hence , hence dxdx=2tdt=2tdt

•• then take the product of two of the integralsthen take the product of two of the integrals
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

The (x2 + y2) quantity suggests polar 
coordinates, so we convert

Finally we obtain

The (xThe (x22 + y+ y22) quantity suggests polar ) quantity suggests polar 
coordinates, so we convertcoordinates, so we convert

Finally we obtainFinally we obtain
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Thus

Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

• The volume of a cube in n – dimensions and of 
side X is Xn.

• The formula for the volume of an n–dimensional 
sphere must therefore be of the form

where C is a constant

•• The volume of a cube in n The volume of a cube in n –– dimensions and of dimensions and of 
side X is side X is XXnn..

•• The formula for the volume of an nThe formula for the volume of an n––dimensional dimensional 
sphere must therefore be of the formsphere must therefore be of the form

where C is a constantwhere C is a constant

n

n rCVolume =



March 26, 2005

Hamming on Hamming:  Learning to 
Learn 4

Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

• for n = 2 dimensions, the constant C is pi.

• In 3 dimensions, we have

•Consider the volume of sphere
• It is the sum of shells, and each element of the sum has a 

volume which is the corresponding shell area multiplied by the 
thickness, dr.

•• for n = 2 dimensions, the constant C is pi.for n = 2 dimensions, the constant C is pi.

•• In 3 dimensions, we haveIn 3 dimensions, we have

••Consider the volume of sphereConsider the volume of sphere
•• It is the sum of shells, and each element of the sum has a It is the sum of shells, and each element of the sum has a 

volume which is the corresponding shell area multiplied by the volume which is the corresponding shell area multiplied by the 
thickness, dr.thickness, dr.
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere
Surface area of a sphere can be obtained by differentiating 
the volume of the sphere with respect to the radius r

Hence the elements of volume are

Setting r2 = t

and we obtain

Surface area of a sphere can be obtained by differentiating Surface area of a sphere can be obtained by differentiating 
the volume of the sphere with respect to the radius rthe volume of the sphere with respect to the radius r

Hence the elements of volume areHence the elements of volume are

Setting rSetting r22 = t= t

and we obtainand we obtain
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

From which we get

It is easy to see it in a 
table representation

From which we getFrom which we get

It is easy to see it in a It is easy to see it in a 
table representationtable representation
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere
Thus, the coefficient Cn
increases up to n = 5 and 
then decreases toward 0.

For sphere of unit 
radius, the volume 
approaches 0 as n 
increases.

Thus, the coefficient Thus, the coefficient CnCn
increases up to n = 5 and increases up to n = 5 and 
then decreases toward 0.then decreases toward 0.

For sphere of unit For sphere of unit 
radius, the volume radius, the volume 
approaches 0 as n approaches 0 as n 
increases.increases.
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

• If r is radius, then using n = 2 K for the volume

• Thus no matter how large the radius, r, 
increasing the number of dimensions, n, will 
ultimately produce a sphere of arbitrarily small 
volume.

•• If r is radius, then using n = 2 K for the volumeIf r is radius, then using n = 2 K for the volume

•• Thus no matter how large the radius, r, Thus no matter how large the radius, r, 
increasing the number of dimensions, n, will increasing the number of dimensions, n, will 
ultimately produce a sphere of arbitrarily small ultimately produce a sphere of arbitrarily small 
volume.volume.
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

• Now look at the relative amount of the volume close 
to the surface of n-dimensional sphere
• Let r = radius of the sphere, and inner radius of the shell is

, 

then the relative volume of the shell is

• For large n, no matter how thin the shell is  (relative 
to the radius), almost all the volume is in the shell and 
there is almost nothing inside.
• Apparently the volume is almost all near the surface.

•• Now look at the relative amount of the volume close Now look at the relative amount of the volume close 
to the surface of nto the surface of n--dimensional spheredimensional sphere
•• Let r = radius of the sphere, and inner radius of the shell isLet r = radius of the sphere, and inner radius of the shell is

, , 

then the relative volume of the shell isthen the relative volume of the shell is

•• For large n, no matter how thin the shell is  (relative For large n, no matter how thin the shell is  (relative 
to the radius), almost all the volume is in the shell and to the radius), almost all the volume is in the shell and 
there is almost nothing inside.there is almost nothing inside.
•• Apparently the volume is almost all near the surface.Apparently the volume is almost all near the surface.
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Volume of n-dimensional sphereVolume of nVolume of n--dimensional spheredimensional sphere

• This has  importance in design; it means almost 
always the optimal design will be on the surface of 
the design space (i.e. near endpoint values) and 
will not be inside as you might think.

• The best design is pushing one or more of the 
parameters to their extreme – obviously you are on 
the surface of the feasible region of design!

•• This has  importance in design; it means almost This has  importance in design; it means almost 
always the optimal design will be on the surface of always the optimal design will be on the surface of 
the design space (i.e. near endpoint values) and the design space (i.e. near endpoint values) and 
will not be inside as you might think.will not be inside as you might think.

•• The best design is pushing one or more of the The best design is pushing one or more of the 
parameters to their extreme parameters to their extreme –– obviously you are on obviously you are on 
the surface of the feasible region of design!the surface of the feasible region of design!

The diagonal of n-dimensional cubeThe diagonal of nThe diagonal of n--dimensional cubedimensional cube
• A vector from the origin to the point (1,1,…,1).

• The cosine of angle between this line and any axis is given as:

• The ratio of the component along the axis, which is 1, to the length of 
the line, which is sqrt(n), hence

Therefore, for large n, the diagonal of a cube is    
almost perpendicular to every coordinate.

•• AA vector from the origin to the point (1,1,vector from the origin to the point (1,1,……,1).,1).

•• The cosine of angle between this line and any axis is given as:The cosine of angle between this line and any axis is given as:

•• The ratio of the component along the axis, which is 1, to the leThe ratio of the component along the axis, which is 1, to the length of ngth of 
the line, which is the line, which is sqrt(nsqrt(n), hence), hence

Therefore, for large n, the diagonal of a cube is    Therefore, for large n, the diagonal of a cube is    
almost perpendicularalmost perpendicular to every coordinate.to every coordinate.

2
01cos πθθ =→= and

n

The diagonal of n-dimensional cubeThe diagonal of nThe diagonal of n--dimensional cubedimensional cube

• “I have found it very valuable in important 
situations to review all the basic derivations 
involved so I have a firm feeling for what is going 
on.”

• Now w will estimate the angle between two lines 
– vector dot product.

•• ““I have found it very valuable in important I have found it very valuable in important 
situations to review situations to review all the basic derivations all the basic derivations 
involvedinvolved so I have a firm feeling for what is going so I have a firm feeling for what is going 
on.on.””

•• Now w will estimate the angle between two lines Now w will estimate the angle between two lines 
–– vector dot product.vector dot product.

The diagonal of n-dimensional cubeThe diagonal of nThe diagonal of n--dimensional cubedimensional cube

• Take two points X and Y 
with their corresponding 
coordinates Xi and Yi.

• Apply the law of cosines in 
the plane of the three points 
X, Y, and the origin we have:

• where X and Y are the lengths 
of the lines from origin to the 
two points x and y.

•• Take two points X and Y Take two points X and Y 
with their corresponding with their corresponding 
coordinates Xi and Yi.coordinates Xi and Yi.

•• Apply the law of cosines in Apply the law of cosines in 
the plane of the three points the plane of the three points 
X, Y, and the origin we have:X, Y, and the origin we have:

•• where X and Y are the lengths where X and Y are the lengths 
of the lines from origin to the of the lines from origin to the 
two points x and y.two points x and y.

θcos2222 YXYXC −+=

The diagonal of n-dimensional cubeThe diagonal of nThe diagonal of n--dimensional cubedimensional cube

• But note that the C comes from using the differences of the 
coordinates in each direction

• Comparing the two expressions, we have

• Now if we apply this formula to two lines draw from the 
origin to random points of the form:

•• But note that the C comes from using the differences of the But note that the C comes from using the differences of the 
coordinates in each directioncoordinates in each direction

•• Comparing the two expressions, we haveComparing the two expressions, we have

•• Now if we apply this formula to two lines draw from the Now if we apply this formula to two lines draw from the 
origin to random points of the form:origin to random points of the form:
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The diagonal of n-dimensional cubeThe diagonal of nThe diagonal of n--dimensional cubedimensional cube
• The dot product of these factors, taken at random, is 
again random + 1’s and these are to be added n times, 
while the length of each is again sqrt(n), hence

•By the weak law of large numbers this approaches 
zero for increasing n. But there are 2n different random 
vectors, and given any one fixed vector then any other 
of these 2n random vectors is almost surely 
perpendicular to it ! 

•• The dot product of these factors, taken at random, is The dot product of these factors, taken at random, is 
again random again random ++ 11’’s and these are to be added n times, s and these are to be added n times, 
while the length of each is again while the length of each is again sqrt(nsqrt(n), hence), hence

••By the weak law of large numbers this approaches By the weak law of large numbers this approaches 
zero for increasing n. But there are 2zero for increasing n. But there are 2nn different random different random 
vectors, and given any one fixed vector then any other vectors, and given any one fixed vector then any other 
of these 2of these 2nn random vectors is random vectors is almostalmost surely surely 
perpendicularperpendicular to it ! to it ! 
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The diagonal of n-dimensional cubeThe diagonal of nThe diagonal of n--dimensional cubedimensional cube

• In linear algebra you learned to find the set of 
perpendicular axes then represent everything in 
terms of these coordinates.

• But you see in n-dimensions there are, after you 
find the n mutually perpendicular coordinate 
directions, 2^n other directions which almost 
perpendicular to those you have found !

• The theory and practice of linear algebra are quite 
different !

•• In linear algebra you learned to find the set of In linear algebra you learned to find the set of 
perpendicular axes then represent everything in perpendicular axes then represent everything in 
terms of these coordinates.terms of these coordinates.

•• But you see in nBut you see in n--dimensions there are, after you dimensions there are, after you 
find the n mutually perpendicular coordinate find the n mutually perpendicular coordinate 
directions, 2^n other directions which directions, 2^n other directions which almost almost 
perpendicularperpendicular to those you have found !to those you have found !

•• The theory and practice of linear algebra are quite The theory and practice of linear algebra are quite 
different !different !

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• Four circle paradox.
• Begin with 4x4 square and 
divide it into 4 unit squares 
in each of which we draw a 
unit circle.
• Next we draw a circle about 
the center of the square with 
radius just touching the four 
circles on their insides. Its 
radius must be 

•• Four circle paradox.Four circle paradox.

•• Begin with 4x4 square and Begin with 4x4 square and 
divide it into 4 unit squares divide it into 4 unit squares 
in each of which we draw a in each of which we draw a 
unit circle.unit circle.

•• Next we draw a circle about Next we draw a circle about 
the center of the square with the center of the square with 
radius just touching the four radius just touching the four 
circles on their insides. Its circles on their insides. Its 
radius must be radius must be 

414.0122 =−=r

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• In three dimensions, this setup produces a 4x4x4 cube, along 
with 8 spheres of unit radius. 
• The inner sphere will touch each outer sphere along the line to
their center will have a radius of 

• Going to n dimensions, you have 4x4x…x4 cube, and 2n spheres, 
one in each of the corners, and with each touching its n adjacent 
neighbors.
• The inner sphere, touching on the inside all of the spheres, will 
have a radius of

•• In three dimensions, this setup produces a 4x4x4 cube, along In three dimensions, this setup produces a 4x4x4 cube, along 
with 8 spheres of unit radius. with 8 spheres of unit radius. 
•• The inner sphere will touch each outer sphere along the line toThe inner sphere will touch each outer sphere along the line to
their center will have a radius of their center will have a radius of 

•• Going to n dimensions, you have 4x4xGoing to n dimensions, you have 4x4x……x4 cube, and 2x4 cube, and 2nn spheres, spheres, 
one in each of the corners, and with each touching its n adjacenone in each of the corners, and with each touching its n adjacent t 
neighbors.neighbors.
•• The inner sphere, touching on the inside all of the spheres, wiThe inner sphere, touching on the inside all of the spheres, will ll 
have a radius ofhave a radius of

732.0133 =−=r
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High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• Let’s apply it to the case of n =10 dimensions. Then 
consider the radius of the inner sphere

• Following this formula, we see that in 10 dimensions the 
inner sphere reaches outside the surrounding cube ! 
• The sphere is convex, it touches each of the 1024 packed spheres on 

the inside, yet it reaches outside the cube !

•• LetLet’’s apply it to the case of n =10 dimensions. Then s apply it to the case of n =10 dimensions. Then 
consider the radius of the inner sphereconsider the radius of the inner sphere

•• Following this formula, we see that in 10 dimensions the Following this formula, we see that in 10 dimensions the 
inner sphere reaches outside the surrounding cube ! inner sphere reaches outside the surrounding cube ! 

•• The sphere is convex, it touches each of the 1024 packed spheresThe sphere is convex, it touches each of the 1024 packed spheres on on 
the inside, yet it reaches outside the cube !the inside, yet it reaches outside the cube !

211010 >−=r

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• The n-dimensional space is where the design of 
complex objects generally takes place.  Therefore 
it is important and may yield design insight to 
determine the implications of geometrical 
properties in these higher dimensions.

• I did all this in the classical Euclidean space 
using the Pythagorean distance where the sum of 
the squares of the differences of the coordinates is 
the distance between the points squared. 
Mathematicians call this distance L2.

•• The nThe n--dimensional space is where the design of dimensional space is where the design of 
complex objects generally takes place.  Therefore complex objects generally takes place.  Therefore 
it is important and may yield design insight to it is important and may yield design insight to 
determine the implications of geometrical determine the implications of geometrical 
properties in these higher dimensions.properties in these higher dimensions.

•• I did all this in the classical Euclidean space I did all this in the classical Euclidean space 
using the Pythagorean distance where the sum of using the Pythagorean distance where the sum of 
the squares of the differences of the coordinates is the squares of the differences of the coordinates is 
the distance between the points squared. the distance between the points squared. 
Mathematicians call this distance L2.Mathematicians call this distance L2.

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• The space L1 uses not the sum of the squares, 
but rather the sum of the distances, much as you 
do in traveling in a city with a rectangular grid of 
streets.

• It is the sum of the differences between the two 
locations that tells you how far you must go.

• In the computing field this metric is often called 
the “Hamming distance.”

•• The space L1 uses not the sum of the squares, The space L1 uses not the sum of the squares, 
but rather the sum of the distances, much as you but rather the sum of the distances, much as you 
do in traveling in a city with a rectangular grid of do in traveling in a city with a rectangular grid of 
streets.streets.

•• It is the sum of the differences between the two It is the sum of the differences between the two 
locations that tells you how far you must go.locations that tells you how far you must go.

•• In the computing field this metric is often called In the computing field this metric is often called 
the the ““Hamming distance.Hamming distance.””



March 26, 2005

Hamming on Hamming:  Learning to 
Learn 7

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• In Hamming space L1 a circle 
with unit radius (radius of 1 is 
equivalent to sum of x and y 
absolute values) in two 
dimensions looks like a square 
standing on a point.

• In three dimensions, it is like 
a cube standing on a point.

• Now you can better see how it 
is in the circle paradox above 
the inner sphere can get 
outside the cube.

•• In Hamming space L1 a circle In Hamming space L1 a circle 
with unit radius (radius of 1 is with unit radius (radius of 1 is 
equivalent to sum of x and y equivalent to sum of x and y 
absolute values) in two absolute values) in two 
dimensions looks like a square dimensions looks like a square 
standing on a point.standing on a point.

•• In three dimensions, it is like In three dimensions, it is like 
a cube standing on a point.a cube standing on a point.

•• Now you can better see how it Now you can better see how it 
is in the circle paradox above is in the circle paradox above 
the inner sphere can get the inner sphere can get 
outside the cube.outside the cube.

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• There is a third commonly 
used metric called Linfinity, or 
Chebyshev distance.

• In this metric, the distance is 
the maximum coordinate 
difference, regardless of any 
other differences.

• In this space a circle is a 
square, a three dimensional 
sphere is a cube, and the inner 
circle in the circle paradox has 
0 radius in all dimensions.

•• There is a third commonly There is a third commonly 
used metric called used metric called LLinfinityinfinity, or , or 
Chebyshev distanceChebyshev distance..

•• In this metric, the distance is In this metric, the distance is 
the maximum coordinate the maximum coordinate 
difference, regardless of any difference, regardless of any 
other differences.other differences.

•• In this space a circle is a In this space a circle is a 
square, a three dimensional square, a three dimensional 
sphere is a cube, and the inner sphere is a cube, and the inner 
circle in the circle paradox has circle in the circle paradox has 
0 radius in all dimensions.0 radius in all dimensions.

High dimensional spacesHigh dimensional spacesHigh dimensional spaces
• These are all examples of a metric, a measure of 
distance.

• The conventional conditions on a metric D(x, y) 
between two points x and y are:
• D(x, y) >= 0 (non-negative),

• D(x, y) = 0 if and only if x = y (identity),

• D(x, y) = D(y, x) (symmetry),

• D(x, y) + D(y, z) >= D(x,z) (triangle inequality).

•• These are all examples of a These are all examples of a metricmetric, a measure of , a measure of 
distance.distance.

•• The conventional conditions on a metric The conventional conditions on a metric D(xD(x, y) , y) 
between two points x and y are:between two points x and y are:

•• D(xD(x, y) >= 0 (non, y) >= 0 (non--negative),negative),

•• D(xD(x, y) = 0 if and only if x = y (identity),, y) = 0 if and only if x = y (identity),

•• D(xD(x, y) = , y) = D(yD(y, x) (symmetry),, x) (symmetry),

•• D(xD(x, y) + , y) + D(yD(y, z) >= , z) >= D(x,zD(x,z) (triangle inequality).) (triangle inequality).

ConclusionConclusionConclusion
• After this exposure, you should be better 
prepared than you were for complex design 
and for carefully examining the space in 
which the design occurs, as I have tried to 
do here.
• Messy as it is, fundamentally it is where 
the design occurs and where you must 
search for an acceptable design. 

•• After this exposure, you should be better After this exposure, you should be better 
prepared than you were for complex design prepared than you were for complex design 
and for carefully examining the space in and for carefully examining the space in 
which the design occurs, as I have tried to which the design occurs, as I have tried to 
do here.do here.

•• Messy as it is, fundamentally it is where Messy as it is, fundamentally it is where 
the design occurs and where you must the design occurs and where you must 
search for an acceptable design. search for an acceptable design. 


