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LECTURE 9

N-DIMENSIONAL SPACE

When I became a professor, after 30 years of active research
at Bell Telephone Laboratories, mainly in the math research
department, I recalled that professors are supposed to think and
digest past experiences. So I put my feet up on the desk and
began to consider my past. In the early years I had been mainly
in computing so naturally I was involved in many large projects
that required computing. Thinking about how things worked out on
several of the large engineering systems I was partially involved
in, I began, now that I had some distance from them, to see that
they had some common elements. Slowly I began to realize that
the design problems all took place in a space of n-dimensions,
where n is the number of independent parameters. Yes, we build 3
dimensional objects, but their design is in a high dimensional
space, one dimension for each design parameter.

I also need high dimensional spaces so that later proofs
will become intuitively obvious to you without £illing in the
details rigorously. Hence we will discuss n-dimensional space
now.

You think you live in three dimensions, but in many respects
you live in a two dimensional space. For example, in the random
walk of life, if you meet a person you then have a reasonable
chance of meeting that person again. But in a world of three
dimensions you do not! Consider the fish in the sea who poten-
tially live in three dimensions. They go along the surface, or
on the bottom, reducing things to two dimensions, or they go in
schools, or they assemble at one place at the same time, such as
a river mouth, a beach, the Sargasso sea, etc. They cannot ex-
pect to find a mate if they wander the open ocean in three dimen-
sions. Again, if you want airplanes to hit each other, you as-
semble them near an airport, put them in two dimensional levels
of flight, or send them in a group; truly random flight would
have fewer accidents than we now have!

N-dimensional space is a mathematical construct which we
must investigate if we are to understand what happens to us when
we wander there during a design problem. In two dimensions we
have Pythagoras’ theorem that for a right triangle the square of
the hypotenuse equals the sum of the squares of the other two
sides. 1In three dimensions we ask for the length of the diagonal
of a rectangular block, Figure 9-1. To find it we first draw a
diagonal on one face, apply Pythagoras’ theorem, and then take
that as one side with the other side the third dimension, which
is at right angles, and again from the Pythagorean theorem we get
that the square of the diagonal is the sum of the squares of the
three perpendicular sides. It is obvious from this proof, and
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the necessary symmetry of the formula, that as you go to higher
and higher dimensions you will still have the square of the
diagonal as the sum of the squares of the individual mutually
perpendicular sides,

D? = sUM[i=1,n; x;2]

where the x; are the lengths of the sides of the rectangular
block in n-dimensions.

Continuing with the geometric approach, planes in the space
will be simply linear combinations of the Xj, and a sphere about
a point will be all points that are at the fixed distance (the
radius) from the given point.

We need the volume of the n-dimensional sphere to get an
idea of the size of a piece of restricted space. But first we
need the Stirling approximation for n!, which I will derive so
that you will see most of the details and be convinced that what
is coming later is true, rather than on hearsay.

A product like n! is hard to handle, so we take the log of
n! which becomes

ln n! = SUM{k=1,n; 1ln k]
where, of course, the 1ln is the logarithm to the base e. Sums
remind us that they are related to integrals, so we start with
the integral
INT{1,n; 1ln x dx]
We apply integration by parts, (since we recognize that the 1n x
arose from integrating an algebraic function and hence it will be
removed in the next step). Pick U = 1ln x, dV = dx, then
INT[1,n; In x dx] = {x 1ln x - x}|1,n

=nlnn-n+1

On the other hand, if we apply the trapezoid rule to the in-
tegral of 1n x we will get, Figure 9-2,

INT[1,n;ln x dx] ~ (1/2)lIn1 +1ln2+1ln3 + ... + (1/2)1In n
Since 1n 1 = 0, adding (1/2)1ln n to both terms we get, finally,
SUM[k=1,n; In k] ~nlnn-n+ 1 + (1/2)In n
Undo the logs by taking the exponéntial of both sides
n! ~ cnMe™M(n)1/2
where C is some constant (not far from e) independent of n, since
we are approximating an integral by the trapezoid rule and the

error in the trapezoid approximation increases more and more
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slowly as n grows larger and larger, and C is the limiting value.

This is the first form of Stirling’s formula. We will not waste
time to deriving the limiting, at infinity, value of the constant
¢ which turns out to be y(2r) = 2.5066... (e = 2.71828...). Thus

we finally have the usual Stirling’s formula for the factorial
n! ~ nPe™™/(2rn)

The following table shows the quality of the Stirling ap-
proximation to n!

n Stirling True Stirling/true
1 0.92214 1 0.92214
2 1.51900 2 0.95950
3 5.83621 6 0.97270
4 23.50518 24 0.97942
5 118.01916 120 0.98349
6 710.07818 720 0.98622
7 4,980.3958 5,040 0.98817
8 39,902.3958 40,320 0.98964
9 359,536.87 362,880 0.99079
10 3,598,695.6 3,628,800 0.99170

Note that as the numbers get larger and larger the ratio ap-
proaches 1 but the differences get greater and greater! If you
consider the two functions

f(n) = n + vn
g(n) =n

then the 1limit of the ratio f(n)/g(n), as n approaches infinity,
is 1, but as in the table the difference

f£(n) - g(n) = Vn
grows larger and larger as n increases.

We need to extend the factorial function to all positive
real numbers, hence we introduce the gamma function in the form
of an integral

I(n) = INT[0,c0; xP 1e™® dx]

which converges for all n > 0. For n > 1 we again-inEegrate by

parts, this time using the dV = e ® dx and the U = x1™+." At the
two limits the integrated part is zero, and we have the reduction
formula

I'(n) = (n-1)r'(n-1)
with I'(l1) =1

Thus the gamma function takes on the values (n-1)! at the
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positive integers n, and it provides a natural way of extending
the factorial to all positive numbers since the integral exist
whenever n > 0.
We will need
T(1/2) = INT[0,00; x 1/2e™%X gx]

Set x = tz, hence dx = 2t dt, and we have (using symmetry in the
last step)

[(1/2) = 2INT[0,c0;exp(-t? dt] = INT[-w,c0; exp(-t2) dt]

We now use a standard trick to evaluate this integral. We.
take the product of two of the integrals, one with x and one with
Y as their variables.

r(1/2) = INT[0,00; INT[0,o0¢ exp-(x2 + y2) dx] dy]

The x2 + y2 suggests polar coordinates, so we convert

= INT[O,2r; INT[O,; exp(-r2) r dr df]

The angle integration is easy, the exponential is now also easy,
and we get, finally,

r2(1/2) = =«
Thus

1.77245...

r'(1/2) = yr

We now turn to the volume of an n-dimensional sphere (or hy-
persphere if you wish). Clearly the volume of a cube in n dimen-
sions and of side x is x™. A little reflection and you will
believe that the formula for the volume of an n-dimensional
sphere must have the form

Volume = Cnrn

where C, is a suitable constant. 1In the case n = 2 the constant
is 7, in the case n = 1, it is 2 (when you think about it). 1In
three dimensions we have Cy = 47/3.

We start with same trick as we used for the gamma function
of 1/2, except that this time we take the product of n of the in-
tegrals, each with a different Xj. Thinking of the volume of a
sphere we see that it is the sum of shells, and each element of
the sum has a volume which is the corresponding shell area multi-
plied by the thickness, dr. For a sphere the value for the sur-
face area can be obtained by differentiating the volume of the
sphere with respect to the radius r,

Surface = dV,(r)/dr = ncnrn'l
and hence the elements of volume are
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(av, (r)/dr)dr = ncpr™ldr

We have, therefore, on setting 2 =t

r"(1/2) = /2

INT[0,00; exp(-r?) (dV,(r)/dr}dr]

(nC,/2) INT[0,00;e~ " £(1/271) a¢)
= (nC,/2)T(n/2) = C, T(n/2 + 1)
from which we get

c. = /2,0(n/2 + 1)

n

It is easy to see that

C, = [(27)/n]Cph_p

and we can compute the following table.

dimension n coefficient C,

1 2 = 2.00000...
2 r = 3.14159...
3 45/3 = 4.11879...
4 12/2 = 4.93480...
5 8r2/15 = 5.26379...
6 r3/6 = 5.16771...
7 1673/105 = 4.72477...
8 3724 = 4.05871...
9 327%/945 = 3,29850...

10 12/120 = 2.55010...

2k K/k! --> 0

Thus we see that the coefficient C, increases up ton = 5 and

then decreases towards 0. For spheres of unit radius this means
that the volume of the sphere approaches 0 as n increases. If
the radius is r, then we have for the volume, and using n = 2k
for convenience (since the actual numbers vary smoothly as n in-
creases and the odd dimensional spaces are messier to compute),

crt = xr2)K/kt -=> 0 as k --> ®

No matter how large the radius, r, increasing the number of
dimensions, n, will ultimately produce a sphere of arbitrarily
small volume.

Next we look at the relative amount of the volume close to
the surface of a n-dimensional sphere. Let the radius of the
sphere be r, and the inner radius of the shell be r(1 - ¢), then
the relative volume of the shell is
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(Cp r™ - cr(1 - oljcrf =1 - (1 - P

For large n, no matter how thin the shell is (relative to the
radius), almost all the volume is in the shell and there is al-
most nothing inside. As we say, the volume is almost all on the
surface. Even in 3 dimensions the unit sphere has 7/8 ths of its
volume within 1/2 of the surface. In n~dimensions there is 1 -
172" within 1/2 of the radius from the surface.

This has importance in design; it means that almost surely
the optimal design will be on the surface and will not be inside
as you might think from taking the calculus and doing optimiza-
tions in that course. The calculus methods are usually inap-
propriate for finding the optimum in high dimensional spaces.
This is not strange at all; generally speaking the best design is
pushing one or more of the parameters to their extreme - ob-
viously you are on the surface of the feasible region of design!

Next we turn to looking at the diagonal of an n-dimensional
cube, say the vector from the origin to the peint (1,1,...,1).
The cosine of the angle between this line and any axis is given
by definition as the ratio of the component along the axis, which
is clearly 1, to the length of the line which is vn. Hence

cos #=1/y/n ==> 0 and 4 --> /2

Therefore, for large n the diagonal is almost perpendicular to
every coordinate axis!

If we use the points with coordinates (+1, +1, ... +1) then
there are 2" such diagonal lines which are all almost perpen-
dicular to the coordinate axes. For n = 10, for example, this
amounts to 1024 such almost perpendicular lines.

I need the angle between two lines, and while you may remem-
ber that it is the vector dot product, I propose to derive it
again to bring more understanding about what is going on.
(Aside; I have found it very valuable in important situations to
review all the basic derivations that are involved so I have a
firm feeling for what is going on.] Take two points x and y with
their corresponding coordinates x; and y;, Figure 9-3. Then ap-
Plying the law of cosines in the plane of the three points x, y,
and the origin we have

c? = x2 + Y2 - 2XY cos ¢
where X and Y are the lengths of the lines to the points x and vy.
But the C comes from using the differences of the coordinates in
each direction
2 _ = A - 2 _ 2 2 _ = .
C% = SUM[k=1,n; (Xx = yi)° = X* + ¥ 2SUM[k=1,n; XiYy]
Comparing the two expressions we see that

cos § = SUM[k=1,n; X;,Y¥y]/XY
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We now apply this formula to two lines drawn from the origin
to random points of the form

(+1,+1, ...,*1)

The dot product of these factors, taken at random, is again ran-
dom +1 ‘s and these are to be added n times, while the length of
each is again v/n, hence (note the n in the denominator)

cos § = SUM[k=1,n; (+1)]/n

and by the weak law_of large numbers this approaches 0 for in-
creasing n, almost surely. But there are 2P different such ran-
dom vectors, and given any one fixed vector then any other of
these 27 random vectors is almost surely almost perpendicular to
it! N-dimensions is indeed vast!

In linear algebra and other courses you learned -to find the
set of perpendicular axes and then represent everything in terms
of these coordinates, but you see that in n-dimensions there are,
after you find the n mutually perpendicular coordinate direc-
tions, 20 other directions that are almost perpendicular to those
you have found! The theory and practice of linear algebra are
quite different!

Lastly, to further convince you that your intuitions about
high dimensional spaces are not very good, I will produce another
paradox which I will need in later Lectures. We begin with a 4x4
square and divide it into 4 unit squares in each of which we draw
a unit circle, Figure 9-4. Next we draw a circle about the cen-
ter of the square with radius just touching the four circles on
their insides. Its radius must be, from the Figure 9-4,

ry, = v2 - 1 = 0.414...

Now in three dimensions you will have a 4x4x4 cube, and 8 spheres
of unit radius. The inner sphere will touch each outer sphere
along the line to their center will have a radius of

ry = v3 - 1= 0.732...
Think of why this must be larger than for two dimensions.
Going to n dimensions, you have a 4x4x...x4 cube, and 20
spheres, one in each of the corners, and with each touching its n

adjacent neighbors. The inner sphere, touching on the inside all
of the spheres, will have a radius of :

rp = vn - 1

Examine this carefully! Are ybu sure of it? If not, why not?
Where will you object to the reasoning?

Once satisfied that it is correct we apply it to the case of
n = 10 dimensions. You have for the radius of the inner sphere
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and in 10 dimensions the inner sphere reaches outside the sur-
rounding cube! Yes, the sphere is convex, yes it touches each of
the 1024 packed spheres on the inside, yet it reaches outside the
cube!

So much for your raw intuition about n-dimensional space,
but remember that the n-dimensional space is where the design of
complex objects generally takes place. You had better get an im-
proved feeling for n-dimensional space by thinking about the
things just presented, until you begin to see how they can be
true, indeed why they must be true. Else you will be in trouble
the next time you get into a complex design problem. Perhaps you
should calculate the radii of the various dimensions, as well as
go back to the angles between the diagonals and the axes, and see
how it is that it can happen.

It is now necessary to note carefully, that I have done all
this in the classical Euclidean space using the Pythagorean dis-
tance where the sum of squares of the differences of the coor-
dinates is the distance between the points squared. Mathe-
maticians call this distance L,. :

The space L, uses not the sum of the squares, but rather the
sum of the distances, much as you must do in traveling in a city
with a rectangular grid of streets. It is the sum of the dif-
ferences between the two locations that tells you how far you
must go. In the computing field this is often called the
"Hamming distance" for reasons that will appear in a later Lec-
ture. 1In this space a circle in 2 dimensions looks like a square
standing on a point, Figure 9-5. In three dimensions it is like
a cube standing on a point, etc. Now you can better see how it
is that in the circle paradox above the inner sphere can get out-
side the cube.

There is a third, commonly used, metric, (they are all
metrics = distance functions), called L, or Chebyshev distance.
Here we have that the distance is the maximum coordinate dif-
ference, regardless of any other differences, Figure 9-6. In
this space a circle is a square, a 3 dimensional sphere is a
cube, and you see that in this case the inner circle in the
circle paradox has 0 radius in all dimensions.

These are all examples of a metric, a measure of distance.
The conventional conditions on a metric D(x,y) between two points
X and y are:

1. D(x,y) > 0 (non negative)

2. D(x,y) 0 if and only if x = y (Identity)
3. D(x,y) = D(y,x) (symmetry)
4. D(x,y) + D(y,z) > D(x,z) (triangle inequality)
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It is left to you to verify that the three metrics, L., L, and

L,, (Chebyshev, Pythagoras, and Hamming), all satisfy these con-
1.

ditions.

The truth is, in complex design, for various coordinates we
may use any of the three metrics, all mixed up together, so the
design space is not as portrayed above, but is a mess of bits and
pieces. The L, metric is connected with least squares, obviously,
and the other two, L and L,, are more like comparisons. In
making comparisons in real 1life, you generally use either the
maximum difference, L., in any one trait as sufficient to dis-
tinguish two things, or sometimes, as in strings. of bits, it is
the number of differences that matters, and the sum of the
squares does not enter, hence the L, distance is used. This is

increasingly true, for example, in pattern identification in AI.

Unfortunately, the above is all too true, and it is seldom
pointed out to you. They never told me a thing about-it! I will
need many of the results in later Lectures, but in general, after
this exposure, you should be better prepared than you were for
complex design and for carefully examining the space in which the
design occurs, as I have tried to do here. Messy as it is, fun-
damentally it is where the design occurs and where you must
search for an acceptable design.

Since L, and L, are not familiar let me expand the remarks
on the three metrics. L, is the natural distance function to use
in physical and geometric situations including the data reduction
from physical measurements. Thus you find least squares, L,,
throughout physics. But when the subject matter is intellectual
judgments then the other two distance functions are generally
preferable, and this is slowly coming into use, though we still
find the Chi square test, which is obviously a measure for L,,
used widely when some other suitable test should be used.
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