LECTURE 10

CODING THEORY = I

Having looked at computers and how they operate, we now turn
to the problem of the representation of information - how do we
represent the information we want to process. Recall that any
meaning that a symbol may have depends on how it is processed;
there is no inherent meaning to the bits that the machine uses.
In the synthetic language mentioned in Lecture 4 on the history
of software, the breaking up of the instructions was pretty much
the same for every code instruction and this is true for most
languages; the "meaning" of any instruction is defined by the
corresponding subroutine.

To simplify the problem of the representation of information
we will, at present, examine only the problem of the transmission
of information from here to there. This is exactly the same as
transmission from now to then, storage. Transmission through
time or through space are the same problem. The standard model
of the system is given in Figure 10-1.

Starting of the left hand side of Figure 10.1 we have a
source of information. We do not discuss what the source is. It
may be a string of: alphabetical symbols, numbers, mathematical
formulas, musical notes of a score, the symbols now used to rep-
resent dance movements - what ever the source is and what ever
"meaning" is associated with the symbols is not part of the
theory. We postulate only a source of information, and by doing
only that, and no more, we have a powerful, general theory that
can be widely applicable. It is the abstraction from details
that gives the breadth of application.

When in the late 40’s C. E. Shannon created Information
Theory there was a general belief that he should call it Com-
munication Theory, but he insisted on the word "information", and
it is exactly that word which has been the constant source of
both interest and of disappointment in the theory. One wants to
have a theory of "information" but it is simply a theory of
strings of symbols. Again, all we suppose is there is such a
source, and we are going to encode it for transmission.

The encoder is broken into two parts, the first half is
called the source encoding which as its name implies is adapted
to the source, various sources having possibly different kinds
encodings.

The second half of the encoding process is called channel
encoding and it is adapted to the channel over which the encoded
symbols are to be sent. Thus the second half of the encoding
process is tuned to the channel. In this fashion, with the com-
mon interface, we can have a wide variety of sources encoded

1

first to the common interface, and then the message is further
encoded to adapt it to the particular channel being used.

Next, going to the right in Figure 10.1, the channel is sup-
posed to have "random noise added". All the noise in the systen
is incorporated here. It is assumed that the encoder can
uniquely recognize the incoming symbols without any error, and it
will be assumed that the decoder similarly functions without er-
ror. These are idealizations, but for many practical purposes
they are close to reality.

Next, the decoding is done in two stages, channel to stand-
ard, and then standard to the source code. Finally it is sent on
to the sink, to its destination. Again, we do not ask what the
sink does with it.

As stated before, the system resembles transmission, for ex-
ample a telephone message from me to you, radio, or TV programs,
and other things such as a number in a register of a computer
being sent to another place. Recall, again, that sending through
space is the same as sending through time, namely storage. If
you have information and want it later, you encode it for storage
and store it. Later when you want it it is decoded. Among en-
coding systems is the identity, no change in the representation.

The fundamental difference between this kind of a theory and
the usual theory in physics is the assumption at the start that
there is '"noise", that errors will arise in any equipment. Even
in quantum mechanics the noise appears at a later stage as an un-
certainty principle, not as an initial assumption; and in any
case the "noise" in Information Theory is not at all the same as
the uncertainty in Q.M.

We will, for convenience only, assume that we are using the
binary form for the representation in the system. Other forms can
be similarly handled, but the generality is not worth the extra
notation. A

We begin by assuming that the coded symbols we use are of
variable length, much as the classical Morse code of dots and
dashes, where the common letters are short and the rare ones are
long. This produces an efficiency in the code, but it should be
noted that Morse code is a ternary code, not binary, since there
are spaces as well as dots and dashes. If all the code symbols
are of the same length we will call it a block code.

The first obvious property we want is the ability to
uniquely decode a message if there is no noise added - at least
it seems to be a desirable property, though in some situations it
could be ignored to a small extent. What is sent is a stream of
symbols which looks to the receiver like a string of 0’s and 1’s.
We call two adjacent symbols a second extension, three a third
extension, and in general if we send n symbols the receiver sees
the n-th extension of the basic code symbols. Not knowing n, you
the receiver, must break the stream up into units that can be
translated, and you want, as we said above, to be able at the

2

W s S
AT

receiving end, meaning you again, to make this decomposition of
the stream uniquely in order to recover the original message that
I, at the sending end, sent to you.

I will use small alphabets of symbols to be encoded for
illustrations; usually the alphabet is much larger. Typically
natural language alphabets run from 16 to 36 letters, both upper
and lower case, along with numbers aqg numerous punctuation sym-
bols. For example, ASCII has 128 = 2’ symbols in its alphabet.

Let us examine one special code of four symbols, s;, s,, Sj.

540

S, =0

1

S, = 00

53 = 01

S = 11
If you receive

0011
what will you do? 1Is it

S Sy Sy or is it Sy, 54 7

You cannot tell; the code is not uniquely decodable, and hence is
unsatisfactory. On the other hand the code

s, =0

1
s3 = 110
s, = 111

is uniquely decodable. Let us take a random string and see what
you would do to decode it. You would construct a decoding tree
of the form shown in Fig 10~2. The string

11010010011011100010100110...

can be broken up into the symbols
110,10,0,20,0,120,112,0,0,0,10,10,0,1120, ...

by merely following the decoding tree using the rule:
Each time you come to a branch point (node) you read the next
symbol, and when you come to a leaf of the tree you emit the cor-
responding symbol and return to the start.

The reason why this tree can exist is that no symbol is the
prefix of any other, so you always know when you have come to the

end of the current symbol.

There are several things to note. First, the decoding is a
straight forward process in which each digit is examined only

3

once. Second, in practice you usually include a symbol that is
an exit from the decoding process which is needed at the end of
message. Failure to allow for an escape symbol is a common error
in the design of codes. You may, of course, never expect to exit
from a decoding mode, in which case the exit symbol is not
needed.

The next topic is instantaneous decodable codes. To see
what this is, consider the above code with the digits reversed
end for end.

s« =0

1
Sy = 01
s3 = 011

Now consider receiving 011111 ... 111. The only way you can
decode this is to start at the final end and group by three’s un-
til you see how many 1l’s are left to go with the first 0; only
then you can decode the first symbol. Yes, it is uniquely
decodable, but not instantaneocusly! You have to wait until you
get to the end of the message before you can start the decoding
process! It will turn out (Mchllan s Theorem) that instan-
taneous decodablllty costs nothing in practice, hence we will
stick to instantaneously uniquely decodable codes.

We now turn to two examples of éncoding the same symbols,

i-
S = 0
Sy, = 10
Sy = 110
S4 = 1110
Sg = 1111

which will have the decoding tree shown in Figure 10-3.

The second encoding is the same source, but we have

s, = 00
1
52=01
s3 = 10
s, = 110
ss = 111

with the tree shown in Figure 10-4.

The most obvious measure of "goodness" of a code is its
average length for some ensemble of messages. For this we need
to compute the code length 1; of each symbol multiplied by its
corresponding probability p; of occurring, and then add these
products over the whole code. Thus the formula for the average
code length L is, for an alphabet of g symbols,

L = SUM[i=1,q; pjlj]

where the p; are the probabilities of the symbols s; and the 1;
are the corresponding lengths of the encoded symbols. For an ef-
ficient code this number L should be as small as possible. If p,
= 1/2, py = 1/4, p3 = 1/8, py = 1/16, and pg = 1/16, then for
code #1 we get

L = 1(1/2) + 2(1/4) + 3(1/8) + 4(1/16 + 1/16) = 1 7/8
and for code #2

L =2(1/2) + 2(1/4 + 1/8) + 3(1/16 + 1/16) = 2 1/8
and hence the given probabilities will favor the first code.

If most of the code words are of the same probability of oc-
curring then the second encoding will have a smaller average code
length that the first encoding. Let all the p; = 1/5. The the
code #1 has

L=(1/5)(1+2+ 3+ 4+ 4) = 14/5 = 2 4/5
while,code 2 has
L= (1/5)(2 + 2 + 2 + 3 + 3) =12/5 =2 2/5

thus favoring the second code. Clearly the designing of a "good"
code must depend on the frequencies of the symbols occurring.

We now turn to the Kraft inequality which gives a limit on
the lengths 1i of the code symbols of a code. In the base 2, the
Kraft inequality is

K = suM[i=1,q; 1/21i] <1

When examined closely this inequality says that there cannot be
too many short symbols or else the sum will be too large.

To prove the Kraft inequality for any instantaneously
uniquely decodable code we simply draw the decoding tree, which
of course exists, and apply mathematical induction. If the tree
has one or two leaves as shown in Figure 10-5 then there is no
doubt that the inequality is true. Next, if there are more than
two leaves we decompose the trees of length m (for the induction
step) into two trees, and by the induction suppose that the in-
equality applies to each branch of length m-1 or less. By induc-
tion the inequality applies to each branch, giving K’ and K" for
their sums. Now when we join the two trees each length increases
by 1, hence each term in the sum gets another factor of 2 in the
denominator, and we have

(1/2)K’" + (1/2)K" < 1
and the theorem is proved.

Next we consider the proof of McMillan’s Theorem that the
Kraft inequality applies to non-instantaneous codes provided they

5

are uniquely decodable. The proof depends on the fact that for
any number K > 1 some n-th power will exceed any linear function
of n, when n is made large enough. We start with the Kraft in-
equality raised to the n-th power (which gives the n-th
extension) and expand the sum

K" = suM{i=1,q; 1/21i]® = SUM[k=n,nl; Ny/2K]

where Nyp is the number of symbols of length k, and the sum starts
from the minimum length of the n-th extension of the symbols,
which is n, and ends with the maximum length nl, where 1 is the
maximum length of any single codﬁcsymbol. But from the unique
decodability it must be that Np <2 The sum becomes

K" < suM(k=n,nl; 2X/2K] = n1 - n + 1
If K were > 1 then we could find an n so large that the in-
equality would be false, hence we see that K < 1, and McMillan’s
Theorem is proved.

Since we now see, as we said we would show, that instan-
taneous decodability costs us nothing, we will stick to them and
ignore merely uniquely decodable codes -~ their generality Dbuys
us nothing.

Let us take a few examples to illustrate the Kraft in-
equality. Can there exist a uniquely decodable code with lengths
1, 3, 3, 3? Yes, since

1/2 + 1/8 + 1/8 + 1/8 = 7/8 < 1
How about lengths 1, 2, 2, 3? We have

1/2 + 1/4 + 1/4 + 1/8 = 9/8 > 1
hence no! There are too many short lengths.

Ccomma codes are codes where each symbol is a string of 1’s

followed by a 0, except the last symbol which is all 1’s. As a
special case we have

52 = 10
sy = 1110
sg = 1111

We have the Kraft sum
/2 + 1/4 + 1/8 + 1/16 + 1/16 = 1

and we have exactly met the condition. It is easy to see that
the general comma code meets the Kraft inequality with exact
equality.

If the Kraft sum is less than 1 then there is excess signal-

6

ing capacity since another symbol could be included, or some ex-
isting one shortened and thus the average code length would be
less. :

Note that if the Kraft inequality is met that does not mean
that the code is uniquely decodable, only that there exists a
code with those symbol lengths that is uniquely decodable. If
you assign binary numbers in numerical order, each having the
right length 1; in bits, then you will find a uniquely decodable
code. For example, given the lengths 2, 2, 3, 3, 4, 4, 4, 4 we
have for Kraft’s inequality

2(1/4) + 2(1/8) + 4(1/16) = 1

hence an instantaneously decodable code can exist. We pick the
symbols in increasing order of numerical size, with the binary
point on imagined on the left, as follows, and watch carefully
the corresponding lengths 1;:

s, = 00
2o
Sy = 100
Sy4 = 101
sg = 1100
Sg = 1101
s- = 1110
sg = 1111

I feel it necessary to point out how things are actually
done by us when we communicate ideas. Thus I want, at this time,
to get an idea from my head into yours. I emit some words from
which you are supposed to get the idea. But if you later try to
transmit this idea to a friend you will emit, almost certainly,
different words. 1In a real sense, the "meaning" is not contained
in the specific words I use since you will probably use different
words to communicate the same idea. Apparently different words
can convey the same "information". But if you say you do not un-
derstand the message then usually a different set of words is
used by the source in a second or even third presentation of the
idea. Thus, again in some sense, the "meaning" is not contained
in the actual words I use, but you supply a great deal of sur-
rounding information when you make the translation from my words
to your idea of what I said inside you head.

We have learned to "tune" the words we use to fit the person
on the receiving end; we to some extent select according to what
we think is the channel noise, though clearly this does not match
the model I am using above since there is significant noise in
the decoding process, shall we say. This inability of the
receiver to "hear what is said" by a person in a higher manage-
ment position but to hear only what they expect to hear, is, of
course, a serious problem in every large organization, and is
something you should be keenly aware of as you rise towards the
top of the organization. Thus the representation of information
in the formal theory we have given is mirrored only partly in
life as we live it, but it does show a fair degree of relevance

7

outside the formal bounds of computer usage where it is highly
applicable.

Dec

D

—’

Dl AV NN

Chawee (b D %J¢ 4
"

—C-r#ez-e.(

I" -Q/;aa. "[‘“"‘1 /
« g r€ e -/
<y

