' LECTURE 11

CODING THEORY - II

Two things should be clear from the previous lecture.
First, that we want the average length L of the message sent to
be as small as we can make it (to save the use of facilities).
Second, it must be a statistical theory since we cannot know the
messages that are to be sent, but we can know some of the statis-
tics by using past messages plus the inference that the future
will probably be like the past. For the simplest theory, which
is all we can discuss here, we will need the probabilities of the
individual symbols occurring in a message. How to get these is
not part of the theory, but can be obtained by inspection of past
experience, or imaginative guessing about the future use of the
proposed system you are designing.

Thus we want an instantaneous uniquely decodable code for a
given set of input symbols, sj, along with their probabilities,
P - What lengths 1; should we assign, (realizing that we must
oéey the Kraft inequality), to attain the minimum average code
length? Huffman solved this code design problem.

Huffman first showed that the following running in-
equalities must be true for a minimum length code. If the p; are
in descending order then the 1; must be in ascending order

v

Py 2Py 2 --- Pq

1, <1, < ... 2 lq

For suppose that the p; are in this order but that at least one
pair of the 1l; are not.” Consider the effect of interchanging the
symbols attacked to the two that are not in order. Before the
interchange the two terms contributed to the average code length
L an amount

before = pjlj + Pplp
and after the interchange the terms would contribute
after = lem + Pmlj

All the other terms in the sum L will be the same. The dif-
ference can be written as

Before - after = (py - pm)(lj - 1)
One of these two terms was assumed to be negative, hence upon in-
terchanging the two symbols we would observe a decrease in the

average code length L. Thus for a minimum length code we mnust
have the two running inequalities.

1

Next Huffman observed that an instantaneous decodable code
has a decision tree, and every decision node should have two ex-
its, or else it is wasted effort, hence there are two longest
symbols which have the same length.

To illustrate Huffman coding we use the classic example.
Let p(sq) = 0.4, pP(sy) = 0.2, P(s3) = 0.2, P(sy) = 0.1, and p(sg)
= 0.1. We have it displayed in the attached Figure 11-1. Huffman
then argued on the basis of the above that he could combine
(merge) the two least frequent symbols (which must have the same
length) into one symbol having the combined probability with com-
mon bits up to the last bit which is dropped, thus having one
fewer code symbols. Repeating this again and again he would come
down to a system with only two symbols, for which he knew how to
assign a code representation, namely one symbol 0 and one symbol
1.

Now in going backwards to undo the merging steps, we would
need at each stage to split the symbol that arose from the com-
bining of two symbols, keeping the same leading bits but adding
to one symbol a 0, and to the other a 1. In this way he would
arrive at a minimum L code, see again Figure 11.1. For if there
were another code with smaller length L’/ then doing the forward
steps, which changes the average code length by a fixed amount he
would arrive finally at two symbols with an average code length
less than 1 - which is impossible. Hence the Huffman encoding
gives a code with minimum length. See Figure 11.2 for the cor-
responding decoding tree.

The code is not unique. 1In the first place at each step of
the backing up process the assigning of the 0 and the 1 is an ar-
bitrary matter to which symbol each goes. Second, if at any
stage there are two symbols of the same probability then it is
indifferent which is put above the other, but this can result,
sometimes, in very different appearing codes - but both codes
will have the same average code length.

If we put the combined terms as high as possible we get
Figure 11.3 with the corresponding decoding tree Figure 11.4.
The average length of the two codes is the same, but the codes,
and the decoding trees are different; the first is "long" and the
second is "bushy", and the second will have less variability than
the first one.

We now do a second example so that you will be sure how Huf-
fman encoding works since it is natural to want to use the short-
est average code length you can when designing an encoding sys-
tem. For example you may have a lot of data to put into a backup
store, and encoding it into the appropriate Huffman code has been
known at times to save more than half the expected storage space!
Let p(s;) = 1/3, p(s,) = 1/5, P(s3) = 1/6, p(s,) = 1/10, p(sg) =
1/12, p(sg) = 1/20, p(s7) = 1/30 and pg = 1/30. First we check
that the %otal probability is 1. The common denominator of the
fractions is 60. Hence we have the total probability

(1/60) (20 + 12 + 10 + 6 + 5 + 3 + 2 + 2) = (1/60)(60) = 1

This second example is illustrated in Figure 11-5 where we have
dropped the 60 in the denominators of the probabilities since
only the relative sizes matter. What is the average code length
per symbol? We compute

L

SUM[i=1,8; pi1;]

(1/60) [20(2) + 12(2) + 10(3) + 6(3) + 5(3) + 4(4) + 3(4)]

(1/60)[40 + 24 + 30 + 18 + 15 + 12 + 8 + 8] = 155/60
= 31/12 ~ 2.58...

For a block code of eight symbols each symbol would be of length
3 and the average would be 3, which is more than 2.58... .

Note how mechanical the process is for a machine to do.
Each forward stage for a Huffman code is a repetition of the same
process, combine the two lowest probabilities, place the new sum
in its proper place in the array, and mark it. ' In the backward
process, take the marked symbol and split it. These are simple
programs to write for a computer hence a computer program can
find the Huffman code once it is given the s; and their probabil-
ities pj. Recall that in practice you want to assign an escape
symbol of very small probability so you can get out of the decod-
ing process at the end of the message. Indeed, you can write a
program that will sample the data to be stored and find estimates
of the probabilities (small errors make only small changes in 1),
find the Huffman code, do the encoding, and send first the decod-
ing algorithm (tree) and then the encoded data, all without human
interference or thought! At the decoding end you already have
received the decoding tree. Thus once written as a library
program, you can use it whenever you think it will be useful.

Huffman codes have even been used in some computers on the
instruction part of instructions, since instructions have very
different probabilities of being used. We need, therefore, to
look at the gain in average code length L we can expect from Huf-
fman encoding over simple block encoding which uses symbols all
of the same length.

If all the probabilities are the same and there are exactly
2k symbols, then an examination of the Huffman process will show
that you will get a standard block code witqceach symbol of the
same length. If you do not have exactly 2" symbols then some
symbols will be shortened, but it is difficult to say whether
many will be shortened by one bit, or some may be shortened by 2
or more bits. 1In any case, the value of L will be the same, and
not much less than that for the corresponding block code.

On the other hand, if each p; is greater than (2/3) (sum of
all the probabilities that follow ‘except the last) then you will
get a comma code, one that has one symbol of length 1 (0), one
symbol of length 2, (10), etc., down to the last where at the end

3

you will have two symbols of the same length, (¢ - 1),
(1111...10) and (1111...1l1). For this the value of L can be much
less than the corresponding block code.

Rule: Huffman coding pays off when the probabilities of the
symbols are very different, and does not pay off much when they
are all rather equal.

When two equal probabilities arise in the Huffman process
they can be put in any order, and hence the codes may be very
different, though the average code length in both cases will be
the same L. It is natural to ask which order you should choose
when two probabilities are equal. A sensible criterion is to
minimize the variance of the code so that messages of the same
length in the original symbols will have pretty much the same
lengths in the encoded message - you do not want a short original
message to be encoded into a very long encoded message by chance.
The simple rule is to put any new probability, when inserting it
into the table as high as it can go. 1Indeed, if you -put it above
a symbol with a slightly higher probability you usually greatly
reduce the variance and at the same time only slightly increase
L; thus it is a good strategy to use.

Having done all we are going to do about source encoding
(though we have by no means exhausted the topic) we turn to chan-
nel encoding where the noise is modeled. The channel, by sup-
position, has noise, meaning that some of the bits are changed in
transmission (or storage). What can we do?

Error detection of a single error is easy. To a block of
(n=-1) bits we attach an n-th bit which is set so that the total n
bits has an even number of 1’s (an odd number if you prefer, but
we will stick to an even number in the theory). It is called an
even (odd) parity check, or more simply a parity check.

Thus if all the messages I send to you will have this
property, then at the receiving end you can check to see if the
condition is met. If the parity check is not met then you know
that at least one error has happened, indeed you know that an odd
number of errors has occurred. If the parity does check then
either the message is correct, or else there are an even number
of errors. Since it is prudent to use systems where the prob-
ability of an error in any position is low, then the probability
of multiple errors must be much lower.

For mathematical tractability we make the assumption that
the channel has white noise, meaning that: (1) each position in
the block of n bits has the same probability of an error as any
other position, and (2) that the errors in various positions are
uncorrelated, meaning independent. Under these hypotheses the
probabilities of errors are:

= (1 - n
ggee2§;gr = é(n 1?% 1 - p)n'1 = [n]p(1 - p)n'l

- ! 5 _an=-2 _ - 2,4 - myD=2
two errors = C(n,2)p<(1l P _3 (n(n-1)/2]p°(1 7 p) n-3

three errors C(n,3)p3(1 -p [n(n—l(n-Z)/61p3(1 - p)

etc.

From this if, as is usually true, p is small with respect to the
block length n, (meaning the product np is small), then multiple
errors are much less likely to happen than single errors. It is
an engineering judgment of how long to make n for a given prob-
ability of error p. If n is small then you have a higher redun-
dancy (the ratio of the number of bits sent to the minimum number
of bits possible, n/(n-1)) than with a larger n, but if np is
large then you have a low redundancy but a higher probability of
an undetected error. You must make an engineering judgement on
how you are going to balance these two effects.

When you find a single error you can ask for a retransmis-
sion and expect to get it right the second time, and if not then
on the third time, etc. However, if the message in storage is
wrong, then you will call for retransmissions until another error
occurs and you will probably have two errors which will pass un-
detected in this scheme of single error detection. Hence the use
of repeated retransmission should depend on the expected nature
of the error.

Such codes have been widely used, even in the relay days.
The telephone company in its central offices, and in many of the
early relay computers, used a 2-out-of-5 code, meaning two and
only two out of the five relays were to be "up". This code was
used to represent a decimal digit, since C(5,2) = 10. If not ex-
actly 2 relays were up then it was an error, and a repeat was
used. There was also a 3-out-of-7 code in use, obviously an odd
parity check code.

I first met these 2-out-of-5 codes while using the Model 5
relay computer at Bell Tel Labs, and I was impressed that not
only did they help to get the right answer, but more important,
in my opinion, they enabled the maintenance people to maintain
the machine. Any error was caught by the machine almost in the
act of its being committed, and hence pointed the maintenance
people correctly rather than having them fool around with this
and that part, misadjusting the good parts in their effort to
find the failing part.

Going out of time sequence, but still in idea sequence, I
was once asked by AT&T how to code things when humans were using
an alphabet of 26 letter, ten decimal digits, plus a "space".
This is typical of inventory naming, parts naming, and many other
naming of things, including the naming of buildings. I knew from
telephone dialing error data, as well as long experience in hand
computing, that humans have a strong tendency to interchange ad-
jacent digits, a 67 is apt to become a 76, as well as change iso-
lated ones, (usually doubling the wrong digit, for example a 556
is likely to emerge as 566). Thus single error detecting is not
enough. I got two very bright people into a conference room with
me, and posed the guestion. Suggestion after suggestion I
rejected as not good enough until one of them, Ed Gilbert, sug-
gested a weighted code. In particular he suggested assigning the

5

numbers (values) 0, 1, 2, ..., 36 to the symbols 0, 1, ... , 9,
A, B, ... Z, space. Next he computed not the sum of the values
but 1f the k-th symbol has the value (labeled for convenience) Sy
then for a message of n symbols we compute

SUM[{k=1,n; ksyl modulo 37

"modulo" meaning divide this weighted sum by 37 and take only the
remainder. To encode a message of n symbols leave the first sym-
bol, k = 1, blank and what ever the remainder is, which is less
than 37, subtract it from 37 and use the corresponding symbol as
a check symbol, which is to be put in the first position. Thus
the total message, with the check symbol in the first position,
will have a check sum of exactly 0. When you examine the inter-
change of any two different symbols, as well as the change of any
single symbol, you see that it will destroy the weighted parity
check, modulo 37 (provided the two interchanged symbols are not
exactly 37 symbols apart!). Without going into the detalls, it
is essential that the modulus be a prime number, which 37 is.

To get such a welghted sum of the symbols (actually their
values) you can avoid multiplication. and use only addition and
subtraction if you wish. Put the numbers in order in a column,
and compute the running sum then compute the running sum of the
running sum modulo 37, and then complement this with respect to
37, and you have the check symbol. As. an illustration using w, x,

Yy, z.

symbol sum sum of sums

w w w

X W+ X 2w + X

Yy W+ X +Yy 3w + 2xX + ¥y

z W+ X+Yy + 2 4w + 3x + 2y + z = weighted check sum

At the receiving end you subtract the modulus repeatedly until
you get either a 0 (correct symbol) or a negative number (wrong

symbol).

If you were to use this encoding, for example, for inventory
parts names, then the first time a wrong part name came to a com-
puter, say at transmission time, if not before (perhaps at order
preparation time), the error will be caught; you will not have to
wait until the order gets to supply headquarters to be later told
that there is no such part or else that they have sent the wrong
part! Before it leaves your location it will be caught and hence
is quite easily corrected at that time. Trivial? Yes! Effec-
tive against human errors (as contrasted with the earlier white
noise), yes!

Indeed, you see such a code on your books these days with
their ISBN numbers. It is the same code except that they use
only 10 decimal digits, and 10, not being a prime number, they
had to introduce an 11-th symbol, labeled X, which might at times
arise in the parity check - indeed, about every 11-th book you
have will have an X for the parity check number as the final sym-

6

iy,

bol of its ISBN number. The dashes are merely for decorative ef-
fect and are not used in the code at all. Check it for yourself
on your text books. Many other large organizations could use
such codes to good effect, if they wanted to make the effort.

I have repeatedly indicated that I believe the future will
be increasingly concerned with information in the form of sym-
bols, and less concerned with material things, hence the theory
of encoding (representing) information in convenient codes is a
non-trivial topic. The above material gave a simple error
detecting code for machine-like situations, as well as a weighted
code for human use. They are but two examples of what coding
theory can contribute to an organization in places where machine
and human errors can OCcCur.

When you think about the man-machine interface one of the
things you would like is to have the human make comparatively few
key strokes - Huffman encoding in a dlsgulse' Evidently, given
the probabilites of you making the various branches in the
program menus, you can design a way of minimizing your total key
strokes if you wish. Thus the same set of menus can be adjusted
to the work habits of different people rather than presenting the
same face to all. In a broader sense than this, "automatic
programming"” in the higher level languages is an attempt to
achieve something like Huffman encoding so that for the problems
you want to solve require comparatively few key strokes are
needed, and the ones you do not want are the others.

SB ced Gr &C Zg

4
S}‘ e lT /
/(W

/f/p/-/ﬂ«cc(£/z<=.o/z-7

/—zf 27/

7 -

/:?; sl

—R

\dﬂw\v A.l«.v:.“\&“

P g

>
ey 7

</ ¥/ ’,
- YT Q

<P

Vo -7

D et

"

1

<7

)

~-

Y
h Y

\N!

