LECTURE 12

ERROR CORRECTING CODES

There are two subject matters in this lecture; the first is
the ostensible topic, error correcting codes, and the other is
how the process of discovery sometimes goes - you all know that I
am the official discoverer of the Hamming error correcting codes.
Thus I am presumably in a position to describe how they were
found. But you should beware of any reports of this kind. It is
true that at that time I was already very interested in the
process of dlscovery, believing that in many cases the method of
discovery is more important than what is discovered. I knew
encugh not to think about the process when doing research, just
as athletes do not think about style when the engage. in sports,
but they practice the style until it is more or less automatic.
I had thus established the habit that after something of great of
small importance was discovered of going back and trying to trace
the steps by which it apparently happened. But do not be
deceived; at best I can give the conscious part, and a bit of the
upper subconscious part, but we simply do not know how the uncon-
scious works its magic.

I was using the Model 5 relay computer in NYC in preparation
for delivering it to Aberdeen Proving Grounds, along with the
some required software programs (mainly mathematical routines).
When an error was detected by the 2-out-of-5 block codes the
machine would when unattended repeat the step, up to three
times, before dropping it and picking up the next problem in the
hope that the defective equipment would not be involved in the
new problem. Being at that time low man on the totem pole, as
they say, I got free machine time only over the weekends - mean-
ing from Friday at around 5:00 P.M. to Monday morning around
8:00 A.M. which is a lot of time! Thus I would load up the input
tape with a large number of problems and promise my friends, back
at Murray Hill N.J. where the Research Department was located,
that I would deliver them the answers on Tuesday. Well, one
weekend, just after we left on a Friday night, the machine failed
completely and I got essentially nothing on Monday. I had to
apologize to my friends and promised them the answers on the next
Tues. Alas! The same thing happened again! I was angry to say
the least, and said, "If the machine can locate that there is an
error, why can it not locate where it is, and then fix it by
simply changing the bit to the opposite state?" (The actual lan-
guage used was perhaps a bit stronger!)

Notice first that this essential step happened only because
there was a great deal of emotional stress on me at the moment,
and this is characteristic of most great discoveries. Working
calmly will let you elaborate and extend things, but the break
throughs generally come only after great frustration and emo-
tional involvement. The calm, cool, uninvolved researcher seldom

1

makes really great, new steps.

Back to the story. I knew from previous discussions that of
course you could build three copies of a machine, include compar-
ing circuits, and use the majority vote - hence error correcting
machines could exist. But at what cost! Surely there were bet-
ter methods. I also knew, as discussed in the last lecture, a
great deal about parity checks; I had examined their fundamentals
very carefully.

Another aside. Pasteur says, "Luck favors the prepared
mind." You see that I was prepared by the immediately previous
work I had done. I had become more than acquainted with the 2-
out-of-5 codes, I had understood them fundamentally, and had
worked out and understood the general implications of a parity
check. ’

After some thought I recognized that if I arranged the mes-
sage bits of any message symbol in a rectangle, and put parity
checks on each row and each column, then the two failing parity
checks would give me the coordinates of the single error, and
this would include the corner added parity bit (which could be
set consistently if I used even parities), Figure 12-1. The
redundancy, the ratio of what you use to the minimum amount
needed, is

R = mn/(m-1) (n-1) =1+ 1/(m-1) + 1/(n-1) + 1/ (m-1) (n-1)

It is obvious to anyone who ever took the calculus that the
closer the rectangle is to a square the lower is the redundancy
for the same amount of message. And of course big m’s and n’s
would be better than small ones, but then the risk of a double
error might be too great; again an engineering judgment. Note
that if two errors occurred then you would have: (1) if they were
not in the same column and not in the same row, then just two
failing rows and two failing columns would occur and you could
not know which diagonal pair caused them; and (2) if two were in
the same row, (or column) then you would have only the the
columns (or rows) but not the rows (columns) .

We now move to some weeks later. To get to NYC I would go a
bit early to the Murray Hill, N.J. location where I worked and
get a ride on the company mail delivery car. Well, riding
through north Jersey in the early morning is not a great sight,
so I was, as I had the habit of doing, reviewing successes so I
would have the style in hand automatically; in particular I was
reviewing in my mind the rectangular codes. Suddenly, and I can
give no reason for it, I realized that if I took a triangle and
put the parity checks along the diagonal, with each parity check
checking both the row and column it was in, then I would have a
more favorable redundancy, Figure 12-2.

My smugness vanished immediately! Did I have the best code
this time? A few miles of thought on the matter, (remember there
were no distractions in the north Jersey scenery), I realized
that cube of information bits, with parity checks across the en-

2

P
£ N

tire planes and the parity check bit on the axes, for all three
axes, would give me the three coordinates of_the error at the
cost of 3n - 2 parity checks for the whole n” encoded message.
Better! But was it best? No! Being a mathematician I promptly
realized that a 4-dimensional cube (I did not have to arrange
them that way, only interwire them that way) would be better. So
an even higher dimensional cube would be still better. It was
soon obvious (say five miles) that a 2x2x2...x2 cube, with n+l
parity checks, would be the best - apparently!

But having burnt my fingers once, I was not about to settle
for what looked good - I had made that mistake before! Could I
prove it was best? How to make a proof? One obvious approach
was to try a counting argument. I had n + 1 parity checks, whose
result was a string of n + 1 bits, a binary number of length n +
1 bits, and this could represent any of 20+l things. But I
needed only 2o + 1 things, the 2" points in the cube plus the one
result that the message was correct. I was off by almost a fac-
tor of 2. Alas! I arrived at the door of the company, had to
sign in, and go to a conference so I had to let the idea rest.

When I got back to the idea after some days of distractions,
(after all I was supposed to be contributing to the team effort
of the company), I finally decided that a good approach would be
to use the syndrome of the error as a binary number that named
the place of the error, with, of course, all 0’s being the cor-
rect answer, (an easier test than for all 1’s on most computers).
Notice that familiarity with the binary system, which was not
common then, (1947-8), repeatedly played a prominent role in my
thinking. It pays to know more that just what is needed at the
moment!

How do you design this particular case of an error correct-
ing code? Easy! Write out the positions in the binary code:

1

10
11
100
101
110
111
1000
1001

WoOoOdaand W

etc.

It is now obvious that the parity check on the right hand side of
the syndrome must involve all positions which have a 1 in the
right hand column; that the second digit from the right must in-
volve the numbers which have a 1 in the second column, etc.
Therefore you have:

Parity check #1 1, 3,

, 7, 9,11,13,15,...
Parity check #2 2, 3, 6,

7,10,11,14,15, ...

Parity check #3 4, 5, 6, 7,12,13,14,15,...
Parity check #4 8, 9,10,11,12,13,14,15,...
etc.

Thus if any error occurs in some position, those parity checks,
and only those, will fail and give 1’s in the syndrome, and this
will produce exactly the binary representation of the position of
the error. It is that simple!

To see the code in operation suppose we confine ourselves to
4 message and 3 check positions. These numbers satisfy the con-
dition
23 > 7 +1
which is clearly a necessary condition, and the equality is suf-
ficient. We pick as the positions for the checking bits, (so
that the setting of the parity check will be easy), the check

positions 1, 2, and 4. The the message positions are therefore
3, 5, 6, 7. Let the message be

1001
We (1) write the message on the top line, (2) encode on the next

line, (3) insert an error at position 6 on the next line, and (4)
on the next three lines compute the three parity checks.

1 2 3 4 5 6 7 position
1 0 0 1 message
0 0 1 1 0 0 1 encoded message
0 0 1 1 0 1 1 message with error

You apply the parity checks to the received message.

Check #1 --> 0
Check #2 --> 1
Check #3 --> 1

Binary number 110 --> 6; hence change the digit in position
6, and drop the check positions 1, 2 and 4, and you have the
original message, 1001.

If it seems magical, then think of the all 0 message, which
will have all 0 checks, and then think of a single digit changing
and you will see that as the position of the error is moved
around then the syndrome binary number will change correspond-
ingly and will always exactly match the position of the error.
Next, note that the sum of any two correct messages is still a
correct message (the parity checks are additive modulo 2 hence
the proper messages form an additive group modulo 2). A correct

4

s

message will give all zeros, and hence the sum of a correct mes-
sage plus an error in one position will give the position of the
error regardless of the message being sent. The parity checks
concentrate on the error and ignore the message.

Now it is immediately evident that any interchange of any
two or more of the columns, once agreed upon at each end of the
channel, will have no essential effect; the code will be equiv-
alent. Similarly, the interchanging of 0 and 1 in any column
(complementing that particular position) will not be an essen-
tially different code. The particular (so called) Hamming code
is merely a cute arrangement, and in practice you might want the
check bits to all come at the end of the message rather than
being scattered in the middle of it.

How about a double error? If we want to catch (but not be
able to correct) a double error we simply add a single new parity
check over the whole message we are sending. Let us see what
will then happen at your end.

old syndrome new parity check meaning

000 0 right answer

000 1 new parity check wrong
XXX 1 old parity check works
XXX 0 must be a double error

A single error correcting plus double error detecting code
is often a good balance. Of course, the redundancy in the short
message of 4 bits, with now 4 bits of check, is bad, but the num-
ber of parity bits rises roughly like the log of the message
length. Too long a message and you risk a double uncorrectable
error, (which in a single error correcting code you will
"correct" into a third error), too short a message and the cost
in redundancy is too high. Again an engineering judgment depend-
ing on the particular situation.

From analytic geometry you learned the value of using the
alternate algebraic and geometric views. A natural repre-
sentation of a string of bits is to use an n-dimensional cube,
each string being a vertex of the cube. Given this picture and
finally noting that any error in the message moves the message
along one edge, two errors along two edges, etc., I slowly real-
ized that I was to operate in the space of L,. The distance be-
tween symbols 1is the number of positions in which they differ.
Thus we have a metric in the space and it satisfies the three
standard conditions for a distance (see Lecture 10 where it is
identified as the standard L, distance):

1. D(x,y) > O (non negative)

2. D(x,y) = 0 if and only if x =y (Identity)

3. D(x,y) = D(y,x) (symmetry)

4. D(x,y) + D(y,z) > D(x,2) (triangle inequality)

Thus I had to take seriously what I had learned as an abstraction
of the Pythagorean distance function.

With a distance we can define a sphere as all points
(vertices, as that is all there is in the space of vertices), at
a fixed distance from the center. For example, in the 3-
dimensional cube which can be easily sketched, Figure 12-3, the
points (0,0,1), (0,1,0), and (1,0,0) are all unit distance from
(0,0,0), while the points (1,1,0), (1,0,1), and (0,1,1l) are all
two units away, and finally the point (1,1,1) is three units away
from the origin.

We now go to n-dimensions, and draw a sphere of unit radius
about each point and suppose that the spheres do not overlap. It
is obvious that if the centers of these spheres are code points,
and only these points, then at the receiving end any single error
in a message will result in a non-code point and you can recog-
nize where the error came from, it will be in the sphere about
the point I sent to you, or equivalently in a sphere of radius 1
about the point you received. Hence we have an error correcting
code. The minimum distance between code points is 3. If we use
non-overlapping spheres of radius 2 then a double error can be
corrected because the received point will be nearer to the
original code point than any other point; double error correc-
tion, minimum distance of 5. The following table gives the
equivalence of the minimum distance between code points and the
correctability of errors:

min. distance meaning
1 unique decoding
2 single error detecting
3 single error correcting
4 1 error correct and 2 error detect
5 double error correcting

k error correction
kK error correction and k+1 error
detection

NN
~ N
+ +
N

Thus finding an error correcting code is the same as finding a
set of code points in the n-dimensional space that has the
required minimum distance between legal messages since the above
conditions are both necessary and sufficient. It should also be
clear that some error correction can be exchanged for more
detection; give up one error correction and you get two more in
error detection

I earlier showed how to design codes to meet the conditions
in the cases where the minimum distance is 1, 2, 3, or 4. Codes
for higher minimum distances are not so easily found, and we will
not go farther in that direction. It is easy to give an upper
bound on how large the higher distance codes can be. It is ob-
vious that the number of points in a sphere of radius k is,
(C(n,k) is a binomial coefficient)

6

SR,

1+ C(n,1l) + Cc(n,2) + ... + C(n,k)

Hence if we divide the size of the volume of the whole space, 20,
by the volume of a sphere then the quotient is an upper bound on
the number of non-overlapping spheres, code points, in the cor-
responding space. To get an extra error detection we simply, as
before, add an overall parity check, thus increasing the minimum
distance, which before was 2k + 1 to 2k + 2 (since any two points
at the minimum distance will have the overall parity check set
differently thus increasing the minimum distance by 1).

Let us summarize where we are. We see that. by proper code
design we can build a system from unreliable parts and get a much
more reliable machine, and we see just how much we must pay in
equipment, though we have not examined the cost in speed of com-
puting if we build a computer with that level of error correcting
into it. But I have previously stressed the other gain, namely
field maintenance, and I want to mention it again and-again. The
more elaborate the equipment is, and we are obviously going in
that direction, the more field maintenance is vital, and error
correcting codes not. only mean that in the field the equipment
will give (probably) the right answers, but that it can be main-
tained successfully by low level experts.

The use of error detecting and error correcting codes is
rising steadily in our society. In sending messages from the
space vehicles we sent to the outer planets, we often have a mere
20 watts or less of power, (possibly as low as 5 watts), and had
to use codes that corrected 100’s of errors in a single block of
message - the correction being done here on earth, of course.
When you are not prepared to overcome the noise, as in the above
situation, or in cases of "deliberate jamming", then such codes
are the only known answer to the situation.

In the late summer of 1961 I was driving across the country
from my sabbatical at Stanford, Cal. to Bell Telephone
Laboratories in N.J. and I made an appointment to stop at Morris,
Illinois where the telephone company was installing the first
electronic central office that was not an experimental one. I
knew that it used Hamming codes extensively, and I was, of
course, welcomed. They told me that they had never had a field
installation go in so easily as this one did. I said to myself,
"Of course, that is what I have been preaching for the past 10
years." When, during initial installation, any unit is set up
and running properly, (and you sort of know that it is because of
the self checking and correcting properties), and you then turned
your back on it to get the next part going, if the one you were
neglecting developed a flaw, it told you so! The ease of initial
installation, as well as later maintenance, was being verified
right before their eyes! I can not say too loudly, error correc-
tion not only gets the right answer when running, it can by
proper design also contribute significantly to field installation
and field maintenance; and the more elaborate the equipment the
more essential these two things are.

I now want to turn to the other part of the talk. I have
carefully told you a good deal of what I faced at each stage in
discovering the error correcting codes, and what I did. I did it
for two reasons. First, I wanted to be honest with you and show
you how easy, ‘if you will follow Pasteur’s rule, "Luck favors the
prepared mind.", to succeed by merely preparing yourself to
succeed. Yes, there were elements of luck in the discovery; but
there were many other people in much the same situation, and they
did not do it! Why me? Luck, to be sure, but also I was prepar-
ing myself by trying to understand what was going on - more than
the other people around who were merely reacting to things as
they happened, and not thinking deeply as to what was behind the
surface phenomena.

I now challenge you. What I told you in less than one hour
was done in the course of a total of about three to six months,
mainly working at odd moments while carrying on my main duties to
the company. (Patent rights delayed the publication for more
than a year.) Does anyone dare to say that they, in my position,
could not have done it? Yes, you are just as capable as I was to
have done it - if you had been there and you had prepared your-
self as well!

Of course as you go through life you do not know what you
are preparing yourself for - only that you want to do significant
things and not spend the whole of your life being a "janitor of
science" or whatever your profession is. Of course luck plays a
prominent role. But so far as I can see, life presents you with
many, many opportunities for doing great things (define them as
you will) and the prepared person usually hits one or more suc-
cesses, and the unprepared person will miss almost every time.

The above opinion is not based on this one experience, or
merely on my own experiences, it 1is the result of studying the
lives of many great scientists. I wanted to be a scientist hence
I studied them, and I looked into discoveries that happened where
I was and asked questions of those who did them. This opinion is
also based on common sense. You establish in yourself the style
of doing great things, and then when opportunity comes you almost
automatically respond with greatness in your actions. You have
trained yourself to think and act in the proper ways.

There is one nasty thing to be mentioned, however, What it
takes to be great in one age is not what is required in the next
one. Thus you, in preparing yourself for future greatness, (and
the possibility of greatness is more common and easy to achieve
than you think, since it is not common to recognize greatness
when it happens under one’s nose) you have to think of the nature
of the future you will live in. The past is a partial guide, and
about the only one you have besides history is the constant use
of your own imagination. Again, a random walk of random deci-
sions will not get you anywhere near as far as those taken with
your own vision of what your future should be.

"I have both told and shown you how to be great; now you have
no excuse for not dcing so!

O C O O]« -
T MHeess o 4”4
C O o O x X = c‘,/‘ea/gé‘%
C) & O C) %
S O & S | x
O O S Dy
b4 X X X P

f._/rri/ eyrar eoy,eaJ(;j eaq/és

/""4j <> e iR ~f

)

X }J 7[ery =¥ eer/cc;wz/;{f QQ_Q/or.
Eex

/I_—_-’:}'Q"C IR~

