’

LECTURE 14

DIGITAL FILTERS - I

Now that we have examined computers and how they represent
information let us turn to how computers process information. We
can, of course, only examine a very few of the things they do,
and will concentrate on basics per usual.

Much of what computers process are signals from various
sources, and we have already discussed why they are often in the
form of a stream of numbers from an equally spaced sampling sys-
tem. Linear processing, which is the only one I have time for in
this course, implies digital filters. To illustrate "style" and
how things actually happen in real life I propose to tell you
first how I became involved in them, and then how I proceeded.

First, I never went to the office of my Vice President W. O.
Baker; we only met in passing in the halls and we usually stopped
to talk a few, very few, minutes. One time, around 1973-4, when
I met him in a hall I said to him that when I came to Bell
Telephone Laboratories in 1946 I had noticed that the
Laboratories were gradually passing from relay to electronic
central offices, but that a large number of people would not con-
vert to oscilloscopes and the newer electronic technology and
that they were moved to a different location to get them out of
the way. To him they represented a serious economic loss but to
me they were a social loss since they were disgruntled to say the
least because they were passed by, (though it was their own
fault). I went on to say that I had seen the same thing happen
when we went from the earlier analog computers (on which Bell
Telephone Laboratories had many experts because they had
developed much of the technology during WWII) to the more modern
digital computers - that we again left a large number of en-
gineers behind, and again they were both an economic and a social
loss. I then observed that we both knew the telephone company
was going to total digital transmission about as fast as they
could, and that this time we would leave behind a very much
larger number of disgruntled engineers. Hence, I concluded, we
should do something now about the situation, such as get adequate
elementary books and other training devices to ease more of them
into the future and leave fewer behind. He looked me square in
the eye and said, "Yes, Hamming, you should." and walked off!
Furthermore, he went on encouraging me, via John Tukey with whom
he often spoke, so I knew he was watching my efforts.

What to do? In the first place I thought I knew very little
about digital filters, and, furthermore, I was not really inter-
ested in them. But dcoces one wisely ignore one’s V.P. plus the
cogency of ones own observations? No! The implied social waste
was too high for me to contemplate comfortably.




So I turned to a friend, Jim Kaiser, (J. F. Kaiser), who was
one of the world’s experts in digital filters at that time, and
suggested that he should stop his current research and write a
book on digital filters - that book writing to summarize his work
was a natural stage in the development of a scientist. After
some pressure he agreed to write the book, so I was saved, so I
thought. But monitoring what he was d01ng revealed that he was
writing nothing. To rescue my plan I offered, if he would edu-
catg me over lunches in the restaurant (you get more time to
thlnk there than in the cafeteria), to help write the book
jointly, (mainly the first part), and we could call it Kaiser and
Hamming. Agreed!

As time went on I was getting a good education from him, and
I got my first part of the book going but he was still writing
nothing. So one day I said, "If you don’t write more we will end
up calling it Hamming and Kaiser." - and he agreed. Still later
when I had about completed all the writing and he had still writ-
ten nothing, I said that I could thank him in the preface, but it
should be called Hamming, and he agreed - and we are still good
friends! That is how the book on Digital Filters that I wrote
came to be, and I saw it ultimately through three editions, al-
ways with good advice from Kaiser.

The book also took me many places that were interesting
since I gave a short, one week courses, on it for many years.
The short courses began while I was still writing it because I
needed feedback and had suggested to UCLA Extension Division that
I give it as a short course, to which they agreed. That led to
years of giving it at UCLA, once in each of Paris, London, and
Cambridge, England, as well as many other places in the USA and
at least twice in Canada. Doing what needed to be done, though I
did not want to do it, paid off handsomely in the long run.

Now, to the more important part, how I went about learning
the new subject of digital filters. Learning a new subject is
something you will have to do many times in your career if you
are to be a leader and not be left behind as a follower by newer
developments. It soon became clear to me that digital filter
theory was dominated by Fourier series, about which theoretically
I had learned in college, and actually I had had a lot of further
education during the signal processing I had done for John Tukey,
who was a professor from Princeton, a genius, and a one or two
day a week employee of Bell Telephone Laboratories. For about
ten years I was his computing arm much of the time.

Being a mathematician I knew, as all of you do, that any
complete set of functions will do about as good as any other set
at representing arbitrary functions. Why, then, the exclusive
use of the Fourier series? I asked various Electrical Engineers
and got no satisfactory answers. One engineer said that alter-
nating currents were sinusoidal, hence we used sinusoids, to
which I replied it made no sense to me. So much for the usual
residual education of the typical Electrical Engineer after they
have left school!



So I had to think of basics, just as I told you I had done
when using an error detecting computer. What is really going on?
I suppose that many of you know that what we want is a time in-
variant representation of signals since there is usually no
natural origin of time. Hence we are led to the trigonometric
functions, (the eigenfunctions of translation), in the form of
both Fourier series and Fourier integrals, as the tool for repre-
senting things.

Second, linear systems, which is what we want at this stage,
also have the same eigenfunctions - the complex exponentials
which are equivalent to the real trigonometric functions. Hence
a simple rule: If you have either a time invariant system, or a
linear system, then you should use the complex exponentials.

Oon further digging into the matter I found yet a third
reason for using them in the field of digital filters. There is
a theorem, often called "Nyquist’s sampling theorem", (thought it
was known long before and even published by Whittaker in a form
you can hardly realize what it is saying even when you know
Nyquist’s theorem), which says, if you have a band limited signal
and sample at equal spaces at a rate of at least two in the
highest frequency, then the original signal can be reconstructed
from the samples. Hence the sampling process loses no informa-
tion when we replace the continuous signal with the equally
spaced samples, provided the samples cover the whole real line.
The sampling rate is often known as '"the Nyquist rate" after
Harry Nyquist, also of servo stability fame as well as other
things. If you sample a nonbandlimited function, then the higher
frequencies are "aliased" into lower ones, a word devised by
Tukey to describe the fact that a single high frequency will ap-
pear later as a single low frequency in the Nyquist band. The
same is not true for any other set of functions, say powers of t.
Under equal spaced sampling and reconstruction a single high
power of t will go into a polynomial (many terms) of lower powers
of t.

Thus there are three good reasons for the Fourier functions:
(1) time invariance, (2) linearity, and (3) the reconstruction of
the original function from the equally spaced samples is simple
and easy to understand.

Therefore we are going to analyse the signals in terms of
the Fourier functions, and I need not discuss with electrical en-
gineers why we usually use the complex exponents as the
frequencies instead of the real trigonometric functions. We have
a linear operation and when we put a signal (a stream of numbers)
into the filter then out comes another stream of numbers. It is
natural, if not from your linear algebra course, then from other
things such as a course in differential equations, to ask what
functions go in and come out exactly the same except for scale?
Well, as noted above, they are the complex exponentials; they are
the eigenfunctions of linear, time invariant, equally spaced
sampled systems.

Lo, and behold, the famous transfer function is exactly the
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eigenvalues of the corresponding eigenfunctions! Upon asking
various Electrical Engineers what the transfer function was no
one has ever told me that! Yes, when pointed out to them that it
is the same idea they have to agree, but the fact that it is the
same idea never seemed to have crossed their minds! The same,
simple idea, in two or more different disguises in their minds,
and they knew of no connection between them! Get down to the
basics every time!

We begin our discussion with, "What is a signal?" Nature
supplies many signals which are continuous, and which we there-
fore sample at equal spacing and further digitize, (quantize).
Usually the signals are a function of time, but any experiment in
a lab that uses equally spaced voltages, for example, and. records
the corresponding responses, is also a digital signal. A digital
signal is, therefore, an equally spaced sequence measurements in
the form of numbers, and we get out of the digital filter another
equally spaced set of numbers. One can, and at times must,
process ncnequally spaced data, but I shall ignore them here.

The quantization of the signal into one of several levels of
output often has surprisingly small effect. You have all seen
pictures quantized to two, four, eight, and more levels, and even
the two level picture is usually recognizable. I will ignore
quantization here as it is usually a small effect, though at
times it is very important. ’

The consequence of equally spaced sampling is aliasing, that
is a frequency above the Nyquist frequency (which has two samples
in the cycle) will be aliased into a lower frequency. This is a
simple consequence of the trigonometric identity

exp{2ri(k + a)n) = exp{2rian)

where a is the positive remainder after removing the integer num-
ber of rotations, k, (we always use rotations in discussing
results, and use radians while applying the calculus, just as we
use base 10 logs and base e logs), and n is the step number. If
a > 1/2, then we can write the above as

exp{2rian) = exp{-2ri(1 - a)n)

The aliased band, therefore, is less than 1/2 a rotation, plus or
minus. If we use the two real trigonometric functions, sin and
Cos, we have a pair of eigenfunctions for each frequency, and the
band is from 0 to 1/2 a rotation, but when we use the complex ex-
ponential notation then we have one eigenfunction for each
frequency, but now the band reaches from -1/2 to 1/2 rotations.
This avoidance of the multiple eigenvalues is part of the reason
that the complex frequencies are so much easier to handle than
are the real sine and cosine functions. The maximum sampling
rate for which aliasing does not occur is two samples in the
cycle, and is called the Nyquist rate. From the samples the
original signal cannot be determined to within the aliased
frequencies, only the basic frequencies that fall in the fun-
damental interval of unaliased frequencies (-1/2 to 1/2) can be
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determined uniquely. The signals from the various aliased
frequencies go to a single frequency in the band and are al-
gebraically added; that is what we see once the sampling has been
done. Hence addition or cancellation may occur during the alias-
ing, and we cannot know from the aliased signal what we
originally had. At the maximum sampling rate one cannot tell
the result from 1, hence the unaliased frequencies must be within
the band.

We shall stretch (compress) time so that we can take the
sampling rate to be one per unit time, because this makes thlngs
much easier and brings experiences from the milli and micro
second range to those which may take days or even years between
samples. It is always wise to adopt a standard notation and
framework of thinking of diverse things - one field of applica-
tion may suggest things to do in the other. I have found it of
great value to do so whenever possible - remove the extraneous
scale factors and get to the basic expressions. (But then I was
originally trained as a mathematician.)

Aliasing is the fundamental effect of sampling and has noth-
ing to do with how the signals are processed. - I have found it
convenient to think that once the samples have been taken then
all the frequencies are in the Nyquist band, and hence we do not
need to draw periodic extensions of anything since the other
frequencies no longer exist in the signal - once the sampling has
occurred the higher frequencies have been aliased into the lower
band, and do not exist up there any more. A significant savings
in thinking! The act of sampling produces the aliased signal
that we must use.

I now turn to three stories that use only the ideas of sam-
pling and aliasing. In the first story I was trying to compute
the numerical solution to a system of 28 ordinary differential
equatlons and I had to know the sampling rate to use, (the step
size of the solution is the sampling rate you are using), since
if it were half as large as expected then the computing bill
would be about twice as much. For the most popular and practical
methods of numerical solution the mathematical theory bases the
step size on the fifth derivative. Who could know the bound? No
one! But viewed as sampling, then the aliasing begins at two
samples for the highest frequency present, provided you have data
from minus to plus infinity. Having only a short range of at
most five points of data I intuitively figured that I would need
about twice the rate, or 4 samples per cycle. And finally,
having only data on one side, perhaps another factor of 2; in all
8 samples per cycle.

I next did two things: (1) developed the theory, and (2) ran
numerical tests on the simple differential equation

y"+y=290, - y(0) =1, y’(0) =0
They both showed that at around 7 samples per cycle you are on
the edge of accuracy, (per step), and at 10 you are very safe.
So I explained the situation to them and asked them for the
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highest frequencies in the expected solution. They saw the jus-
tice of my request, and after some days they said I had to worry
about the frequencies up to 10 cycles per second and they would
worry about those above. They were right, and the answers were
satisfactory. The sampling theorem in action!

The second story involves a remark, made to me casually in
the halls of Bell Telephone Laboratories that a certain West
Coast subcontractor was having trouble with the simulation of a
Nike missile launch, and was using 1/1000 to 1/10,000 of second
spacing. I laughed immediately, and said that there must be some
mistake, that 70 to 100 samples would be enough for the model
they were using. It turned out that they had a binary number 7
position to the left, 128 times too large! Debugging a large
program across the continent based on the sampling theorem!

The third story is that a group at Naval Postgraduate School
was modulating a very high frequency signal down to where they
could afford to sample, according to the sampling theorem as they
understood it. But I realized that if they cleverly sampled the
high frequency then the sampling act itself would modulate
(alias) it down. After some days of argument, they removed the
rack of frequency lowering equipment, and the rest of the equip-
ment ran better! Again, I needed only a firm understanding of
the aliasing effects due to sampling. It is another example of
why you need to know the fundamentals very well; the fancy parts
then follow easily and you can do things that they never told you
about.

The sampling is fundamental to the way we currently process
data, when we use the digital computers. And now that we under-
stand what a signal is, and what sampling does to a signal, we
can safely turn to more of the details of processing signals.

We will first discuss nonrecursive filters, whose purpose is
to pass some frequencies and stop others. The problem first
arose in the telephone company when they had the idea that if one
voice message had all its frequencies moved up (modulated) to
beyond the range of another then the two signals could be added
and sent over the same wires, and at the other end filtered out
and separated, and the higher one reduced (demodulated) back to
its original frequencies. This shifting is simply multiplying by
a sinusoidal function, and selecting one band (single sideband
modulation) of the two frequencies that emerge according to the
following trigonometric identity (this time we use real
functions)

cos at cos bt = (1/2)([cos(a + b)t + cos(a - b)t]
There is nothing mysterious about the fregquency shifting

(modulation) of a signal, it is at most a variant of a
trigonometric identity.

The nonrecursive filters we will consider first are mainly
of the smoothing type where the input is the values u(t) = u(n)
= up and the output is y,
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Yn = SUM[j=-k,k; ¢4 up_5]

with cy = c;j, (the coefficients are symmetric about the middle
value 80).

I need to remind you about least squares as it plays a fun-
damental role in what we are going to do, hence I will design a
smoothing filter to show you how filters can arise. Suppose we
have a signal with "noise" added and want to smooth it, remove
the noise. We will assume that it seems reasonable to you fit a
straight line to 5 consecutive points of the data in a least
squares sense, and then take the middle value on the line as the
"smoothed value of the function" at that point. )

For mathematical convenience we pick the 5 points at t = -2,
-1, 0, 1, 2 and fit the straight line, Figure 14-1,

u(t) = a + bt

Least squares says that we should minimize the sum of the squares
of the differences between the data and the points on the line,
that is, minimize

M = SUM[k=-2,2; {up - (a + bk) }2]

What are the parameters to use in the differentiation to
find the minimum? They are the a and the b, not the t (now the’
discrete variable k), and u. The line depends on the parameters
a and b, and this is often a stumbling block for the student; the
parameters of the equation are the variables for minimization!
Hence on differentiating with respect to a and b, and equating
the derivatives to zero to get the minimum, we have

-2 SUM[u, - a - bk] =0
-2 SUM[(uy - a - bk)k} =0

In this case we need only a, the value of the line at the
midpoint, hence using, (some of the sums are for later use),

SUM[1] = 5 SUM[k3] = 0
SUM[{k] = 0 SsuM[k*] = 34
SUM[k2?] = 10

from the top equation we have

SUM({uy] = 5a + 0Ob

a = (1/5)SUM[k=-2,2; U]
which is simply the average of the five adjacent values. When
you think about how to carry out the computation for a, the

smoothed value, think of the data in a vertical column, Figure
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14-2, with the coefficients each 1/5, as a running weighting of
the data:; then you can think of it as a window through which you
look at the data, with the "shape" of the window being the coef-
f@cients of the filter, this case of smoothing being uniform in
size. : :

Had we used 2k + 1 symmetrically placed points we would
still have obtained a running average of the data points as the
smoothed value that is supposed to eliminate the noise.

Suppose instead of a straight line we had smoothed by fit-
ting a quadratic, Figure 14-3, - A

u(t) = a + bt + ct2

Setting up the difference of the squares and differentiating this
time with respect to a, b and c we get.

-2 SUM[{u) - a - bk - ck?)] = 0

-2 SUM[{uy - a - bk - ck?)k] = 0

-2 SUM[{u; - a - bk - ck?}k?] = 0
Again we need only a. Rewriting the first and third equations
(the middle one does not involve a), and inserting the known sums
from above, we have

5a + (10)c = SUM([uy]
(10)a + (34)c = SUM[k2u,]

To eliminate c, which we do not need, we multiply the top
equation by 17 and the lower equation by -5, and add to get

(85 - 50)a = 17 SUM[uy] - 5 SUM[kZuy]

a = (1/35)[-3u_j + 12u_, + 17uy + 12u; - 3u,]
and this time our "smoothing window" does not have uniform coef-
ficients, but has some with negative values. Don’t let that
WOrry you as we were speaking of a window in a metaphorical way
and hence negative transmission is possible.

If we now shift these two least squares derived smoothing
formulas to their proper places about the point n we werId have

un (1/5)[un__2 + Up_q *tu, + Uniq + Upeo]

(1/35)[—3un_2 + 12up_q + 17u, + 12up,4q - 3up4s]

Un

We now ask what will come out if we put in a pure eigenfunc-
tion. We know that the equations being linear they should give
the eigenfunction back, but multiplied by the eigenvalue cor-
responding to the eigenfunction’s frequency, the transfer func-
tion value at that frequency. Taking the top of the two smooth-
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ing formulas we have

u, = (1/5) [exp{iw(n=2)) + exp{iw(n-1))} + ... + exp{iw(n+2))

= (l/s)e{iwn}[e(‘ZiU + e{-—iw} + 1 + e(iw} + e{Ziw}]

Hence the eigenvalue at the frequency w (the transfer function)
is, by elementary trigonometry, ‘

H(w) = (1/5)[2cos 2w +2cosw +1] = {sin(5/2)w}/{5 sin (1/2)w}
In the parabolic smoothing case we will get
H{(w) = (1/35)[17 + 24 cos w = 6 cOs 2w]

These are easily sketched along with the 2k + 1 smoothing by
straight line curves, Figure 14-4.

Smoothing formulas have central symmetry in their coeffi-
cients, while differentiating formulas have odd symmetry. From
the obvious formula

£(x) = (1/2)[£(x) + £(-x)] + (1/2)[£(x) - £(-x)]

we see that any formula is the sum of an odd and an even func-
tion, hence any nonrecursive digital filter is the sum of a
smoothing filter and a differentiating filter. When we have
mastered these two special cases we have the general case in
hand.

For smoothing formulas we see that the eigenvalue curve (the
transfer function) is a Fourier expansion in cosines, while for
the differentiation formula it will be an expansion in sines.
Thus we are led, given a transfer function you want to achieve,
to the problem of Fourier expansions of a given function.

 Now to a brief recapitulation of Fourier series. If .we as-
sume that the arbitrary function £(t) is represented

f(t) = ag/2 + SUM[k=1,0; {axcos t + bysin t}]

we use the orthogonality conditions (they can be found by elemen-
tary trigonometry and simple integrations)

0 for k#m
x for k =m # O
2r for k = m =

-

INT[-7,r; cos kt cos mt dt]

0
INT[-7r,7r; cos kt sin mt dt] = 0 for all m
0 for k # m,
INT[-7,x; sin kt sin mt dt] =47 for k =m # 0
0 for k=m =20

we get




(1/7) INT[£(t) cos kt dt]

ak
by = (1/7)INT[£(t) sin kt dt]
and because we used an ag/2 for the first coefficient the same
formula for ay holds for the case k = 0. In the complex notation
it is, of course, much simpler.

Next we need to prove that the fit of any orthogonal set of
functions gives the least squares fit. Let the set of orthogonal
functions be {fx(t)) with weight function w(t) > o0. or-
thogonality means

INT[w(t) fi(t)fy(t) dt] = 0 for k # m, 1/) for m = k.
As above the formal expansion will give the coefficients
Cx = Ax INT[range of orthogonality; w(t)£(t) £ (t) dt]
where the ‘
M = I/INT[w(t) £ (t) dt]

when the functions are real, and in the case of complex functions
we multiply through by the complex conjugate function.

Now consider the least squares fit of a complete set of or-
thogonal functions using the coefficients (capitals) Cx. We have

INT[w(t) (£(t) - SUM[C £ (t)}? dt > O
to minimize. Differentiate with respect‘to Cx. You get
2 INT[w(t) (£(t) - SUM[Cp £ (t)}(~f(t) dt] = 0

and we see from a rearrangement that the C, = Ckx- Hence all or-
thogonal function fits are least squares fits, regardless of the
set of orthogonal functions used.

If we keep track of the inequality we find that we will
have, in the general case, Bessel’s inequality

INT(w(t) £2(t) dt] - SUM[(1/))c?y] = least squares error

for the number of coefficients taken in the sum, and this
provides a running test for when you have taken enough terms in a
finite approximation. In practice this has proven to be a very
useful guide to how many terms to take in a Fourler expansion.
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