LECTURE 15

DIGITAL FILTERS - II

When digital filters first arose they were viewed merely as
a variant of the classical analog filters; people did not see
them as essentially new and different. This 1is exactly the same
mistake that was made endlessly by people in the early days of
computers. I was told repeatedly, until I was sick of hearing
it, that computers were nothing more than large, fast desk cal-
culators. "Anything you can do by a machine you can do by
hand.", so they said. This simply ignores the speed, accuracy,
reliability, and lower costs of the machines vs. humans. Typi-
cally a single order of magnitude change (a factor of 10)
produces fundamentally new effects, and computers are many, many
times faster than hand computations. Those who claimed that
there was no essential difference never made any significant con-
tributions to the development of computers. Those who did make
significant contributions viewed computers as something new to be
studied on their own merits and not as merely more of the same
old desk calculators, perhaps souped up a bit.

This is a common, endlessly made, mistake; people always
want to think that something new is just like the past - they
like to be comfortable in their minds as well as their bodies -
and hence they prevent themselves from making any significant
contribution to the new field being created under their noses.
Not that everything that is said to be new really is new, and it
is hard to decide in some cases when something is new, yet the
all too common reaction of, "It’s nothing new." is stupid. When
something is claimed to be new, do not be too hasty to think it
is just the past slightly improved - it may be a great oppor-
tunity for vyou to do significant things. But again it may be
nothing new.

The earliest digital filter I used, in the early days of
primitive computers, was one that smoothed first by 3’s and then
by 5’s. Looking at the formula for smoothing, the smoothing by
3’s has the transfer function

H(w) = {sin(3/2)w/3sin(w/2)}

which is easy to draw, Figure 15-1. The smoothing by 5's is the
same except that the 3/2 becomes a 5/2 and is again easy to draw.
Figure 15-1. One filter followed by the other is obviously their
product, (each multiplies the input eigenfunction by the transfer
function at that frequency), and you see that there will be three
zeros in the interval, and the terminal value will be 1/15. An
examination will show that the upper half of the frequencies were
fairly well removed by this very simple program for computing a
running sum of 3 numbers, followed by a running sum of 5 - as is
common in computing practice the divisors were left to the very
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end where they were allowed for by one multiplication, by 1/15.

Now you may wonder how, in all its detail, a digital filter
removes frequencies from a stream of numbers - and even students
who have had courses in digital filters may not be at all clear
as to how the miracle happens. Hence I propose, before going
further, to design a very simple digital filter and. show you the
inner working on actual numbers.

I propose to design a simple filter with just two coeffi-
cients, and hence I can meet exactly two conditions on the trans-
fer function. When doing theory we use the angular frequency w,
but in practice we use rotations f, and the relationship is

f = w/r (-1/2 < £ < 1/2)

Let the first condition on the digital filter be that at f =
1/6 the transfer function is exactly 1, (this frequency is to get
through the filter unaltered), and the second condition at f =
1/3 it is to be zero (this frequency is to be stopped
completely). My simple filter has the form, with the two coeffi-
cients a and b,

Yn = aupj_4q + bun + aupiq

Substituting in the eigenfunction exp{2rifn} we will get the
transfer function, and using n = 0 for convenience,

H(f) = b + 2a cos 2rf

b + a

For £ = 1/6 H(1/6) = 1 = b + 2a(1/2)

b - a

0

b + 2a(-1/2)

For £ = 1/3 H(1/3)

The solution is
a=>b=1/2

and the smoothing filter is simply

Yn = (1/2)[up 3 + up + upyq]

In words, the output of the filter is the sum of three consecu-
tive inputs divided by 2, and the output is opposite the middle
input value. [It is the earlier smoothing by 3’s except for the
coefficient 1/2.]

Now to produce some sample data for the input to the filter.
At the frequency £ = 1/6 we use a cosine at that frequency taking
the values of the cosine at equal spaced values n = 0, 1, ... '
while the second column of data we use the second frequency f =
1/3, and finally on the third column is the sum of the two other
columns and is a signal composed of the two frequencies in equal
amounts.
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n 1/6 1/3 sum

0 1 1 2
1 1/2 -1/2 0
2 -1/2 = -1/2 -1
3 -1 1 0
4 -1/2 -1/2 -1
5 1/2 -1/2 0
6 1 1 2
7 1/2 -1/2 0
8 -1/2 -1/2 -1

Let us run the data through the filter. We compute, accord-
'ing to the filter formula, the sum of three consecutive numbers
in a column and then divide their sum by 2. Doing this on the
first column you will see that each time the filter is shifted
down one line it reproduces the input function (with a multiplier
of 1). Try the filter on the second column and you will find
that every output is exactly 0, the input function multiplied by
its eigenvalue 0. The third column, which is the sum of the
first two columns, should pass the first and stop the second
frequency, and you get out exactly the first column. You can try
the 0 frequency input and you should get exactly 3/2 for every
value, if you try £ = 1/4 you should get the input multiplied by
1/2 (the value of the transfer function at £ = 1/2).

You have just seen a digital filter in action. The filter

decomposes the input signal into all its frequencies, multiplies
each frequency by its corresponding eigenvalue, (the transfer
function), and then adds all the terms together to give the out-

put. The simple linear formula of the filter does all this!

We now return to the problem of designing a filter. What we
often want ideally is a transfer function that has a sharp cutoff
between the frequencies it passes exactly (with eigenvalues 1),
and those which it stops (with eigenvalues 0). As you know, a
Fourier series can represent such a discontinuous function, but
it will take an infinite number of terms. However, we have only
a modest number available if we want a practical filter; 2k + 1
terms in the smoothing filter gives only k + 1 free coefficients,
and hence only k + 1 arbitrary conditions can be met by the cor-
responding sum of cosines.

If we simply expand the desired transfer function into a sum
of cosines and then truncate it we will get a least squares ap-
proximation to the transfer function. But at a discontinuity the
least squares fit is not what you probably think it is.

To understand what we will see at a discontinuity we must
investigate the Gibbs’ phenomena. We first recall a theorem: If
a series of continuous functions converges uniformly in a closed
interval then the 1limit function is continuous. But the 1limit
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function we want to approximate is not continuous, it has a jump
(discontinuity) between the pass and stop bands of frequencies.
No matter how many terms in the series we take, since there can-
not be a uniform convergence, we can expect(?) to see a sig-
nificant overshoot in the neighborhood of the singularity. As we
take more terms the size of the overshoot will not approach 0.

Another story. Michelson, of Michelson-Morley fame, built
an analog machine to find the coefficients of a Fourier series
out to 75 terms. The machine could also, because of the duality
of the function and the coefficients, go from the coefficients
back to the function. When Michelson did this he observed an
overshoot and asked the local mathematicians why it happened.
They all said that it was his equipment - and yet he was well
known as a very careful experimenter. Only Gibbs, of Yale, lis-
tened and looked into the matter. The simplest direct approach
is to expand a standard discontinuity, say the function

£(t) = 1 for x > 0 and -1 for x < O

into a Fourier series of a finite number of terms, rearrange
things, and then find the location of the first maximum and
finally the corresponding height of the function there. One
finds, Figure 15-2, an overshoot of 0.08949, or 8.949% overshoot,
in the 1limit as the number of terms in the Fourier series ap-
proaches infinity. Many people had the opportunity to discover
(really rediscover) the Gibbs’ phenomena, and it was Gibbs who
made the effort. It is another example of what I maintain, there
are opportunities all around and few people reach for them. As
Pasteur said, "Luck favors the prepared mind." This time the
person who was prepared to listen and help a first class scien-
tist in his troubles got the fame.

I remarked that it was rediscovered. Yes. In the 1850’s
the contradiction in Cauchy’s textbooks, that (1) a convergent
series of continuous functions converged to a continuous func-
tion (it was so stated in his book!), and (2) the Fourier -expan-
sion of a discontinuous function (also in his book) flatly con-
tradicted each other. Some people looked into the matter and
found that they needed the concept of uniform convergence. Yes,
the overshoot of the Gibbs’ phenomena occurs for any series of
continuous functions, not just to the Fourier series, and was
known to some people, but it had not diffused into common usage.
For the general set of orthogonal functions the amount of over-
shoot depends on where in the interval the discontinuity occurs,
which differs from the Fourier functions where the amount of the
overshoot is independent of where the discontinuity occurs.

We need to remind you of another feature of the Fourier
series. If the function exists (for practical purposes) then the
coefficients fall off like 1/n. If the function is continuous,
Figure 15-3, (the two - -extreme end values must be the same) agd
the derivative exists then the coefficients fall off like 1/n%;
if the first derivative is continuous and the second derivative
exists then they fall off like 1/n3; if the second derivative is
continuous and the third derivative exists then 1/n®°. etc. Thus
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the rate of convergence is directly observable from the function
along the real line =- which is not true for the Taylor series
whose convergence is controlled by singularities which may lie in
the complex plane.

Now we return to our design of a smoothing digital filter
using the Fourier series to get the leading terms. We see that
the least squares fit has trouble at any discontinuity =~ there is
a nasty overshoot in the transfer function for any finite number
of terms, no matter how far out we go.

To remove this overshoot we first examine the Lanczos’ win-
dow, also called a "box car", or a "rectangular" window. Lanczos
reasoned that if he averaged the output function over an interval
of the length of a period of the highest frequency present, then
this averaging would greatly reduce the ripples. To see this in
detail we take the Fourier series expansion truncated at the N-th
harmonic, and integrate about a point t in a symmetric interval
of length 1/N of the whole interval. Set up the integral for the
averaging,

(N/2r) INT[(x~-r/N, x+r/N; g(s) ds]
= (N/2m)INT[{ag/2 + SUM[1,N;{ap cos ks + by sin ks])ds]
We now do the integrations,
= ap/2 + (N/27)SUM[1,N; (ay/k)sin ks - (byp/k)cos ks]|x+r/N,x-r/N

apply a little trigonometry for the difference of sines and
cosines from the two limits,

= ag/2 + SUM[1,N;{ay cos kx + by sin kx]}([{sin (rk/N)/(zxk/N)}]

and you come out with the original coefficients multiplied by the
so called sigma factors

o(N,k) = sin(rk/N)/ (zk/N)

An examination of these numbers as a function of k, (N being
fixed and is the number of terms you are keeping in the Fourier
series), you will find that at k = 0 the sigma factor is 1, and
the sigma factors fall off until at k = N they are 0. Thus they
are another example of a window. The effecct of the Lanczos’
window is to reduce the overshoot to about 0.01189, (by about a
factor of 7), and the first minimum to 0.00473, (by about a fac-
tor of 10), which is a significant but not complee reduction _of
the Gibbs’ phenomenon. ~

But back to my adventures in the matter. I knew, as you do,
that at the discontinuity the truncated Fourier expansion takes
on the mid-value of the two limits, one from each side. Thinking
about the finite, discrete case, I reasoned that instead of
taking all 1 values in the pass band and 0 values in the stop
band, I should take 1/2 at the transition value. Lo, and behold,
the transfer function becomes




[(sin Nx)/2Nsin x/2]cos x/2
and now has an extra factor (back in the rotational notation)
cos(wf)

and the N + 1 in the sine term goes to N as well as the
denominator N + 1 going to N. Clearly this transfer function is
nicer than the Lanczos’ as a low pass filter since it vanishes at
the Nyquist frequency, and further dampens all the higher
frequencies. I looked around in books on trigonometric series and
found it in only one, Zygmund’s two volume work where it was
called the modified series. The extra "being prépared" did not
necessarily pay off this time in a great result, but having found
it myself I naturally reasoned that using even more modification
of the coefficients of the Fourier series, (how much and where
remained to be found), I might do even better. In short, I saw
more clearly what "windows" were, and was slowly led to a closer
examination of their possibilities.

A still third approach to the important,ﬁhé/Gibbs’ phenomena
is via the problem of combining Fourier series. Let g(x) be,
(and we are using the neutral variable x for a good reason)

g(x) = SUM[-o0,00; Cj exp{ikx}]
and another function be
h(x) = SUM[-o00,00; d, exp{imx}]

The sum and difference of g(x) and h(x) are clearly the cor-
responding series with the sum or difference of the coefficients.

The product is another matter. Evidently we will have
again a sum of exponentials, and setting n = k + m we will have
the coefficients as indicated

g(x)h(x) = SUM[n=-c0,00; SUM[k=-o00,00; Cxdn-x] exp{inx}]

The coefficient of exp{inx), which is a sum of terms, is called
the convolution of the original arrays of coefficients.

In the case where there are only a few nonzero coefficients
in the cj coefficient array, for example, say symmetrically
placed about 0, we will have for the coefficient

SUM[-K,K; cpd,_y]

and this we recognize as the original definition of a digital
filter! Thus a filter is the convolution of one array by
another, and that in turn is merely the multiplication of the
corresponding functions! Multiplication on one side is convolu-
tion on the other side of the equation.

As an example of the use of this observation, suppose, as
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often occurs, that there is potentially an infinite array of
data, but that we can record only a finite number of them, (for
example, turning on or off a telescope while looking at the
stars). This function u, is being looked at through the rectan-
gular window of all 0’s outside a range of (2N + 1) 1’s - the
value 1 where we observe and the value 0 where we do not observe.
When we try to compute the Fourier expansion of the original ar-
ray from the observed data we must convolve the original coeffi-
cients by the coefficients of the window array,

exp{-iNx} + exp{-i(N-1)x} + ... + exp(0) + ... + exp{iNx}

Generally we want a window of unit area, so we need, finally, to
divide by (2N + 1). The array is a geometric progression with
the starting value of exp{-iNx}, and constant ratio of exp{ix},

exp{=-iNx}[1 - exp{i(2N+1)x}]1/[1 - exp{ix}](2N+1) =
= sin{(N + 1/2)x)}/(2N+1)sin(x/2)

At x = 0 this takes on the value 1, and otherwise oscillates
rapidly due to the sine function in the numerator, and decays
slowly due to the increase of the sine in the denominator (the
range in x is (-rr). Thus we have the typical diffraction pat-
tern of optics.

In the continuous case, before sampling, the situation is
much the same but the rectangular window we look through has the
transform of the general form (ignoring all details)

(sin x)/x

and the convolution of a step function (a discontinuity) with it
" will, upon inspection, be the Gibbs’ phenomena. Figure 15-2.
Thus we see the Gibbs’ phenomena overshoot in another light.

Some rather difficult trigonometric manipulation will
directly convince you that whether we sample the function and
then limit the range of observations, or limit the range and then
sample, we will end up with the same result; theory will tell
you the same thing.

The simple modification of the discrete Lanczos’ window by
changing only the outer two coefficients from 1 to 1/2 produced a
much better window. The Lanczos’ window with its sigma factors
modified all the coefficients, but its shape had a corner at the
ends, and this means, due to periodicity, that there are two dis-
continuity in the first derivative of the window shape - hence
slow convergence. If we reason that using weights on the coeffi-
cients of the raw Fourier series of the form of a _raised cosine

Wy = (1 + cos rk/N)/2

then we will have something like the Lanczos’ window but now
there will be greater smoothness, hence more rapid convergence.




Writing this out in the exponential form we find that the
weights on the exponentials are

1/4, 1/2, 1/4

This is the von Hann window - smoothing in the domain of the data
with these weights is equivalent to windowing (multiplying) in
the frequency domain. Actually I had rediscovered the wvon Hann
window in the early days of our work in power spectra, and later
John Tukey found that von Hann had used it long, long before in
connection with economics. An examination of what it does to the
signal shows that it tails off rapidly, but has some side lobes
through which other parts of the spectrum "leak in".

We were at times dealing with a spectrum that had a strong
line in it, and when looking elsewhere in the spectrum through
the von Hann window its side lobes might let in a lot of power.
The Hamming window was devised to make the maximum side lobe a

minimum. The cost is that there is much more total leakage in
the mean square sense, but a single strong line is kept under
control. If you call the von Hann window a "raised cosine" with
weights

1/4, 1/2, 1/4

the the Hamming window is a "raised cosine on a platform" with
weights

(Figure 15-4). Actually the weights depend on N, the length of
data, but so slightly that these constants are regularly used for
all cases. The Hamming window has a mysterious, hence popular,
aura about it with its peculiar coefficients, but it was designed
to do a particular job and is not a universal solution to all
problems. Most of the time the von Hann window is preferable.
There are in the literature possibly 100 various windows, each
having some special merit, and none having all the advantages you
may want.

To make you a true insider in this matter I must tell you
yet another story. I used to tease John Tukey that you are
famous only when your name was spelled with a lower case letter
such as watt, ampere, volt, fourier (sometimes), and such. When
Tukey first wrote up his work on Power Spectra, he phoned me from
Princeton and asked if he could use my name on the Hamming win-
dow. After some protesting on the matter, I agreed with his
request. The book came out with the name "hamming”! There I am!

It must be your friends, in some sense, who make you famous
by quoting and citing you, and it pays, so I claim, to be helpful
to others as they try to do their work. They may in time give
you credit for the work, which is better than trying to claim it
yourself. Cooperation is essential in these days of complex
projects; the day of the individual worker is dying fast. Team
work is more and more essential, and hence learning to work in a
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team, indeed possibly seeking t places where you can help
others, is a good idea. In any c¢ase the fun of working with good
people on imporant problems isdwqre pleasure than the resulting
fame. And the choice of impox problems means that generally
management will be willing to sUpply all the assistance you need.

In my many years of doing computing at Bell Telephone
Laboratories I was very careful never to write up a result that
involved any of the physics of the situation lest I get a reputa-
tion for "stealing other’s ideas". 1Instead I let them write up
the results,and if they wanted me to be a co-author, fine! Team-
work implies a very careful consideration for others and their
contributions, and they may see their contributions in a differnt
light than you do!
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