LECTURE 16
DIGITAL FILTERS - III

We are now ready to consider the systematic design of non-
recursive filters. The design method is based on the Figure 16-
1, which has 6 parts. On the upper left is a sketch of the ideal
filter you wish to have. It can be a low pass, a high pass, a
band pass, a band stop, a notch filter, or even a differen-
tiator. For other than differentiator filters you usually want
either 0 or 1 as the height in the various intervals, while for
the differentiator you want iw since the derivative of the eigen-
function is

d/dt[exp{iwt)}] = iwexp{iwt)

hence the desired eigenvalues are the coefficient iw. For a dif-
ferentiator there is likely to be a cutoff at some frequency be-
cause, as you can see, differentiation magnifies, multiplies by
w, and is larger at the high frequencies, which is where the
noise usually is, Figure 16-2. See also Figure 15-2.

The coefficients of the corresponding formal Fourier series
are easily computed since the integrands of their expressions are
straightforward, (using integration by parts when you have a
derivative). Suppose we represent the series in the form of the
complex exponentials. Then the coefficients of the filter are
just the Fourier coefficients of the corresponding exponential
terms. On the upper right of Figure 16-1 we have a sketch of the
coefficients, symbolically, (they are, of course, complex
numbers) .

Next, we must truncate the infinite Fourier series to 2N + 1
terms, (meaning use a rectangular window), shown just below in
Figure 16-1, with the corresponding Fourier representation on the
left showing the Gibbs’ effect.

Third, we then choose a window to remove the worst of this
Gibbs’ effect. The windowed coefficients are shown on the lower
right, with the corresponding final digital filter on the lower
left. In practice, you should round off the filter coefficients
before evaluating the transfer function so that their effect will
be seen.

In the method as sketched above, you must choose both the N,
the number of terms to be kept, and the particular window shape,
and if what you get does not suit you then you must make new
choices. It is a "trial and error" design method.

J. F. Kaiser has given a design method that finds both the N
and the member of a family of windows to do the job. You have to
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specify two things beyond the shape: the vertical distance you
are willing to tolerate missing the ideal, 1labeled §, and the
transition width between the pass and stop bands, 1labeled AF,
Figure 16-3.

For a bahd pass filter, with £, as the band pass and fg as
the band stop frequencies, the sequegce of design formulas ls.

N > (A - 7.95)/28.72AF (N = an integer)

If N is too big you stop and reconsider your design. Otherwise
you go ahead and compute in turn:

0.1102(A - 8.7) 50 < A
a = 0.5842(A - 21)9°4 + 0.07886(A - 21) 21 < A < 50
0 A< 21

(this is plotted in Figure 16-4). The original Fourier coeffi-
cients for a band pass filter are given by:

cp = 2(fg - £y)
Cx = (1/7k)[sin 27kfg - sin erp] (k =1, 2, ..., N)

These coefficients are to be multiplied by the corresponding
weights wy of the window

we = Iglav{l = (k/N)2)/Ig () (k| < N), and 0 else
where
Io(x) = 1 + SUM[n=1,00; [(x/2)%/n!]?

Iop(x) is the pure imaginary Bessel function of order 0. For com-
putlng it you will need comparatively few terms as there is an n!
squared in the denominator and hence the series converges
rapidly. I5(x) is best computed recur51vely, for a given x the
successive terms of the series are given by

[ (x/2)/n])%up_y

where ug = 1.
For a low pass or a high pass one of the two frequencies f_ or Ps
has the limit possible for it. For a band stop filter thgre are
slight changes in the formulas for the coefficients c,.

Let us examine Kaiser’s window coefficients, the wp.
Igla)/Ig(a) =1
I9(0)/Ig(a) = 1/Ig(a)
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As we examine these numbers we see that they have, for a > 0,
something like the shape of a raised cosine

a + b cos x

and resemble the von Hann and Hamming windows. There is a

"platform" when A > 21. For A < 21 then a = 0, all the wp, = 1
and it is a Lanczos’ type window. As A increases the platform
gradually appears. Thus the Kaiser window has properties like

many of the more popular ones, and the particular window you use
is determined from your specifications via his window rather than
by guess or prejudice.

How did Kaiser find the formulas? To some extent by trial
and error. He first assumed that he had a single discontinuity
and he ran a large number of cases on a computer to see both the
rise time AF and the ripple height §. With a fair amount of
thinking, plus a touch of genius, and noting that as a function
of A, as A increases we pass from a Lanczos’ window, (A < 21), to
a platform of increasing height, 1/Ij(a). Ideally he wanted a
prolate spheroidal function but he noted that they are accurately
approximated, for his values, by the I4(x). He plotted the
results and approximated the functions. I asked him how he got
the exponent 0.4. He replied he tried 0.5 and it was too large,
and 0.4, being the next natural choice, seemed to fit very well.
It is a good example of using what one knows plus the computer as
an experimental tool, even in theoretical research, to get very
useful results.

Kaiser’s method will fail you once in a while because there
will be more than one edge (indeed, there is the symmetric image
of an edge on the negative part of the frequency line) and the
ripples from different edges may by chance combine and make the
filter ripples go beyond the designated amount. In this case,
which seldom arises, you simply repeat the design with a smaller
tolerance. The whole program is easily accommodated on a primi-
tive hand held programmable computer like the TI-59, let alone on
a modern PC.

We next turn to the finite Fourier series. It is a remark-
able fact that the Fourier functions are orthogonal, not only
over a line segment, but for any discrete set of equally spaced
points. Hence the theory will go much the same, except that
there can be only as many coefficients determined in the Fourier
series as there are points. In the case of 2N points, the common
case, there is one term of the highest frequency only, the cosine
term, (the sine term would be identically zero at the sample
points). The coefficients are determined as sums of the data
points multiplied by the appropriate Fourier functions. The
resulting representation will, within roundoff, reproduce the
original data.

To compute an expansion it would look like 2N terms eac%
with 2N multiplications and additions, hence something like (2N)
operations of multiplication and addition. But using both: (1)
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the addition and subtraction of terms with the same multiplier
before doing the multiplications, and (2) producing higher
frequencies by multiplying lower ones, the Fast Fourier Transform
(FFT) has emerged requiring about N log N operations. This
reduction in computing effort has greatly transformed whole areas
of science and engineering - what was once impossible in both
time and cost is now routinely done.

Now for ancther story from life. You have all heard about
the Fast Fourier Transform, and the Tukey-Cooley paper. It is
sometimes called the Tukey-Cooley transform, or algorithm. Tukey
had suggested to me, sort of, the basic ideas of the FFT. I had
at that time an IBM Card Programmed Calculator (CPC), and the
"butterfly" operation meant that it was completely impracticable
to do with the equipment I had. Some years later I had an inter-
nally progammed IBM 650 and he remarked on it again. All I
remembered was that it was one of Tukey’s few bad ideas; I com-
pletely forgot why it was bad - namely because of the equipment I
had at that time. So I did not do the FFT, though a book I had
already published (1961) shows that I knew all the facts neces-
sary, and could have done it easily!

Moral: when you know that something cannot be done, also
remember the essential reason why, so that later, when the cir-
cumstances have changed, you will not say, "It can’t be done."
Think of my error! How much more stupid can anyone be? For-
tunately for my ego, it is a common mistake, (and I have done it
more than once), but due to my goof on the FFT I am very sensi-
tive to it now. I also note when others do it - which is all too
often! Please remember the story of how stupid I was and what I
missed, and not make that mistake yourself. When you decide that
something is not possible, don’t say at a later date that it is
still impossible without first reviewing all the details of why
you originally were right in saying it couldn’t be done.

I must now turn to the delicate topic of power spectra,
which is the sum of the squares of the two coefficients of a
given frequency in the real domain, or the square of the absolute
value in the complex notation. An examination of it will con-
vince you that this quantity does not depend on the origin of the
time, but only on the signal. itself, contrary to the dependence
of the coefficients on the location of the origin. The spectrum
has played a very important role in the history of science and
engineering. It was the spectral lines that opened the black box
of the atom and allowed Bohr to see inside. The newer Quantum
Mechanics, starting around 1925, modified things slightly to be
sure, but the spectrum was still the key. We also regularly
analyse black boxes by examining the spectrum of the input and
the spectrum of the output, along with correlations, to get an
understanding of the insides - not that there is always a unique
insides, but generally we get enough clues to formulate a new
theory.

Let us analyse carefully what we do and its implications,
because what we do to a great extent controls what we can see.
There is, usually, in our imaginations at least, a continuous
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signal. This is usually endless, and we take a sample in time of
length 2L. This is the same as multiplying the signal by a
Lanczos’ window, a box car if you prefer. This means that the
original signal is convolved with the corresponding function of
the form (sin x)/x function, Figure 16-5, - the longer the signal
the narrower the (sin x)/x loops are. Each pure spectral line is
smeared out into its (sin x)/x shape.

Next we sample at equal spaces in time, and all the higher
frequencies are aliased into lower frequencies. It is an obvious
that interchanging these two operations, and sampling and then
limiting the range, will give the same results - and as I earlier
said I once carefully worked out all the algebraic details to
convince myself that what I thought had to be true from theory
was indeed true in practice.

Then we use the FFT, which is only a cute, accurate, way of
getting the coefficients of a finite Fourier series. But when we
assume the finite Fourier series representation we are making the
function periodic - and the period is exactly the sampling inter-
val size times the number of samples we take! This period has
generally nothing to do with the periods in the original signal.
We force all nonharmonic fregquencies into harmonic _ones - we
force a continuous spectrum to be a line spectrum! This forcing
is not a local effect, but as you can easily compute, a nonhar-
monic frequency goes into all the other frequencies, most
strongly into the adjacent ones of course, but nontrivially into
more remote frequencies.

I have glossed over the standard statistical trick of remov-
ing the mean, either for convenience, or because of calibration
reasons. This reduces the amount of the zero frequency in the
spectrum to 0, and produces a significant discontinuity in the
spectrum. If you later use a window, you merely smear this
around to adjacent frequencies. In processing data for Tukey I
regularly removed linear trend lines and even trend parabolas
from some data on the flight of an airplane or a missile, and
then analyzed the remainder. But the spectrum of a sum of two
signals is not the sum of the spectra - not by a long shot!- When
you add two functions the individual frequencies are added al-
gebraically, and they may happen to reinforce or cancel each
other, and hence give entirely false results! No one I know has
any reasonable reply to my objections here - we still do it
partly because we do not know what else to do - but the trend
line has a big discontinuity at the end (remember we are assuming
that the functions are all periodic) and hence its coefficients
fall off like 1/k, which is not rapid at alll!

Let us turn to theory. Every spectrum of real noise falls
off reasonably rapidly as you go to infinite frequencies, or
else it would have infinite energy. Figure 16-6. But the sam-
pling process aliases the higher frequencies into lower ones, and
the folding as indicated, tends to produce a flat spectrum -
remember that the frequencies when aliased are algebraically
added. Hence we tend to see a flat spectrum for noise, and if it
is flat then we call it white noise. The signal, usually, is
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mainly in the lower frequencies. This is true for several
reasons, including the reason that "over sampling" (sampling more
often than is required from the Nyquist theorem), means that we
can get some averaging to reduce the instrumental errors. Thus
the typical spectrum will look as shown in the Figure 16-6.
Hence the prevalence of low pass filters to remove the noise. No
linear method can separate the signal from the noise at the same
frequencies, but those beyond the signal can be so removed by a
low pass filter. Therefore, when we "over sample" we have a
chance to remove more of the noise by a low pass filter.

Remember, there is the implicit understanding that we are
processing a linear system. The o0ld stock market Fourier
analysis that revealed that there was only white noise was inter-
preted to mean that there was no way of predicting the future
prices of the stocks - and this is correct only if you intend to
use simple linear predictors. It says nothing about the practi-
cal use of nonlinear predictors, however. Once again a wide
spread misinterpretation of a result because of a lack of under-
standing of the basics behind the mathematical tool, and only
knowing the tool itself. A little knowledge is a dangerous thing
- especially if you lack the fundamentals!

I carefully said in the opening talk on digital filters that
I thought at that time I knew nothing about them. What I did not
know was that, because I was then ignorant of recursive digital
filter design, I had effectively created it when I examined
closely the theory of predictor-corrector methods of numerically
solving ordinary differential equations. The corrector is prac-
tically a recursive digital filter!

While doing the study on how to integrate a system of ordi-
nary differential equation numerically I was unhampered by any
preconceived ideas about digital filters, and I soon realized
that a bounded input, in the words of the filter experts, could
produce, if you were integrating, an unbounded output - which
they said was unstable, but clearly it is just what you must have
if you are to integrate; even a constant will produce a linear
growth in the output. Indeed, when later I faced integrating
trajectories down to the surface of the moon where there is no
air, hence no drag, hence no first derivatives explicitly in the
equations, and wanted to take advantage of this by using a
suitable formula for numerical integration, I found that I had
to have a quadratic error growth; a small roundoff error in the
computation of the acceleration would not be corrected and would
lead to a quadratic error in position: an error in the accelera-
tion produces a quadratic growth in position. That is the nature
of the problem, unlike on earth where the air drag provides some
feedback correction to the wrong value of the acceleration and
hence some correction to the error in the position. Thus I have
to this day the attitude that stability in digital filters means
"not exponential growth" from bounded inputs, but allows polyno-
mial growth, and this is not the standard stability criterion
derived from classical analog filters, where if it were not
bounded you would melt things down - and anyway they had never
really thought hard about integration as a filter process.
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We will take up this important topic of recursive filters,
which are necessary for integration, in the next Lecture.
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