LECTURE 20

SIMULATION-III

I will continue the general trend of the last lecture, but
center on the old expression '"garbage in, garbage out", often
abbreviated GIGO. The idea is that if you put ill-determined
numbers and equations (garbage) in then you can only get ill-
determined results (garbage) out. By implication the converse is
tacitly assumed, if what goes in is accurate then what comes out
must be accurate. I shall show that both of these assumptions
can be false.

Because many simulations still involve differential equa-
tions we begin by considering the simplest first order differen-
tial equations of the form

y' = £(x,Y)

You recall that a direction field is simply drawing at each point
in the x-y plane a line element with the slope given by the dif-
ferential equation. Figure 20-1. For example, the differential
equation
y' = x* + y? y(0) =1
has the indicated direction field. Figure 20-2. On each of the
concentric circles

x% + y2 =k
the slope is always the same, the slope depending on the value of
k. These are called isoclines.

Looking at the following picture, Figure 20-3, the direction
field of another differential equation, on the left you see a
diverging direction field, and this means that small changes in
the initial starting values, or small errors in the computing,
will soon produce large differences in the values in the middle
of the trajectory. But on the right hand side the direction
field is converging, meaning that large differences in the middle
will lead to small differences on the right end. In this single
example you see both that small errors can become large ones, and
that large ones can become small ones, and furthermore, that
small errors can become large and then again become small. Hence
the accuracy of the solution depends on where you are talking
about it, not any absolute accuracy over all. The function behind
all this is :

y(x) = exp(-x?)
whose differential equation is, upon differentiating,
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Yy (x) = =-2x% exp{-xz} = =2xy(X%).

Probably in your mind, you have drawn a "tube" about the
"true, exact solution" of the equation, and seen that the tube
expands first and then contracts. This is fine in two dimen-
sions, but when I have a system of n such differential equations,
28 in the Navy intercept problem mentioned earlier, then these
tubes about the true solutions are not exactly what you might
think they were. The four circle figure in two dimensions, lead-
ing to the n-dimensional paradox by ten dimensions, Lecture 9,
shows how tricky such imagining may become. This is simply
another way of looking at what I said in earlier. Lectures about
stable and unstable problems; but this time I am being more
specific to the extent that I am using differential equations to
illustrate matters.

How do we numerically solve a differential equation? Start-
ing with only one first order ordinarily differential-equation of
first degree, we imagine the direction field. Our problem is
that from the initial value, which we are given, we want to get
to the next nearby point. If we take the local slope from the
differential equation and move a small step forward along the
tangent line then we will make a only small error. Figure 20-4.
Using that point we go to the next point, but as you see from the
Figure we gradually depart from the true curve because we are al-
ways using "the slope that was", and not a typical slope in the
interval. To avoid this we "predict" a value, use that value to
evaluate the slope there, (use the diferential equation), and
then use the average slope of the both ends to estimate the
average slope to use, Figure 20-5. Then using this average slope
we move the step forward again, this time using a "corrector"
formula. If the predicted and corrected values are '"close" then
we assume that we are accurate enough, but if they are far apart
then we we must shorten the step size. If the difference is too
small then we should increase the step size. Thus the tradi-
tional "predictor-corrector" methods have built into them an
automatic mechanism for checking the step-by-step error - but
this step-by-step error is, of course, not the whole accumulated
error by any means! The accumulated error clearly depends on the
convergence or divergence of the direction field.

We used simple straight lines for both predicting and cor-
recting. It is much more economical, and accurate, to use higher
degree polynomials, and typically this means about fourth degree
polynomials, (Milne, Adams-Bashforth, Hamming, etc.). Thus we
must use several old values of the function and derivative to
predict the next value, and then using this in the differential
equation we get an estimated new slope, and with this slope plus
using old values of the function and slope, we correct the value.
A moment’s thought and you see that the corrector is just a
recursive digital filter where the input data are the deriva-
tives, and the output values are the positions. Stability and
all that we discussed there are relevant. As mentioned before,
there is the extra feedback through the differential equation’s
predicted value that goes into the corrected slope. But both are
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simply solving a difference equation - recursive digital filters
are simply this formula and nothing more. They are not just
transfer functions as your course in digital filters might have
made you think; plainly and simply, you are computing numbers
coming from a difference equation. There is a difference
however. In the filter you are strictly processing by a linear
formula, but because in the differential equation there is the
nonlinearity that arises from the evaluation of the derivative
terms, it is not exactly the same as a digital filter.

If you have n differential equations then you are dealing
with a vector with n components; you predict each component for-
ward, evaluate each of the n derivatives, correct each predicted
value, and finally take the step, or reject it if the error is
too large in a sense you think fairly measures the local error.
You tend to think about small errors as a "tube" surrounding the
actual computed trajectory, but again you need to remember the
four circle paradox that in a high dimension the "tubes" are not
at all like you wish they were.

Now let me note a significant difference between the two ap-
proaches, numerical analysis and filter theory. The classical
methods of numerical analysis, and still about the only one you
will find in the accepted texts, use polynomials to approximate
functions, but the recursive filter used frequencies as the basis
for evaluating the formula! This is a different thing entirely!

To see this difference suppose we are to build a simulator
for humans landing on Mars. The classical formulas will con-
centrate on the trajectory shape in terms of local polynomials,
and the path will have small discontinuities in the acceleration
as we move from interval to interval. In the frequency approach
we will concentrate on getting the frequencies right and let the
actual positions be what happen. Ideally the trajectories are
the same; practically they can be quite different.

Which solution do you want? The more you think about it the
more you realize that the pilot in the trainer will want to get
the "feel" of the landing vehicle, and this seems to mean that
the frequency response of the simulator should feel right to the
pilot. If the position is a bit off, then the feedback control
during landing can compensate for this, but if it feels wrong in
. the actual flight then the pilot is going to be bothered by the
new experience which was not in the simulator. It has always
seemed to me that the simulator should prepare the pilots for the
actual experience as best we can (we cannot fake out for long the
lower gravity of Mars), so that they will feel comfortable when
the real event occurs, having experienced it many times in the
trainer. But the fact is that we know far too little of what the
pilot "feels" (senses). Does the pilot feel only the Fourier
real frequencies, or maybe they also feel the decaying Laplace
complex frequencies, (or should we use wavelets?). Do different
pilots feel the same kinds of things? We need to know more than
we apparently now do about this important design criterion.

The above 1is the standard conflict between the
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mathematician’s and engineer’s approaches. Each has a different
aim in solving the differential equations (and in many other
problems), and hence they get different results out of their cal-
culations. If you are involved in a simulation then you see that
there can be highly concealed matters that are important in prac-
tice, but that the mathematicians are unaware of and they will
deny that the effects matter. But looking at the two trajec-
tories I have crudely drawn, Figure 20-6, the top curve is ac-
curate in position but the corners will give a very different
"feel" than reality will, and the second curve will be more wrong
in position but more right in "feel". Again, you see why I
believe that the person with the insight into the problem must
get deep inside the solution methods and not accept traditional
methods of solution.

I now turn to another story about the early days of Nike
guided missile testing. At this point they were field testing at
White Sands what was called "the telephone pole tests". They
were simply firings where the missile was to follow a -preassigned
trajectory, and at the last moment explode so that the whole
would not come down outside the range and do great damage, rather
that the parts would more gently fall to the ground in the range
and supposedly do less harm. The object of the tests was to get
realistic measurements of drag, 1lift, and other properties as
functions of altitude and velocity, for purposes of settling the
details of the design as well as for improving the design.

I found my friend back at the Labs wandering around the
halls looking quite unhappy. Why? Because the first two of some
six test shots have broken up in mid-flight and no one knew why.
The delay meant that the data to be gathered to enable us to go
to the next stage of design was not available and hence the whole
project was in serious trouble. I observed to him that if he
would give me the differential equations describing the flight I
would put a girl on the job of hand calculating the solution,
(big computers were not readily available in the late 40’s). 1In
about a week they delivered seven first order equations, and the
girl was ready to start. But what are the starting conditions
just before the trouble arose? (I did not in those days have the
computing capacity to do the whole trajectory rapidly.) They
didn’t know! The telemetered data was not clear just before the
failure. I was not surprised, and it did not bother me much. So
we used the guessed altitude, slope, velocity, angle of attack,
etc. one for each of the seven variables of the trajectory:; one
condition for each equation. Thus I had garbage in. But I had
earlier realized the nature of the field trials being simulated
was such that small deviations from the proposed trajectory would
be corrected automatically by the guidance system! I was dealing
with a strongly convergent direction field.

We found that both pitch and yaw were stable but that as
each one settled down it threw more energy into the other; thus
there was not only the traditional stability oscillations in
pitch and yaw, but due to the rotation of the missile about its
long axis there was a periodic transfer of increasing energy be-
tween them. Once the computer curves for even a short length of
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the trajectory were shown everyone realized immediately that they
had forgotten the cross connection stability, and they knew how
to correct it. Now that we had the solution they could then also
read the hashed up telemetered data from the trials and check
that the period of the transfer of energy was just about correct
- meaning that they had supplied the correct differential equa-
tions to be computed. I had little to do except to keep the girl
on the desk calculator honest and on the job. My real contribu-
tion was: (1) the realization that we could simulate what had
happened, which is now routine in all accidents but was novel
then, and (2) the recognition that there was a convergent direc-
tion field so that the initial conditions need not be known ac-
curately.

My reason for telling you the story is to show you that GIGO
need not be right. Another example comes from my earliest Los
Alamos experience on bomb simulation. I gradually came to real-
ize that behind the computation was fairly inaccurate data for
computing the equation of state, which relates pressure to den-
sity, (and temperature which I will ignore for the moment).
Data from high pressure labs, from estimates from earthquakes,
from estimates from the density of the cores of stars, and
finally from the asymptotic theory of infinite pressures were
plotted as a set of points on a very large piece of graph paper,
Figure 20~7. Then large French curves were used to draw a curve
connecting the thinly scattered points. We then read this curve
to 3 1/3 decimal places, meaning we guessed at a 5 or a 0 in the
fourth place. We used those numbers to subtabulate a five digit
table, and at places in the table to six digit numbers, which
were then the official data for the actual computations we ran.
I was at that time, as I earlier said, sort of a janitor of com-
puting, and my Jjob was to keep things going to free the
physicists to do their job.

At the end of the war I stayed on at Los Alamos an extra six
months, and one of the reasons was that I wanted to know how it
was that such inaccurate data could have led to such accurate
predictions for the final design. With, at last, time to think
for long periods, I found the answer. In the middle of the com-
putations we were using effectively second differences; the first
differences gave the forces on each shell on one side, and the
differences from the adjacent shells on the two sides gave the
resultant force moving the shell. We had to take thin shells,
hence we were differencing numbers which were very close to each
other and hence the need for many digits in the numbers. But
further examination showed that as the device goes off, any one
shell went up the curve and possibly at least partly down again,
so that any local error in the equation of state was ap-
proximately averaged out over its history. What was important to
get from the equation of state was the curvature, and as already
noted even that had only to be on the average correct. Hence
garbage in, but accurate results out never-the-less!

These examples show what was loosely stated before; if there
is feedback in the problem for the numbers used, then they need
not necessarily be accurately known. Just as in H. S. Black’s
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great insight of how to build feedback amplifiers, Figure 20-8,
so long as the gain 1is very high only the one resistor in the
feedback loop need be accurately chosen, all the other parts
could be of low accuracy. From the Figure 20-8 you have the
equation

input output
[y + (1/10)x](-10%) = x
10%y = [-x - 108x)
x = - 10y/[1 + 1078]

We see that almost all the uncertainty is in the one resistor of
size 1/10, and the gain of the amplifier, (-10'9), need not be
accurate. Thus the feedback of H. S. Black allows us to ac-
curately build things out of mostly inaccurate parts.

You see now why I cannot give you a nice, neat formula for
all situations; it must depend on how the particular quantities
go through the whole of the computation; the whole computation
must be understood as a whole Do the inaccurate numbers go
through a feedback situation where their errors will be compen-
sated for, or are they vitally out in the open with no feedback
protection? The word "vitally" because it is vital to the com-
putation, if they are not in some feedback position, to get them
accurate.

Now this fact, once understood, impacts design! Good design
protects you from the need for too many highly accurate com-
ponents in the system. But such design principles are still, to
this date, ill-understood and need to be researched extensively.
Not that good designers do not understand this intuitively,
merely that it is not easily incorporated into the design methods
that you were taught in school. Good minds are still needed in-
spite of all the computing tools we have developed. But the best
mind will be the one who gets the principle into the design
methods taught so that it will be automatically available for
lesser minds!

I now look at another example, and the principle that
enabled me to get a solution to an important problem. I was
given the differential equation

y" = sinh y - k¥, (0.1 < k < 10), y(0) = 0O, y(co) ~ 1n 2kx

You see immediately that the condition at infinity is really the
right hand side of the differential equation equated to 0. Figure
20-9,

But consider the stability. If the y at any fairly far out
point gets a bit too large, then the sinh y is much too large,
the second derivative is then very positive, and the curve shoots
off to plus infinity. Similarly, if the y is too small the curve
shoots off to minus infinity. And it does not matter which way
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you go, left to right, or right to left. 1In the past I had used
the obvious trick when facing a divergent direction field of
simply integrating in the opposite direction and you get an ac-
curate solution. But in the above problem you are, as it were,
walking the crest of a sand dune, and once both feet are one side
of the crest you are bound to slip down.

You can probably believe that while I could find a decent
power series expansion, and an even a better non-power series ap-
proximate expansion around the origin, still I would be in
trouble as I got fairly well along the solution curve, especially
for large Kk. All the analysis I, or my friends, could produce
was inadequate. So I went to the proposers and first objected to
the condition at infinity, but it turned out that the distance
was being measured in molecular layers, and (in those days) any
realistic transistor would have effectively an infinity number of
layers. I objected then to the equation itself; how could it
represent reality? They won again, so I had to retreat to my of-
fice and think.

It was an important problem in the design and understanding

of the transistors then being developed. I had always claimed
that if the problem was important and properly posed then I could
get some kind of a solution. Therefore, I must find the

solution; I had no escape if I were to hold on to my pride.

It took some days of mulling it over before I realized that
the very instability was the clue to the method to use. I would
track a piece of the solution, using the differential analyzer I
had at that time, and if the solution shot up then I was a bit
too high in my guess at the corresponding slope, and if it shot
down I was a bit too low. Thus piece by piece I walked the crest
of the dune, and each time the solution slipped on one side or
the other I knew what to do to get back on the track. Yes,
having some pride in your ability to deliver what is needed is a
great help in getting important results under difficult condi-
tions. It would have been so easy to dismiss the problem as in-
soluble, wrongly posed, or any other excuse you wanted to tell
yourself, but I still believe that important problems properly
posed can be used to extract some useful knowledge that is
needed. A number of space charge problems I have computed showed
the same difficult instability in either direction.

I need to introduce for the next story the idea of a
Rorschach test which was popular in my youth. A blob of ink is
put on a piece of paper, it is squeezed on a fold, and when it is
opened you have a symmetric blot with essentially a random shape.
A sequence of these blots is shown to the subject and they are
asked to report on what they see. Their answers were used to
analyse the "personality" of the person. Obviously what a person
reports is a figment of their imagination since the blot is es-
sentially a random shape. It is like watching the clouds in the
sky and discussing what the shapes they resemble; it is your im-
agination and not reality that you are discussing, and as such it
is, to some extent, revealing things about yourself and not about
the clouds. I believe the ink blot method is no longer in use.
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Now to the next story. A psychologist friend at Bell
Telephone Laboratories once built a machine with about 12
switches and a red and a green light. You set the switches,
pushed a button, and either you got a red or a green light.
After the first person tried it twenty times they wrote a theory
of how to make the green light come on. The theory was given to
the next victim and they had their twenty tries and wrote their
theory, and so on endlessly. The stated purpose of the test was
to study how theories evolved.

But my friend, being the kind of person he was, had con-
nected the lights to a random source! One day he observed to me
that no person in all the tests (and they were all high class
Bell Telephone Laboratories scientists) ever said that there was
no message. I promptly observed to him that not one of them was
either a statistician or an information theorist, the two classes
of people who are intimately familiar with randomness. A check
revealed that I was right!

. This is a sad commentary on your education. You are
lovingly taught how one theory was displaced by another, but you
are seldom taught to replace a nice theory with nothing but
randomness! And this is what was needed; the ability to say that
the theory you ]ust read is no good and that there was no
definite pattern in the data, only randomness.

I must dwell on this point. Statisticians regularly ask
themselves, "Is what I am seeing really there, or is it merely
random noise?" They have tests to try to answer these questions.
Their answer is not a yes or no, but only with some confidence a
"yes" or "no". A 90% confidence limit means that typically in
ten trys you will make the wrong decision about once, if all the
other hypotheses are correct!. Either you will chose when there
is nothing there, (Type 1 error), or you will reject when there
is something there, (Type 2 error). Much more data is needed to
get to the 95% confidence limit, and these days data can often be
very expensive to gather. Getting more data is also time con-
suming so that the decision is further delayed - a favorite
trick of people in charge who don’t want to bear the respon-
sibility of their position -~ "Get more data", they say.

Now I suggest to you quite seriously, many simulations are
nothing more than Rorschach tests. I quote a distinguished prac-
tioneer of management decision theory, Jay Forrester, "From the
behavior of the system, doubts will arise that will call for a
review of the original assumptions. From the process of working
back and forth between assumptions about the parts and the ob-
served behavior of the whole, we improve our understanding cf the
structure and dynamics of the system. This book is the result of
several cycles of re-examination and revision by the author".

How is the outsider to distinguish this from a Rorschach
test? Did he merely find what he wanted to find, or did he get
at "reality"? Regrettably, many, many simulations have a large
element of this adjusting things to get what they want to get.
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It is so easy a path to follow. It is for this reason that
traditional Science has a large number of safeguards, which these
days are often simply ignored.

Do you think you can do things safely, that you know better?
Consider the famous double blind experiments that are usual in
medical practice. The doctors first found that if the patients
thought they were getting the new treatment then they responded
with better health, and those who thought they were part of the
control group felt they were not getting it and did not improve.
The doctors then randomized the treatment and gave some patients
a placebo so that the patient could not respond and fool the doc-
tors this way. But to their horror, the doctors also found that
the doctors, knowing who got the treatment and who did not, also
found improvement where they expected to and not where they did
not. As a last resort, the doctors have widely accepted the
double blind experiment - until all the data are in neither the
patients nor the doctors know who gets the treatment and who does
not. Then the statistician opens the sealed envelop and the
analysis is carried out. The doctors wanting to be honest found
that they could not be! Are you so much better in doing a
simulation that you can be trusted not to find what you want to
find? Self-delusion is a very common trait of humans.

I started in Lecture 19 with the problem of why anyone
should believe in a simulation that has been done. You now see
the problem more clearly. It is not easy to answer unless you
have taken a lot more precautions than are usually done. Remem-
ber also you are probably going to be on the receiving end of
many simulations to decide many questions that will arise in your
highly technical future; there is no other way than simulations
to answer the question "What if ... 2" In Lecture 18 I observed
that decisions must be made and not postponed forever if the or-
ganization is not to flounder and drift endlessly - and I am sup-
posing that you are going to be among those who must make the
choices. Simulation is essential to answer the "What if ... ?",
but it is full of dangers, and is not to be trusted just because
a large machine and much time has been used to get the nicely
printed pages, or colorful pictures on the oscilloscope. If you
are the one to make the final decision then in a real sense you
are responsible. Committee decisions, which tend to diffuse
responsibility, are seldom the best in practice - most of the
time they represent a compromise which has none of the virtues of
any path and they tend to end in mediocrity. Experience has
taught me that generally a decisive boss 1is better than a waf-
fling one - you know where you stand and can get on with the work
that needs to be done!

The '"What if ... ?" will arise often in your futures, hence
the need for you to master the concepts and possibilities of
simulations, and be ready to gquestion the ressults and to dig
into the details when necessary.
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